Homework 8: Elliptic Curves Due Wednesday, November 21

William Stein

Math 124 HARVARD UNIVERSITY Fall 2001

There are **six problems**. Some of the problems involve tedious algebra, and in all such cases you are allowed to do that algebra using, e.g., PARI as long as you explain *how* you used the system to do the algebra. Problems 4, 5, and 6 are from Silverman and Tate's book *Rational Points on Elliptic Curves*.

- 1. (3 points) Consider the elliptic curve $y^2 + xy + y = x^3$ over \mathbb{Q} . Find a linear change of variables that transforms this curve into a curve of the form $Y^2 = X^3 + aX + b$ for rational numbers a and b.
- 2. (6 points) Let E be the elliptic curve over the finite field $K = \mathbb{Z}/5\mathbb{Z}$ defined by the equation

$$y^2 = x^3 + x + 1.$$

- (i) List all 9 elements of E(K).
- (ii) What is the structure of the group E(K), as a product of cyclic groups?
- 3. (8 points) Let E be an elliptic curve over \mathbb{Q} . Define a binary operation \boxplus on E as follows:

$$P \boxplus Q = -(P+Q).$$

Thus the \boxplus of P and Q is the third point of intersection of the line through P and Q with E.

- (i) Lists the axiom(s) of a group that fail for $E(\mathbb{R})$ equipped with this binary operation. (The group axioms are "identity", "inverses", and "associativity".)
- (ii) Under what conditions on $E(\mathbb{Q})$ does this binary operation define a group structure on $E(\mathbb{Q})$? (E.g., when $E(\mathbb{Q}) = \{\mathcal{O}\}$ this binary operation does define a group.)
- 4. (6 points) Let g(t) be a quartic polynomial with distinct (complex) roots, and let α be a root of g(t). Let $\beta \neq 0$ be any number.
 - (i) Prove that the equations

$$x = \frac{\beta}{t - \alpha}, \qquad y = x^2 u = \frac{\beta^2 u}{(t - \alpha)^2}$$

give an "algebraic transformation" between the curve $u^2 = g(t)$ and the curve $y^2 = f(x)$, where f(x) is the cubic polynomial

$$f(x) = g'(\alpha)\beta x^3 + \frac{1}{2}g''(\alpha)\beta^2 x^2 + \frac{1}{6}g'''(\alpha)\beta^3 x + \frac{1}{24}g''''(\alpha)\beta^4.$$

(ii) Prove that if g has distinct (complex) roots, then f also has distinct roots, and so $u^2 = g(t)$ is an elliptic curve.

1

5. (8 points) In this problem you will finally find out exactly why elliptic curves are called "elliptic curves"! Let $0 < \beta \le \alpha$, and let C be the ellipse

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1.$$

(i) Prove that the arc length of C is given by the integral

$$4\alpha \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta} d\theta$$

for an appropriate choice of constant k depending on α and β .

- (ii) Check your value for k in (i) by verifying that when $\alpha = \beta$, the integral yields the correct value for the arc length of a circle.
- (iii) Prove that the integral in (i) is also equal to

$$4\alpha \int_0^1 \sqrt{\frac{1-k^2t^2}{1-t^2}} dt = 4\alpha \int_0^1 \frac{1-k^2t^2}{\sqrt{(1-t^2)(1-k^2t^2)}} dt.$$

(iv) Prove that if the ellipse E is not a circle, then the equation

$$u^2 = (1 - t^2)(1 - k^2 t^2)$$

defines an elliptic curve (cf. the previous exercise). Hence the problem of determining the arc length of an ellipse comes down to evaluating the integral

$$\int_0^1 \frac{1 - k^2 t^2}{u} dt$$

on the "elliptic" curve $u^2 = (1 - t^2)(1 - k^2 t^2)$.

6. (8 points) Suppose that P = (x, y) is a point on the cubic curve

$$y^2 = x^3 + ax + b.$$

(i) Verify that the x coordinate of the point 2P is given by the duplication formula

$$x(2P) = \frac{x^4 - 2ax^2 - 8bx + a^2}{4y^2}.$$

- (ii) Derive a similar formula for the y coordinate of 2P in terms of x and y.
- (iii) Find a polynomial in x whose roots are the x-coordinates of the points P = (x, y) satisfying $3P = \mathcal{O}$. [Hint: The relation $3P = \mathcal{O}$ can also be written 2P = -P.]
- (iv) For the particular curve $y^2 = x^3 + 1$, solve the equation in (iii) to find all of the points satisfying $3P = \mathcal{O}$. Note that you will have to use complex numbers.