A. Student

Math 124 Problem Set 4

$$\begin{aligned} \mathbf{1.} & \left(\frac{3}{97}\right) = \left(-1\right)^{48} \cdot \left(\frac{97}{3}\right) = \left(\frac{1}{3}\right) = \mathbf{1}; \\ & \left(\frac{5}{389}\right) = \left(-1\right)^{2} \cdot \left(\frac{389}{5}\right) = \left(\frac{4}{5}\right) = \mathbf{1}; \\ & \left(\frac{2003}{11}\right) = \left(\frac{1}{11}\right) = \mathbf{1}; \\ & \left(\frac{5!}{7}\right) = \left(\frac{120}{7}\right) = \left(\frac{1}{7}\right) = \mathbf{1}; \end{aligned}$$

2. By quadratic reciprocity $\left(\frac{3}{p}\right) = (-1)^{\frac{p-1}{2}} \cdot \left(\frac{p}{3}\right)$. There are four cases:

Case 1: $p \equiv 1 \pmod{3}$, $p \equiv 1 \pmod{4}$: Then $p \equiv 1 \pmod{12}$ and $(-1)^{\frac{p-1}{2}} \cdot (\frac{1}{3}) = 1 \cdot 1 = 1$.

Case 2: $p \equiv 1 \pmod{3}, p \equiv -1 \pmod{4}$: Then $p \equiv 7 \pmod{12}$ and $(-1)^{\frac{p-1}{2}} \cdot \left(\frac{1}{3}\right) = -1 \cdot 1 = -1$.

Case 3: $p \equiv 2 \pmod{3}$, $p \equiv 1 \pmod{4}$: Then $p \equiv 5 \pmod{12}$ and $(-1)^{\frac{p-1}{2}} \cdot \left(\frac{-1}{3}\right) = 1 \cdot -1 = -1$.

Case 4: $p \equiv 2 \pmod{3}, p \equiv -1 \pmod{4}$: Then $p \equiv 11 \pmod{12}$ and $(-1)^{\frac{p-1}{2}} \cdot \left(\frac{-1}{3}\right) = -1 \cdot -1 = 1$.

(We solve the systems with the Chinese Remainder Theorem).

3. It is sufficient to give two distinct elements a, b in Z_n^* of order 2, for if there was a primitive root g, then $g^{\phi(2^m)/2} = g^{2^{m-2}}$ cannot simultaneously be congruent to a and b modulo n.

Put a = -1; since n > 2, -1 has order 2 in \mathbb{Z}_n^* . Set $b = 2^{m-1} - 1$; then

$$b^2 = (2^{m-1} - 1)^2 \equiv 2^{2m-2} - 2 \cdot 2^{m-1} + 1 \equiv 1 \pmod{2^m}.$$

Now b is distinct from a, since their difference, 2^{m-1} , is less than 2^m . Furthermore, $b \neq 1$, since m > 2. Therefore a and b are distinct elements of order 2 in \mathbb{Z}_n^* .

4. Let g_0 be a primitive root modulo p. We will construct an element g of $Z_{p^2}^*$ with order $\phi(p^2) = p(p-1)$. Let $g = g_0 + pt$ for some t to be determined. Then by the binomial theorem

$$g^{p-1} \equiv g_0^{p-1} + (p-1)pg_0^{p-2}t \equiv (1+kp) + p(p-1)g_0^{p-2}t \pmod{p^2},$$

for some k, since $g_0^{p-1} \equiv 1 \pmod{p}$. Now choose t such that $n = k + (p-1)g_0^{p-2}t$ is nonzero modulo p. We can do this because p-1 and g_0^{p-2} are both elements of Z_p^* . Then $g^{p-1} \equiv 1 + np \pmod{p^2}$, $p \nmid n$. Therefore the order of g in $Z_{p^2}^*$ does not divide p-1. But it divides p(p-1), and p is prime, so the order of g must be p(p-1). Thus g is a primitive root modulo p^2 .

- **5.** Let g be a primitive root modulo p. Since $p \equiv 1 \pmod{3}$, $c = g^{(p-1)/3}$ has order 3. Therefore c is a solution to $x^3 1 = (x 1)(x^2 + x + 1) = 0$ modulo p. Since $c \neq 1$ and we are in a domain, $c^2 + c + 1 = 0$. Now note that $4c^2 + 4c + 4 = (2c + 1)^2 + 3 = 0$; therefore $(2c + 1)^2 = -3$, so $\left(\frac{-3}{p}\right) = 1$.
- **6.** The proof is almost identical to the one above. Let c in Z_p^* be an element of order 5. Then $c^5 1 = (c-1)(c^4 + c^3 + c^2 + c + 1) = 0$ and $c \neq 1$ implies that $c^4 + c^3 + c^2 + c + 1 = 0$. Now

$$(c+c^4)^2 + (c+c^4) - 1 = c^2 + c^8 + 2c^5 + c + c^4 - 1 = c^4 + c^3 + c^2 + c + 1 = 0.$$

Therefore $(2(c+c^4)+1)^2=4((c+c^4)^2+(c+c^4)-1)+5=5$, so $\left(\frac{5}{p}\right)=1$.

7. All odd primes. Let p be an odd prime and g a primitive root modulo p. Rewrite the sum as:

$$\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = \sum_{i=1}^{p-1} \left(\frac{g^i}{p}\right) = \sum_{j=1}^{\frac{p-1}{2}} \left(\frac{g^{2j}}{p}\right) + \sum_{j=1}^{\frac{p-1}{2}} \left(\frac{g^{2j+1}}{p}\right) = \sum_{j=1}^{\frac{p-1}{2}} \left(\frac{g^{2j}}{p}\right) + \left(\frac{g}{p}\right) \sum_{j=1}^{\frac{p-1}{2}} \left(\frac{g^{2j}}{p}\right) = \frac{p-1}{2} \left(1 + \left(\frac{g}{p}\right)\right).$$

Now
$$\left(\frac{g}{p}\right)=-1$$
, for if $\left(\frac{g}{p}\right)=1$ then $g^{\frac{p-1}{2}}=1$, and g would not be primitive. Therefore $\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=0$.

8. A good guess seems to be $C \approx .374$. In PARI, we can write a program to check the first n primes to see if 2 is a primitive root, and divide this total by n to see the behavior of the ratio:

$$g\theta(n)=numRoot=0;\ lPr=prime(2);$$

$$for(j=2,n,(if(znorder(Mod(2,lPr))==lPr-1,numRoot++));\ lPr=prime(j+1));\ tPr=n;$$

return(numRoot/(1.0*n));

Using this, we have $g0(41560) \approx .37377$. This exhausts PARI's list of primes, so we can write another program to continue testing:

$$g(n) = lPr = nextprime(lPr + 1);$$

$$for(j=1,n,(if(znorder(Mod(2,lPr))==lPr-1,numRoot++));tPr++;lPr=nextprime(lPr+1));$$

return(numRoot/(1.0*tPr));

With this program, we can check the first n primes (according to PARI's nextprime function). For the first 81,560 primes, we have $C \approx .373725$; For the first 101,560 primes, we have $C \approx .374714$. Finally, for the first 200,000 primes, we have $C \approx .374075$.