next up previous
Next: About this document ...

A. Student

Math 124 Problem Set 4

1. $ \left(\frac{3}{97}\right)={(-1)}^{48}\cdot
\left(\frac{97}{3}\right)=\left(\frac{1}{3}\right)=\ $1;
$ \left(\frac{5}{389}\right)={(-1)}^{2}\cdot
\left(\frac{389}{5}\right)=\left(\frac{4}{5}\right)=\ $1;
$ \left(\frac{2003}{11}\right)=\left(\frac{1}{11}\right)=\
$1;
$ \left(\frac{5!}{7}\right)=\left(\frac{120}{7}\right)=\left(\frac{1}{7}
\right)=\ $1;

2. By quadratic reciprocity $ \left(\frac{3}{p}\right)={(-1)}^{\frac{p-1}{2}}\cdot
\left(\frac{p}{3}\right)$. There are four cases:
Case 1: $ p\equiv 1(mod\ 3)$, $ p\equiv 1(mod\ 4)$: Then $ p\equiv$ 1$ (mod\ 12)$ and $ {(-1)}^{\frac{p-1}{2}}\cdot \left(\frac{1}{3}\right)=1\cdot 1=\
$1.
Case 2: $ p\equiv 1(mod\ 3)$, $ p\equiv -1(mod\
4)$: Then $ p\equiv$ 7$ (mod\ 12)$ and $ {(-1)}^{\frac{p-1}{2}}\cdot \left(\frac{1}{3}\right)=-1\cdot 1=\
$-1.
Case 3: $ p\equiv 2(mod\ 3)$, $ p\equiv 1(mod\ 4)$: Then $ p\equiv$ 5$ (mod\ 12)$ and $ {(-1)}^{\frac{p-1}{2}}\cdot \left(\frac{-1}{3}\right)=1\cdot -1=\
$-1.
Case 4: $ p\equiv 2(mod\ 3)$, $ p\equiv -1(mod\
4)$: Then $ p\equiv$ 11$ (mod\ 12)$ and $ {(-1)}^{\frac{p-1}{2}}\cdot \left(\frac{-1}{3}\right)=-1\cdot
-1=\ $1.
(We solve the systems with the Chinese Remainder Theorem).

3. It is sufficient to give two distinct elements $ a,b$ in $ Z_n^*$ of order 2, for if there was a primitive root $ g$, then $ g^{\phi(2^m)/2}=g^{2^{m-2}}$ cannot simultaneously be congruent to $ a$ and $ b$ modulo $ n$.
Put $ a=-1$; since $ n>2$, $ -1$ has order 2 in $ Z_n^*$. Set $ b=2^{m-1}-1$; then

$\displaystyle b^2=(2^{m-1}-1)^2\equiv 2^{2m-2}-2\cdot 2^{m-1}+1\equiv 1(mod\
2^m).$

Now $ b$ is distinct from $ a$, since their difference, $ 2^{m-1}$, is less than $ 2^m$. Furthermore, $ b\neq 1$, since $ m>2$. Therefore $ a$ and $ b$ are distinct elements of order 2 in $ Z_n^*$.

4. Let $ g_0$ be a primitive root modulo $ p$. We will construct an element $ g$ of $ Z_{p^2}^*$ with order $ \phi(p^2)=p(p-1)$. Let $ g=g_0+pt$ for some $ t$ to be determined. Then by the binomial theorem

$\displaystyle g^{p-1}\equiv
g_0^{p-1}+(p-1)pg_0^{p-2}t\equiv (1+kp)+p(p-1)g_0^{p-2}t\ (mod\
p^2),$

for some $ k$, since $ g_0^{p-1}\equiv 1(mod\ p)$. Now choose $ t$ such that $ n=k+(p-1)g_0^{p-2}t$ is nonzero modulo $ p$. We can do this because $ p-1$ and $ g_0^{p-2}$ are both elements of $ Z_{p}^*$. Then $ g^{p-1}\equiv 1+np\ (mod\ p^2)$, $ p\nmid n$. Therefore the order of $ g$ in $ Z_{p^2}^*$ does not divide $ p-1$. But it divides $ p(p-1)$, and $ p$ is prime, so the order of $ g$ must be $ p(p-1)$. Thus $ g$ is a primitive root modulo $ p^2$.

5. Let $ g$ be a primitive root modulo $ p$. Since $ p\equiv 1(mod\ 3)$, $ c=g^{(p-1)/3}$ has order 3. Therefore $ c$ is a solution to $ x^3-1=(x-1)(x^2+x+1)=0$ modulo p. Since $ c\neq 1$ and we are in a domain, $ c^2+c+1=0$. Now note that $ 4c^2+4c+4=(2c+1)^2+3=0$; therefore $ (2c+1)^2=-3$, so $ \left(\frac{-3}{p}\right)=1$.

6. The proof is almost identical to the one above. Let $ c$ in $ Z_p^*$ be an element of order 5. Then $ c^5-1=(c-1)(c^4+c^3+c^2+c+1)=0$ and $ c\neq 1$ implies that $ c^4+c^3+c^2+c+1=0$. Now

$\displaystyle (c+c^4)^2+(c+c^4)-1=c^2+c^8+2c^5+c+c^4-1=c^4+c^3+c^2+c+1=0.$

Therefore $ (2(c+c^4)+1)^2=4((c+c^4)^2+(c+c^4)-1)+5=5$, so $ \left(\frac{5}{p}\right)=1$.

7. All odd primes. Let $ p$ be an odd prime and $ g$ a primitive root modulo $ p$. Rewrite the sum as:

$\displaystyle \sum_{a=1}^{p-1}{\left(\frac{a}{p}\right)}=\sum_{i=1}^{p-1}{\left...
...\frac{g^{2j}}{p}\right)}=
\frac{p-1}{2}\left(1+\left(\frac{g}{p}\right)\right).$

Now $ \left(\frac{g}{p}\right)=-1$, for if $ \left(\frac{g}{p}\right)=1$ then $ g^{\frac{p-1}{2}}=1$, and $ g$ would not be primitive. Therefore $ \sum_{a=1}^{p-1}{\left(\frac{a}{p}\right)}=0$.

8. A good guess seems to be $ C\thickapprox .374$. In PARI, we can write a program to check the first $ n$ primes to see if 2 is a primitive root, and divide this total by $ n$ to see the behavior of the ratio:
g0(n)=numRoot=0; lPr=prime(2);

for(j=2,n,(if(znorder(Mod(2,lPr))==lPr-1,numRoot++)); lPr=prime(j+1)); tPr=n;

return(numRoot/(1.0*n));
Using this, we have $ g0(41560)\thickapprox.37377$. This exhausts PARI's list of primes, so we can write another program to continue testing:

g(n)=lPr=nextprime(lPr+1);

for(j=1,n,(if(znorder(Mod(2,lPr))==lPr-1,numRoot++));tPr++;lPr=nextprime(lPr+1));

return(numRoot/(1.0*tPr));
With this program, we can check the first $ n$ primes (according to PARI's nextprime function). For the first 81,560 primes, we have $ C\thickapprox.373725$; For the first 101,560 primes, we have $ C\thickapprox.374714$. Finally, for the first 200,000 primes, we have $ C\thickapprox.374075$.



next up previous
Next: About this document ...
William A Stein 2001-12-10