Homework 4: Primitive Roots and Quadratic Reciprocity Due Wednesday, October 17

William Stein

Math 124 HARVARD UNIVERSITY Fall 2001

- 1. (2 points) Calculate the following symbols by hand: $\left(\frac{3}{97}\right)$, $\left(\frac{5}{389}\right)$, $\left(\frac{2003}{11}\right)$, and $\left(\frac{5!}{7}\right)$.
- 2. (3 points) Prove that $\left(\frac{3}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1, 11 \pmod{12}, \\ -1 & \text{if } p \equiv 5, 7 \pmod{12}. \end{cases}$
- 3. (3 points) Prove that there is no primitive root modulo 2^n for any $n \geq 3$.
- 4. (6 points) Prove that if p is a prime, then there is a primitive root modulo p^2 .
- 5. (5 points) Use the fact that $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic to give a direct proof that $\left(\frac{-3}{p}\right)=1$ when $p\equiv 1\pmod 3$. [Hint: There is an $c\in (\mathbb{Z}/p\mathbb{Z})^*$ of order 3. Show that $(2c+1)^2=-3$.]
- 6. (6 points) If $p \equiv 1 \pmod 5$, show directly that $\left(\frac{5}{p}\right) = 1$ by the method of Exercise 5. [Hint: Let $c \in (\mathbb{Z}/p\mathbb{Z})^*$ be an element of order 5. Show that $(c+c^4)^2 + (c+c^4) 1 = 0$, etc.]
- 7. (4 points) For which primes p is $\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = 0$?
- 8. (4 points) Artin conjectured that the number of primes $p \leq x$ such that 2 is a primitive root modulo p is asymptotic to $C\pi(x)$ where $\pi(x)$ is the number of primes $\leq x$ and C is a fixed constant called Artin's constant. Using a computer, make an educated guess as to what C should be, to a few decimal places of accuracy. Explain your reasoning. (Note: Don't try to prove that your guess is correct.)