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First proof (using induction): The statement is true when n = 1, since
ged(1,1) = 1. Now assume that n > 2 is an integer such that ged(F,—1, F,) = 1.
If there is a prime p such that

p | ng(FnaFn+1) = ng(FnaFn + anl);

thenp | F, and p | Fy, + F;, 1, 80 p| Fj, 1 and p | Fy, hence p | ged(F,, 1, Fy,)
which contradicts our inductive assumption. Thus no such prime p exists, and
ged(Fy, Fryq) = 1.

Second proof (using continued fractions): Consider the periodic continued
fraction [1,1,1,...]. The nth convergent to this continued fraction is p, /g, where
pn and ¢, are defined by the recurrence p, = pn_1 +Pn_2, Gn = Gn_1 + gn_2, and
p-1=po=1,¢91=0,qg = 1. As observed in Lecture 17, ged(pn,, ¢,) = 1. Now
just notice that p, = Fj,42 and ¢, = Fp41.

We do part (ii), which implies part (i). Let T' be the set of elements in (Z/nZ)*
of order dividing 2, and let S be the complement of T in (Z /nZ)*, so

f(n):Hme

z€S zeT

If x € Sthen z ' also liesin S and 27! # z, 50 [[,egz = 1, and f(n) = [[,er 2,
where T' is the subgroup of elements of order dividing 2. Using the Chinese
Remainder Theorem, write

(Z/nZ)" = (Z/py*Z)" % --- (Z [Py L),

where n = [[ p;"* is the prime factorization of n. Since each p; is odd, problem 4
of this exam implies that (Z /p] Z)* is cyclic, so —1 is the only element it contains
of order 2.

Thus the group T is isomorphic to the F = (Z /2Z)-vector space F", where again r
is the number of prime factors of n. By a careful induction we see that ) # 0
if and only if r = 1. To see this, check the cases r = 0,1, 2 directly. For r > 3,
write F" as a union of two (r — 1)-dimensional hyperplanes, the elements of each
of which sum to 0, by the inductive hypothesis. Thus

f(n) =

—1, when n # 1 is a prime power
1,  otherwise

For fun, here is a PARI program that compute f(n) directly, so you can verify
computationally that the above result is plausible:
f(n)=local(s);s=1;for(x=1,n,if (gcd(x,n)==1,s=(s*x)%n)) ;return(s);

(i) m® = 267882027458254785570095246784538



5.

(ii) The decryption key is the inverse of e modulo ¢(n), which is
d = 208830632607306431636724371446103.

(iii) 2002.

. First note, as observed in Lecture 6, that the group G = (Z/p"Z)* has order

e =p"—p" ' =pm-1)p" "

We will prove that G is cyclic by proving that G contains an element of order
(p— 1)p™~t, and we’ll do this by showing that G contains an element of order
p — 1 and one of order p»~!.

In Lecture 11, we proved that the group (Z /pZ)* of order p — 1 is cyclic, so since
the homomorphism (Z /p"Z)* — (Z /pZ)* is surjective, there is an z € (Z /p"Z)* of
order a multiple of p—1. Then a = 2?"~" has order p—1. Next, letting b=1+p,
the binomial theorem implies that

_ n—2 n—2
e (o

n—2 n72_1
%pu...,

=1 +pn71 +
so, since p # 2, we have b»"~ £ 1 (mod p™). (This argument fails when p = 2;
e.g., if p =2 and n = 3, then the right-most binomial coefficient is not divisible
by p°.) Since ¥»"~ =1 (mod p"), we see that b has order p"~!. Thus a - b has
order lem(p — 1,p"~1) = ¢(p™), which proves that (Z/p"Z)* is cyclic.
[If you’re worried about that binomial expansion, the following remark by “A.
Student” might prove helpful: For i > 1 we have p"~¢|(?), because (¥;) =
pr-(p?—1)---(p"—i+1)/(:") and the power of p in the factorization of i! satisfies
i/p+i/p*+--- <i(1/(p—1)) <i]

(i) Let o =[0,1,4]. Then

_ 1

It

soa = (4+a)/(5+a), hence a® + 4a — 4 = 0, and o = —2 + 2v/2. Thus
[3,1,4] = 3+(—24+2v2) = 1+2v/2. Asa check, type contfrac(1+2*sqrt(2))
into PARI.

(ii) Using PARI we quickly see that (1++/23)/5 should equal [1,6,3,1]. To prove
this, we have to do the algebra as in part (i). We have

1
a=[0631=1+—F—
6+ s

1+1

o

Using basic algebra, this simplifies to

_ 22 + 29«
*= 19+ 250

Thus
2502 — 100 — 22 = 0,

S0, since a > 0,

10++/100+4-22-25 1

as required.



6. If m were small, this problem would be completely trivial to solve using a simple
PARI command like

ss(n) = for(x=1,floor(sqrt(n)),if (issquare(n-x~2),print(x)))

However, ss(m) will take an extraordinarily long time to terminate, so instead
we use the proof that integers of a certain form are a sum of two squares. First,
factor m using, e.g., the PARI command factor:

m = 171255509 - 758572081 - 817611037.

Each of these three prime divisors is congruent to 1 modulo 4, so each is a sum of
two squares. The following representations were found using the PARI command
ss above:

171255509 = 41532 + 124102
758572081 = 144602 + 234412
817611037 = 179462 + 22261

Now we use the formula (from Lecture 21) for expressing a product of two sums
of two squares as a sum of two squares

(@] + 93) (23 + ¥3) = (T122 + y192)° + (T1Y2 — T2y1)%,

which comes from multiplication in the Gaussian integers:

? (4153+12410%I)*(14460+23441*%1)*(17946+22261*1)
%14 = -10304665980833 - 171525258172*1

Thus

106215561890727905176155473 = 10304665980833% + 1715252581722

7. First, load the file forms.gp from Lecture 24. The command reducedforms com-
putes a list of reduced forms of discriminant -888:

? r=reducedforms (-888)

%2 = [[1, 0, 222], [11, -6, 211, [11, 6, 21], [13, -10, 19],
[13, 10, 191, [14, -8, 171, [14, 8, 171, [2, O, 111],
(s, o, 741, 6, 0, 371, [7, -6, 331, [7, 6, 33]1]

Thus the class group has order 12. Since composition(r[1],r[1]) is r[1], the
form (1,0,222) is the identity of the group. There are exactly two isomorphism
classes of abelian groups of order 12: one is represented by Z /3Z x Z [/AZ and the
other by Z/3Z x Z [2Z x Z /2Z. To decide which is our class group, we compute
the order of each element.

? for(n=1,12,printl(orderform(r[n],r[1])," "))
i1 6 6 6 6 6 6 2 2 2 3 3

Since no element has order 4, the class group must be

7./3Z % 7./2Z % .21

8. (i) One way to compute the values is to use that ellap is p + 1 — Mp:



(iii)

? e = ellinit([0,-4,0,0,16])

? forprime(p=3,30,if(p!=11,printl(p+i-ellap(e,p),", ")))
5, 5, 10, 10, 20, 20, 25, 30,

\\3 5 7 13 17 19 23 29

In PARI, one can compute the N,, as follows:

7 gxprod(n=1,30, (1-q"n) "2)*prod(n=1,3, (1-q~(11*n))"2) + 0(q~30)

%22 = q - 2¥q"2 - q°3 + 2*xq"4 + q°5 + 2%q"6 - 2xq"7 - 2*%q~9 - 2xq"10
+ q 11 - 2%q~12 + 4%q~13 + 4%q~14 - q~15 - 4%q~16 - 2%q"17
+ 4%q 18 + 2%q 20 + 2%q~21 - 2%q"22 - q°23 - 4%q"25 - 8%q"26
+ 5%q"27 - 4*q~28 + 0(q~30)

The sums are
4,6,8,14,18, 24, 30,

so we conjecture that for p > 29, we have M, + N, = p+ 1. (Note that we
are not required to prove this!)

Use the ellap function and that p+ 1 —a, = Np:

? forprime(p=3,30,printl(p+i-ellap(e,p)," "))
4 4 8 12 20 16 20 24 20

In the above examples, N, = p+ 1 for p = 3 (mod 4), so we conjecture in
general that this relation holds. We now prove this conjecture. Supposing
p = 3 (mod 4), we must count the number of points on 3> = z® + z with

coordinates in Z/pZ. Since p = 3 (mod 4), we have (_71) = -1, ie, —1

is not a perfect square. Thus if 2 € Z/pZ and z® + x is nonzero, then
ezactly one of 23 + x or —(2® + x) = (—x)% + (—z) is a perfect square. Since
3+ = z(2?+1) and, as just noted, 22 +1 has no root in Z /pZ, the cubic is 0
only when z = 0. Thus the points on E are as follows: the point at infinity,
the point (0,0), and points (z, +y) where = runs through exactly half of the
nonzero elements of Z /pZ. There are thus 1+1+2-(p—1)/2 = p+ 1 points
on E over Z/pZ.

10. Your answer will depend on the random number seed in your version of PARI. We
use the following functions from Lecture 31.

{ECM(N, m)= local(E);

E

= ellinit([0,0,0,random(N) ,1]*Mod(1,N));

print("E: y~2 = x"3 + ", 1lift(E[4]),"x+1, P=[0,1]1");
ellpow(E, [0,1]*Mod(1,N) ,m); \\ this fails if and only if we win!

3

{lemfirst(B) =
local(L,i); L=1; for(i=2,B,L=1cm(L,i));
return(L) ;

}

TI'm going to start with lemfirst(10000), though you might have choosen some-
thing different for m.

?m = lemfirst (10000);
? N = 124531325385603661726997;
? ECM(N,m)

E: y°2 = x73 + 90450397866599611397131x+1, P=[0,1]
***  impossible inverse modulo: Mod (495899, 124531325385603661726997).



We have thus split N:
N = 495899 - 251122356337890703.

Now apply ECM to the remaining factor:

7 ECM(N/495899,m)
E: y°2 = x"3 + 35484437310832518x+1, P=[0,1]
**%*  impossible inverse modulo: Mod(311221384171, 251122356337890703).

Thus
N = 495899 - 311221384171 - 806893.

The first and last factors are prime, but the middle one is composite:

7 isprime(495899,1)

W =1

7 isprime(311221384171,1)
W6 =0

7 isprime(806893,1)

W= 1

When we try ECM on the second factor, it fails a few times, then succeeds:

? ECM(311221384171,m)
E: y™2 = x"3 + 246181556758x+1, P=[0,1]
%8 = [0]
? ECM(311221384171,m)
E: y°2 = x"3 + 163571326944x+1, P=[0,1]
%9 = [Mod (20641240315, 311221384171), Mod (200682828122, 311221384171)]
? ECM(311221384171,m)
E: y°2 = x"3 + 255080864418x+1, P=[0,1]
ok ok impossible inverse modulo: Mod(888161, 311221384171).

Thus
N = 495899 - 888161 - 350411 - 806893,

and isprime reveals that these are all prime. As a lazy double check, we use the
builtin factorization routine in PARI:

? factor(N)
%11 =

[350411 1]
[495899 1]
[806893 1]
[888161 1]

11. This is an extremely difficult open problem, and I have no idea how to solve it.



