
SAGE for Undergraduates:
How to Get Started

Gregory V. Bard

January 7, 2012



Chapter 1

Welcome to SAGE!

As the open-source and FREE competitor to expensive software like Maple, Mathematica, Magma and
Matlab, SAGE offers anyone with access to a web-browser the ability to use cutting-edge mathematical
software, and display one’s results for others. This document is going to share with you several common
mathematical tasks that are extremely easy, and which may serve as your starting point into SAGE. I’m
sure that you will find SAGE far easier to use than a graphing calculator, and vastly more powerful.

Introduction

There is no need to read this entire document. If you are handed this guide as part of a class, then your
professor will tell you which section numbers correspond with what you need to know. If you are just curious,
then I recommend you just read the first 11 lessons, and then start playing around on your own. Using the
find feature of your pdf viewer, you can always search for whatever command you would like to use. I
recommend that you never try to read more than 3 entire lessons in one day. Otherwise there is too much
for your brain to absorb while still keeping the experience fun and new.

I assume you do not already have an account on the SAGE notebook server. If you have one, then log
in now, but if not, then see Appendix A, which will tell you how to get an account. In Appendix D are the
directions for installing it on your personal computer, but this a very long and difficult process, and it is not
recommended to beginners.

1.1 Using SAGE as a calculator

First off, you can always use SAGE as a simple calculator. For example, if you type 2+3 and click “evaluate”
then you will learn the answer is 5.

The expressions can become as complicated as you like. To calculate the amount on a simple interest
loan at 6% per year for 90 days, and principal $ 900, we all know the formula to be A = P (1 + rt) so we
would just type in

900*(1+0.06*(90/365))

1



and click “evaluate”. You will learn that the answer is 913.315068493151, or $ 913.32 after rounding to the
nearest penny.

Notice that the symbol for addition is the plus sign, and the symbol for subtraction is the hyphen. The
symbol for multiplication is the asterisk, and the symbol for division is the forward slash (that’s the one
found with the question mark, not the backslash.)

For compound interest, we’d need to take exponents. The symbol for exponents is the caret, found above
the number six on most keyboards. It looks like this “ˆ”.

Let’s consider 12% compounded annually on a signature loan for 3 years, and a principal of $ 11,000. We
all know the formula to be A = P (1 + i)n, and so we would just type in

11,000*(1+0.12)^3

and click “evaluate”. You will learn that the answer is 15454.2080000000, or $ 15,454.21 after rounding to
the nearest penny. By the way, instead of clicking “evaluate,” you can just press shift-enter on the keyboard,
and it will do the same thing.

For those who don’t like the caret, you can use two asterisks in a row.

11,000*(1+0.12)**3

which is actually a throw-back to the historical programming language FORTRAN which was most popular1
during the 1970s and 1980s.

Warning: It is very important not to enter a comma in large numbers when using SAGE. You have to
type 11000 and not 11,000

What if you make a mistake? Let’s say that I really meant to say $ 13,000 and not $ 11,000. Click on
the mistake, and correct it using the keyboard, and change the 11 into 13. Now click “evaluate” again, and
all is well.

There’s also an “Undo” button and it does exactly what you think it does. However, if you’ve done a lot
of work, you have to scroll the window all the way to the top of the document to find it, as this button sits
at the top of the sheet.

The Red Line: You may have noticed a vertical red line next to the box after you had begun to change
the formula, but before you had clicked “evaluate.” After you have clicked “evaluate,” the red line vanished.
The purpose of this red line is to tell you that the information in the box had changed since the last time
“evaluate” had been clicked, and so you need to hit “evaluate” again to get an accurate answer.

The Green Rectangle: Also, you may have noticed (if you have a slow internet connection in particular)
a green rectangle that is very thin under the box where you just typed, and next to the red line. This is to
indicate that your web-browser is connecting to the SAGE server, and has made its request, and waiting for
the answer. Do not hit “evaluate” again. On fast connections, the green rectangle will appear and disappear
very rapidly, and you probably will not see it.

Note, if you have a very slow connection, then see “The Moving Slash” on Page 70.

Saving or Printing your Work: We will go into more detail about this later, but for now notice the
“Save” and “Save & Quit” buttons, as well as the “Discard & Quit” button. These do exactly what you
think they do. You can also use the “Print” button to print your work.

Like the undo button, if you’ve done a lot of work, you’ll have to scroll the window all the way to the
top of the document to find it, as this button sits at the top of the sheet.

1An irrelevant historical aside: Because rewriting software is a painful and time-consuming process, many important pieces
of scientific software remained written in FORTRAN until a few years ago, and likewise the same is true of business software in
COBOL. Each new programming language incorporates features of the previous generation of languages, to make it easier to
learn, and accordingly one sees some truly ancient seeds of dead languages once in a while.

2



Shortcut: While I mentioned it before, if you are tired of clicking “evaluate” all the time, you can just
press Shift and Enter at the same time.

The Underscore: blah: Coming Soon! (I can’t believe I forgot to mention this!!!!)

Grouping Symbols When there are multiple sets of parentheses in a formula, sometimes mathematicians
use brackets as a type of “super parentheses.” As it turns out, SAGE needs the brackets for other things,
like lists, and so you have to always use parentheses for grouping inside of formulas.

For example, let’s say you need to evaluate

550
[
1− (1 + 0.05)−30

]

0.05
So you should not type

550 [ 1 - (1+0.05)^(-30) ]/0.05

but rather

550 ( 1 - (1+0.05)^(-30) )/0.05

where the brackets have become parentheses.
Some very old math books use braces { and } as a sort of auxiliary also to the parentheses and brackets.

These too, if they are for grouping in a formula, must become parentheses. As it turns out, SAGE, as well
as modern mathematical books, use the braces { and } to denote sets.

By the way, the above formula was not artificial. It is the value of a loan at 5% compounded annually
for 30 years, with an annual payment of $ 550. The formula is called “the present value of an annuity.”

1.2 Using SAGE with Common Functions

Now I’ll discuss how SAGE works with square roots, logarithms, exponentials, and so forth.

Square Roots: The standard “high school” functions are also built-in. For example, type
sqrt(144)

then click “evaluate” and you’ll learn that the answer is 12. From now on, I’m not going to say “click
evaluate”, because repeating that might get tiresome; I’ll assume that you know you have to do that. Since
SAGE likes exact answers, try

sqrt(8)
and get 2*sqrt(2) as your answer. If you really need a decimal, try instead

N( sqrt(8) )
and obtain

2.82842712475.
which is a decimal approximation.

The N() function, which can also be written n(), will convert what is inside the parentheses to a real
number, if possible. Usually that is a decimal expansion, and so unless what is inside the parentheses is
an integer2 then it will be, necessarily, an approximation. SAGE will assume that all decimals are mere
approximations, so for example

sqrt(3.4)
will evaluate to 1.84390889145858, without need of using N().

2To be mathematically correct, I should say “an integer or a fraction with denominator writable as a product of a power
of 5 and a power of 2.” For example, 25ths, 16ths, and 80ths can be written exactly with decimals, where as 3rds, 15ths, and
14th cannot. Observe that 25 = 52 and 16 = 24 as well as 80 = 24 × 5. Those denominators have only 2s and 5s in their
prime factorization. Meanwhile, 3 = 3 and 3 = 5 × 3 while 14 = 7× 2. As you can see, those denominators have primes other
than 2 and 5 in their prime factorization. If you find this interesting, you should read “Using SAGE to work with Integers” on
Page 47.

3



Higher Order Roots: Higher order roots can be calculated like exponents are. For example, to find the
sixth root of 64, do

64^(1/6)

and obtain that the answer is 2.

Getting Both Square Roots: In the spirit of absolute pomposity, you may know that (−2)2 = 4 as well
as 22 = 4. So if you want all the square roots of a number you can do

sqrt(4,all=True)
to obtain

[2, -2]
where the square brackets indicate a list.

A Taste of the Complex Numbers If you know about complex numbers, you can do
sqrt(-4,all=True)

to obtain
[2*I, -2*I]

where the capital letter I represents
√
−1, the imaginary constant. You might be interested to know that

you can use the lowercase i instead of the capital one, if you prefer. While SAGE is quite good at complex
analysis, and can produce some rather lovely plots of functions of a complex variable, we will not go into
those details in this document.

Special Constants Pi and e: We’ve learned that the imaginary constant is capital “I”. It turns out that
π is built in as “pi” (both letters lower case) and e is built in as “e” (again, lower case).

You can do things like

numerical_approx(pi, prec=200)

to get many digits of pi, or likewise

numerical_approx(sqrt(2), prec=200)

to get a high-accuracy expansion of
√

2. These expansions are to 200 bits, and basically if you want 100
digits, you can do 332 bits; 200 digits3 is 664 bits, and so on. You can also abbreviate with

n(sqrt(2), prec=200)
as we did earlier. That’s what the N() or n() function (they are the same) is an abbreviation of, namely
“numerical approx.”

Is SAGE Case-Sensitive? You’ve probably had a situation in life where you entered your password
correctly, but discovered that it was rejected because you had the wrong capitalization. For example,
perhaps you’ve left the “CAPS-LOCK” key on. In any event, SAGE does think of Pi as different from pi
and Sin as different from sin. The only exception is that you can represent

√
−1 as either i or I and

either way SAGE will know what you meant. But that leniency only applies to
√
−1 and in all other cases,

capitalization matters.

Tab Completion: Now would be a good time to explain a neat feature of SAGE. If you are typing a long
command, like “numerical approx” and part way through you forget the exact ending (is it approximation?
approximations? appr?) then you can hit the tab button. If only one command in the entire library has
that prefix, then SAGE will fill in the rest for you. If it does not, then you have to enter a few more letters.
On a slow internet connection, the pause can be very noticeable, but it is still a useful feature when you
cannot remember exact commands.

3This turns out to be because 10200 ≈ 2664, if you are curious.

4



Exponentials: Just as

2^3

gives you 23 and likewise

3^3

gives you 33, if you want to say e3 then just say

e^3

and that’s fine. Or for a decimal approximation you can do

N(e^3)

Also, it is worth mentioning sometimes books will write

exp(5 · 11 + 8) instead of e5·11+8

and SAGE thinks that’s just fine. For example,

exp(5*11+8) - e^(5*11+8)

evaluates to 0. Don’t forget the asterisk between the 5 and the 11.

Logarithms Of course, SAGE knows about logarithms. But there’s a problem. There are several types of
logarithm, including the common logarithm, the natural logarithm, the binary logarithm, and the logarithm
to any other base you feel like using. In high school and middle school, “log” refers to the common logarithm,
and “ln” to the natural logarithm. However, during and after calculus, “log” refers to the natural logarithm.
Since SAGE was mainly meant for university-and-higher level work, then it is only natural they chose to use
the natural logarithm for “log.”

So to find the natural logarithm of 100 type
N( log(100) )

for the common logarithm of 100 type
N( log(100,10) )

and for the binary logarithm of 100 type
N( log(100,2) )

which of course generalizes. To find the logarithm of 100 base 42, type
N( log(100,42) )
Note that SAGE is quite good at getting exact answers. Try

log ( sqrt(100^3) ,10)

and you will obtain 3, the exact answer.

Chemistry Example: Coming Soon! An example of common log with pH

Finance Example: Coming Soon! An example of natural log for getting the number of compounding
periods or length of time.

5



1.3 Using SAGE for trigonometry.

For trigonometry, SAGE works in radians. So if you want to know the sine of π/3, you should type
sin(pi/3)

and you will get the answer 1/2*sqrt(3). This is an exact answer, rather than a mere decimal approximation.
You will find that SAGE is very oriented toward exact rather than approximate answers. Sometimes this is
irritating, because if you ask for the cosine of π/12, then you would type

cos(pi/12)
and obtain 1/12*(sqrt(3) + 3)*sqrt(6) which is especially irritating if you want a decimal. Instead, if
you type

N(cos(pi/12))
then you will obtain 0.965925826289, a rather good decimal approximation.

You will discover that SAGE is fairly savvy when it comes to knowing when functions will go wrong. In
particular, just try evaluating tangent at one of its asymptotes. For example,

tan(pi/2)
will produce the helpful answer “Infinity.” The “rare” or “reciprocal” trigonometric functions of cotangent,
secant, and cosecant, which are important in calculus but annoying on hand-held calculators, are built into
SAGE. They are identified as cot, sec, and csc.

The inverse trigonometric functions are also available. They are used just like the trigonometric functions.
For example, if you type

arcsin(1/2)
you will obtain

1/6*pi
as expected. Likewise

arccos(1/2)
produces

1/3*pi
The usual abbreviations are all known by and used by SAGE. Here is a complete list:
Math Notation Long-form SAGE command Short-form SAGE command
sin−1 x arcsin(x) asin(x)
cos−1 x arcsin(x) acos(x)
tan−1 x arcsin(x) atan(x)
cot−1 x arccot(x) acot(x)
sec−1 x arcsec(x) asec(x)
csc−1 x arccsc(x) acsc(x)

You can also use SAGE to graph the trigonometric functions. We’ll do that in the section entitled “Using
SAGE to graph 2-dimensionally,” on Page 9

Converting to Degrees, and Back: Remember, to covert radians to degrees, just multiply by 180/π,
and to multiply from degrees to radians, just multiply by π/180. Here’s what you type, to convert π/3 to
degrees:

(pi/3) * (180/pi)
produces

60
while

60 * (pi/180)
produces

1/3*pi
The way I like to remember this is that one protractor is 180 degrees, and protractor begins with “p,”

while π is the Greek “p.” For example, 90 degrees is half a protractor, and 60 degrees is a quarter protractor.

6



That’s why I can remember that they are π/2 and π/2. Likewise, if I see pi/6, then I know that this is
one-sixth of a protractor or 30 degrees.

There is actually an elaborate package in SAGE for converting among different units, and it can be quite
useful. I hope to add it to this document in the near future.

1.4 Using SAGE to graph 2-dimensionally.

My favorite shape is the parabola, so let’s start there. Type

plot(x^2)

and you get a lovely plot of a parabola going in the range

−1 < x < 1

which is the default range. It will bound the y-values to whatever is needed to show those x-values. Here’s
what you will get:

Likewise you can do

plot(x^3-x)

which is nice and visually appealing, as you can see:

For |x− 1/2| you can do

7



plot(abs(x-1/2))

which can come up from time to time. This produces

But what if you wanted a different x range? For example, to graph in −2 < x < 2 you would type

plot(x^3-x, -2, 2)

and you get the desired graph, namely:

A very cool graph is

plot(x^4 - 3*x^2+2,-2,2)

but notice the asterisk between 3 and x in “ 3*x ”. You will get an error if you leave that out! The plot is

8



Another minor sticking point is that for y = sin(t) you have to say
plot(sin(x))

or better yet
plot(sin(x),-10,10)

because plot is not expecting t, it expects x. The images that you get are

plot(sin(x)) plot(sin(x),-10,10)

In fact if you were to type
plot(sin(t))

you would see

Traceback (click to the left of this block for traceback)
...
NameError: name ’t’ is not defined

because in this case, SAGE does not know what ’t’ means. An alternative way of handling this is given on
Page 26.

Going “Off the Scale”: Consider the plot of x3 from x = 5 to x = 10, which is given by

plot(x^3, 5, 10)

9



and as you can imagine, the function goes from 53 = 125 up to 103 = 1000, and so the origin should appear
very far below the graph. This is the plot:

Your hint that the location of the x-axis in the display is not where it would be normally is that the axes
do not intersect. This is to tell you that the origin is far away. When the axes do intersect on the screen,
then the origin is (both in truth and on the screen) where they intersect. Also, if you want to, you can hide
the axes with

plot(x^3, 5, 10, axes=false)

and that produces

which is considerably less informative.

To Force the Y-Range of a Graph: If, for some reason, you want to force the y-range of a graph to be
constrained between two values, you can do that. For example, to keep −6 < y < 6, we can do

plot( x^3-x, -3, 3, ymin = -6, ymax = 6)

in order to obtain

10



This is important, because normally SAGE wants to show you the entire graph. Therefore, it will make
sure that the y-axis is tall enough to include every point, from the maximum to the minimum. For some
functions, either the maximum or the minimum or both, could be huge.

Plots of Functions with Asymptotes: The way that SAGE (and all computer algebra tools) computes
the plot of a function is by generating a very large number of points in the interval of the xs, and evaluating
the function at each of those points. To be precise, if you want to graph f(x) = 1/x2 between x = −4 and
x = 4, the computer might pick 10,000 random values of x between −4 and 4 find the y values by plugging
them into f(x) and then finally drawing the dots in the appropriate spots on the graph.

So if the graph has a vertical asymptote, then near that asymptote, the value will be huge. Because of
this, when you graph a rational function, be sure to restrict the y-values. Compare:

11



Plot 1 Plot 2

Plot 3 Plot 4

Plot 1: plot(1/(x^3-x), -2, 2)

Plot 2: plot(1/(x^3-x), -2, 2, ymin = -5, ymax = 5)

Plot 3: plot(1/(x^3-x), (x,-2, 2),detect_poles=true, ymin = -5, ymax = 5)

Plot 4: plot(1/(x^3-x), (x,-2, 2),detect_poles=’show’, ymin = -5, ymax = 5)

As you can see, the first is a disaster. The second one cuts off the very-high and very-low y-values, but it
keeps trying to connect the various “limbs” of the graph. When you set “detect poles” to true, then it will
figure out that the pieces are not connected.

One minor point. Did you notice in the four plots above, that ’show’ is in quotes, but true is not in
quotes? That’s because true and false occur so often in math, that they are built-in keywords in SAGE.
However, the ’show’ occurs less often, and therefore is not built in, and we must put it in quotes, just as
we do with colors while plotting.

12



Multiple Graphs at Once: Now we’re going to see how to superimpose plots on each other, using a plus
sign. Suppose you were investigating polynomials, and you wanted to know the effect of varying the last
numeral in

y = (x− 1)(x− 2)(x− 5)
on its graph. Then you could consider looking at (x− 3) and (x− 4) as replacements for the (x− 5), as well
as (x− 6) and (x− 7). This would be done by

plot( (x-1)*(x-2)*(x-3), -2, 10) + plot( (x-1)*(x-2)*(x-4), -2, 10) + plot(
(x-1)*(x-2)*(x-5), -2, 10)

where I chose the domain, x = −2 until x = 10, arbitrarily. Now we obtain

It seems that I should zoom in a bit, to see more detail. So I type

plot( (x-1)*(x-2)*(x-3), 1, 6) + plot( (x-1)*(x-2)*(x-4), 1, 6) + plot(
(x-1)*(x-2)*(x-5), 1, 6)

and obtain as a result

Now I can see better what that last numeral does. It controls the location, or x-coordinate, of the last
time that the curve crosses the x-axis. As you can see, the plus sign among the plot commands means to
superimpose them.

There is a technicality here. You must not break a newline among the plots and plus signs. The various
plot commands and their plus signs must be strung together, like a paragraph, wrapping naturally from one
line to the next. You do not use the enter key to put each plot on its own line. Thus, you cannot do:

13



plot( (x-1)*(x-2)*(x-3), 1, 6)
+ plot( (x-1)*(x-2)*(x-4), 1, 6)
+ plot( (x-1)*(x-2)*(x-5), 1, 6)
+ plot( (x-1)*(x-2)*(x-6), 1, 6)
+ plot( (x-1)*(x-2)*(x-7), 1, 6)

which SAGE thinks is five separate commands, instead of one big command.
Therefore, if you have problems getting those last two commands to work, then check to see that you

have no accidental “line breaks” in the command. For SAGE, these commands must be entered without a
line break, kind of like typing a long paragraph in an ordinary word processor—you can wrap around the
end of the line, but you cannot insert a line break.

Another cool one is
plot([sin(x),cos(x)], 0, 10, color=’purple’)

producing

which looks like DNA to me. As you can see by that, you can plot multiple functions at the same time on
the same graph. To do that, the list of functions should be separated by commas, and enclosed in brackets.

This is an example of a list in SAGE. You can enclose any data with [ and ], and separate the entries
with commas, to make a list. This is our first example, but we’ll see another one, on Page 29, in solving
equations; and in Number Theory on Page 48.

However, it is important not to get carried away. Rarely does it make sense for four functions to appear
together in one graph. For example

plot([sin(x),cos(x),sin(2*x),cos(2*x)], 0, 10)
makes a total mess, as you can see

14



To do multiple functions in multiple colors, the command is actually to add the plots:
plot(sin(x), 0, 10, color=’purple’) + plot(cos(x), 0, 10, color=’blue’)
which produces something quite readable:

Or perhaps
plot(sin(x), 0, 10, color=’purple’) + plot(cos(x), 0, 10, color=’blue’) + plot(sin(2*x),

0, 10, color=’green’) + plot(cos(2*x), 0, 10, color=’red’)
which is not readable but certainly is very pretty, as you can see:

15



Which Color on Top? Rarely but occasionally one must be concerned with which color goes on top
during a set of plots that are superimposed. The criterion in SAGE is simple. If two or more curves overlap
at any point, the one given last (furthest to the right) in the sequence of plots goes on top. Sometimes this
is important in getting the plot to look as you’d like it to.

A Micro-Economic Example Coming Soon! The ice cream problem, but with $ 100 in start-up costs.
In any case, here’s the graph:

Further Graphing & Plotting Topics The following additional topics on graphing and plotting can be
found in the section “Advanced Topics in Plotting and Graphing” on Page 52. They include

• Labels and Legends.

• Grids and Graphing Calculator-Style Graphs.

• Labeling the Axes of Plots.

• Graphs of Hyperactive Functions.

• Odd Roots of Negative Numbers.

• Restricting the X-Range of Plots.

16



• Graphing Inequalities.

1.5 Making your Own Functions in SAGE

It is extremely easy to define your own functions in SAGE. To me, this is one of the most brilliant design
features of SAGE, that the creators made this very easy for the user. You can make your own function using
exactly the symbols that you would normally use in writing the function down with your pencil.

Defining your own Functions: If you want to define f(x) = x3 − x then you type

f(x) = x^3-x

and likewise if you wanted to define g(x) =
√

1− x2 you would type

g(x) = sqrt( 1-x^2 )

which can be very handy.
Take a moment and see that f(0) and f(2) as well as g(0) do exactly what you expect them to do.

Plotting Functions: Now that we’ve defined f(x) and g(x), we can plot them with

plot( f, -2, 2 )

you get the expected plot

Likewise if you type

plot( g, 0, 1 )

which is equivalent to

plot( g(x), 0, 1 )

then you get the graph of g(x) on 0 ≤ x ≤ 1.
Last but not least, if you type

plot( g )

17



which is rather abbreviated—omitting the interval of the x-axis that you want—then SAGE will assume
that you want −1 ≤ x ≤ 1, by default. This produces the plot

Using Intermediate Variables: Sometimes you’ll be using the same value a lot, and you want to store
it somewhere. For example, if you type 355/113 a lot, then you can type

c=335/113

which silently stores the value 335/113 in the variable c. You can use it anytime, such as

2+c

which evaluates to 561/113. If you go back and change the value of c however, you have to make sure you
use the “evaluate” button to re-evaluate all other boxes that make use of c. In general, it is easy to avoid
this by not changing intermediate variables once you set them. You can also just tell SAGE to re-evaluate
every single box, in order. This is described on Page 71.

If we wanted to find the relative error of c as an approximation of π we would remember the formula

relative error =
approximation− truth

truth

and type
N((c-pi)/pi)

and learn that the relative error is around 84 parts per billion. Not bad. This approximation was found by
the Chinese Astronomer Zu Chongzhi, also known as Tsu Ch’ung-Chih. We can compare 335/113 to 22/7
with

N((22/7-pi)/pi)
and learn that this much more common approximation of π as 22/7 has a relative error around 402 parts

per million. Much worse!
The intermediate variables technique is great for things like the strength of gravity in physics, or the

speed of light, which (so far as we know) do not change. For things that do change, try “substitution”, which
I’ll tell you about in just a moment. In finance, you could use this for interest rates or the coefficients in a
cost function.

1.6 Using SAGE to Manipulate Polynomials

Coming Soon!

18



1.7 Using SAGE to graph a 3-dimensional function, or an implicit
function.

Three-dimensional images are not only visually stimulating, but they can help demonstrate a lot of important
effects in the multivariate calculus. Instead of f(x), we will have functions of the form f(x, y). Before, we
had only one variable x, and now we’re adding in the variable y.

This means we need the variable y, so we first type

y = var(’y’)

and now y is declared. The declaration of variables will be explained on Page 28, in case you are curious,
but for now just type it. In general, you need to declare every variable that you use, except that x is so
commonly used so it is built in.

If we wanted to view the bottom part of the paraboloid

z = x2 + y2

with x and y both ranging from -2 to 2, we would type

y=var(’y’)
plot3d( x^2 + y^2, (x, -2, 2), (y, -2, 2) )

to obtain

Try that, and try dragging the plot around with the mouse. You can view the plot from all sorts of angles
and directions. Now we can view things from -4 to 4 instead with

plot3d( x^2 + y^2, (x, -4, 4), (y, -4, 4) )

to obtain

19



For a hyperbola of one sheet, try

plot3d( x^2 - y^2, (x, -2, 2), (y, -2, 2), color=’green’ )

where you can see that we changed the color, just like we did in the previous section on 2-dimensional plots.
This results in

Note, that we do not type y=var(’y’) again, because you only have to declare each variable once. Once
you have declared it, you do not have to declare it a second time.

And for a surface that is just plain weird, try

plot3d(sin(x-y)*y*cos(x), (x,-3,3), (y,-3,3) )

which creates

20



This is an example of a surface that you really do have to see from many angles to understand. Try
dragging it around with the mouse to see what it looks like from many angles. Another neat one is

plot3d( 4*x*exp(-x^2-y^2), (x,-2,2), (y,-2,2))

which creates

Clearly, this too is a surface that can only be understood by rotating the object and examining it from
several angles.

Questions of Resolution Density If instead you were to type

plot3d(sin(x-y)*y*cos(x), (x,-10,10), (y,-10,10) )

you get a much rougher, irregular surface that does not seem to properly resemble the previous. After all,
we didn’t change the function, and we just went from the 6× 6 region about the origin to the 20× 20 region
about the origin. Have a look:

21



The issue comes down to resolution. The plot3d command by default chooses a certain number of points,
by some method, and samples the function at those points. Whatever method it uses—which is not known
to me—produced enough points for a good 6 × 6 picture, but not enough for a good 20 × 20 picture. The
situation is much improved by typing

plot3d(sin(x-y)*y*cos(x), (x,-10,10), (y,-10,10), plot_points=90 )

which forces SAGE to use 90 points on the x-axis, and 90 points on the y-axis, for a total of 8100 points.
To exaggerate the effect for the purposes of explanation, consider the following images

with plot points=90 with plot points=30
(that’s 8100 points) (that’s 900 points)

Perhaps you might be wondering why we do not always use “a large number” of points. Well, even with
90, you might find that your internet connection slows down, and your computer starts acting slowly, unless
you have a large amount of memory. These 3D-plots require an enormous amount of computation power,
especially if you rotate them.

Implicit Functions Sometimes, in calculus texts, a function is defined implicitly, instead of explicitly.
What I mean is that instead of z = f(x, y) one could have some polynomial, for instance, in x, y, and z
equal to zero. An example might be

4x2(x2 + y2 + z2 + z) + y2(y2 + z2 − 1) = 0

22



This should not be too surprising. After all, while most functions in the univariate calculus are defined
as y = f(x), on the other hand, we write a circle like x2 + y2 = 4, or alternatively x2 + y2 − 4 = 0 as a
polynomial in x and y, set equal to zero.

In any case, here’s what you would do in SAGE. First, we define the function that we wish to draw:

f(x,y,z) = 4*x^2 *(x^2+y^2+z^2+z) + y^2*(y^2+z^2-1)

Now the following command will plot the set of points where f(x, y, z) = 0, and the variables range over
the values −1/2 < x < 1/2 and −1 < y < 1 as well as −1 < z < 1.

implicit_plot3d( f, (x, -0.5, 0.5), (y, -1, 1), (z, -1, 1), color = ’red’ )

That produces this:

Before we wrap up our discussion of 3D plots, it is important to point out that if you were to use
plot points=100 in the above command, then the x-interval would be divided into 100 parts, as well as the
y and z intervals, for a total of

100× 100× 100 = 1, 000, 000

plotting points. This is extremely unwise, and can crash your web browser.

Backwards Compatibility The following syntax makes the plot command look like the plot3d com-
mand’s syntax:

plot( x^2, (x, -2, 2) )

where as we would normally have typed

plot( x^2, -2, 2 )

as in the last section. This useful for when you have to plot things in terms of t and not in terms of x. For
example:

t=var(’t’)
plot( -16*t^2+400, (t, 0, 3) )

is the height of a bowling ball dropped off of a 400 foot building, t seconds after release. Here is the plot:

23



Two-Dimensional Implicit Plotting Once in a while, you have to plot a curve implicitly, even in two
dimensions. The syntax is basically identical to three-dimensional plots. For example,

g(x,y)=x^4+y^4-16

implicit_plot(g, (x,-3,3), (y,-4,4) )

is a quartic curve favored by furniture designers for making conference room tables. As you can see, its
mathematical formula is x4 + y4 = 16. Here is the plot:

1.8 Using SAGE to solve problems symbolically.

When we say that a computer has solved a problem for us, that can come out to be in one of two flavors:
symbolically, or numerically. When we solve numerically, we get a decimal expansion for a (very good)
approximation of the answer. When we solve symbolically, we get an exact answer, often in terms of radicals
or other complicated functions. It is a matter of saying if the solutions to

x2

2
− x− 2 = 0

24



are 1 +
√

5 and 1−
√

5 or saying that they are

−1.23606797749979 and 3.23606797749979

The former is an example of a symbolic solution, and the latter of a numerical solution. If the answer is
a formula, then symbolic solution is the only way to go. This section is about symbolic solution, and then
the next one is about numerical solution.

Univariate Formulae First, let’s try solving some single-variable problems. We can type

solve(x^2 + 3*x+2, x)

and then we obtain

[x == -2, x == -1]

But don’t forget the asterisk! To be precise, to type

solve(x^2 + 3x+2, x)

would be wrong, because of the absence of the asterisk between the “3” and the “x.” Another, more
illustrative of a symbolic computation is

solve(x^2+9*x+15==0,x)

which gives

[x == -1/2*sqrt(21) - 9/2, x == 1/2*sqrt(21) - 9/2]

One way to really see what symbolic versus exact is about is to compare

3+1/(7+1/(15+1/(1+1/(292+1/(1+1/(1+1/6))))))

which returns 1,354,394 / 431,117 with

n(3+1/(7+1/(15+1/(1+1/(292+1/(1+1/(1+1/6)))))))

which returns 3.14159265350241. That could easily be mistaken for π. In fact it is really close to π with
relative error 2.78× 10−11.

There is no restriction to polynomials. You can also

theta=var(’theta’)
solve(sin(theta)==1/2, theta)

to get

[theta == 1/6*pi]

You might be confused to see that var command. The idea is that you need to tell SAGE that this
variable is not yet known. We’ve used variables before, but that’s because we had assigned values to them.
When you want a variable to represent some unknown quantity, you must use var. The variable x is always
pre-declared, you do not need to declare it—SAGE assumes that x is an unknown.

25



Multivariate Formulae Now we’re going to use SAGE to re-derive the quadratic formula. First we must
declare our variables with:

a, b, c = var(’a b c’)

and then we type

solve( a*x^2 + b*x + c == 0, x )

and get instead back

[x == -1/2*(b + sqrt(-4*a*c + b^2))/a,
x == -1/2*(b - sqrt(-4*a*c + b^2))/a]

which has some terms in an unusual order but is undoubtedly correct. Note that the square brackets and
comma indicate a list in SAGE, something which SAGE inherited from the computer language Python.

By the way

a, b, c = var(’a b c’)

is merely an abbreviation for

a = var(’a’)
b = var(’b’)
c = var(’c’)

Linear Systems of Equations You can solve several equations simultaneously, whether they are linear
or non-linear. An easy case might be to solve

x + b = 6
x− b = 4

which would be done by typing

b=var(’b’)
solve( [x+b == 6, x-b == 4], x, b )

Again, note the useof square brackets and commas to form a list in SAGE. This is our second example
of a list in SAGE. You can enclose any data with [ and ], and separate the entries with commas, to make
a list. Our first example, was in graphing multiple functions at once, on Page 16; we’ll see another example
in Number Theory on Page 48.

Also, it is important to point out that there is no harm in “declaring” b twice. The two var commands do
no harm to each other. On the other hand, there is also no need to “declare” b twice, as once it is declared,
SAGE will remember that it is a variable.

A more typical linear system might be

9a + 3b + 1c = 32
4a + 2b + 1c = 15
1a + 1b + 1c = 6

and to solve that we’d type

a=var(’a’)
b=var(’b’)
c=var(’c’)
solve( [9*a + 3*b + c == 32, 4*a + 2*b + c == 15, a + b + c == 6], a, b, c )

26



and SAGE gives the answer

[[a == 4, b == -3, c == 5]]

which is correct. Of course, this is exactly the linear system of equations that you would use if someone
asked you to find the parabola connecting the points (3, 32) and (2, 15) as well as (1, 6). That would be
f(x) = 4x2 − 3x + 5.

Naturally, linear systems of equations can also be solved with matrices. In fact, SAGE is quite useful
when working with matrices, and can remove much of the tedium normally associated with matrix algebra.
That will be discussed in the matrix section on Page 44.

Non-Linear Systems of Equations While linear equations are very easy to solve via matrices, the
non-linear case is usually much harder.

First, we will warm up with just one equation, but a highly-non-linear one. Let us try to solve

x6 − 21x5 + 175x4 − 735x3 + 1624x2 − 1764x + 720 = 0

which can be done by

solve( x^6 - 21*x^5 + 175*x^4 - 735*x^3 + 1624*x^2 - 1764*x + 720 == 0, x)

which gives

[x == 5, x == 6, x == 4, x == 2, x == 3, x == 1]

That is a list of six answers, because that degree six polynomial has six roots. It was easy to read this
time, but you can also access each answer one at a time. Instead, we type

answer = solve( x^6 - 21*x^5 + 175*x^4 - 735*x^3 + 1624*x^2 - 1764*x + 720 == 0, x)

and then we can type print answer[0] or print answer[1] to get the first or second entries. To get the
fifth entry of that list, we’d type print answer[4]. This is because SAGE is built out of Python, and
Python numbers its lists from 0 and not from 1. There are reasons for this, based on some very old computer
languages.

Now consider this problem, suggested by Dr. Grout. To solve

p + q = 9
qy + px = −6

qy2 + px2 = 24
p = 1

we would type

p, q, y = var(’p q y’)
eq1 = p+q == 9
eq2 = q*y + p*x == -6
eq3 = q*y^2 + p*x^2 == 24
eq4 = p == 1
solve( [eq1, eq2, eq3, eq4 ], p, q, x, y )

which produces

[[p == 1, q == 8, x == -4/3*sqrt(10) - 2/3, y == 1/6*sqrt(2)*sqrt(5) -
2/3], [p == 1, q == 8, x == 4/3*sqrt(10) - 2/3, y ==
-1/6*sqrt(2)*sqrt(5) - 2/3]]

27



As you can see, that is a list of lists, again using square brackets and commas. Clearly, that is a very
hard to read mess. Using the technique that we learned when analyzing the degree six polynomial above,
we replace the last line with

answer=solve( [eq1, eq2, eq3, eq4 ], p, q, x, y )

Now we can type

print answer[0]
print answer[1]

and we get

[p == 1, q == 8, x == -4/3*sqrt(10) - 2/3, y == 1/6*sqrt(2)*sqrt(5) -
2/3]
[p == 1, q == 8, x == 4/3*sqrt(10) - 2/3, y == -1/6*sqrt(2)*sqrt(5) -
2/3]

This is SAGE’s way of telling you:
Solution 1: p = 1, q = 8, x = − 4

3

√
10− 2

3 , y =
√

10
6 − 2

3

Solution 2: p = 1, q = 8, x = 4
3

√
10− 2

3 , y = −
√

10
6 − 2

3

Since there are only two answers, we cannot ask for a third. In fact, if we type print answer[2] then
we get

Traceback (click to the left of this block for traceback)
...
IndexError: list index out of range

which is SAGE’s way of telling you that it has already given you all the answers for that problem—the list
does not contain a 3rd element.

Now let’s try to intersect the hyperbola x2 − y2 = 1 with the ellipse x2

4 + y2

3 = 1. We type

y=var(’y’)
solve([x^2-y^2==1, (x^2)/4+(y^2)/3==1],x,y)

and obtain

[x == -4/7*sqrt(7), y == -3/7*sqrt(7)], [x == -4/7*sqrt(7), y ==
3/7*sqrt(7)], [x == 4/7*sqrt(7), y == -3/7*sqrt(7)], [x == 4/7*sqrt(7),
y == 3/7*sqrt(7)]]

which is unreadable. Once again, we change the command to be

answer=solve([x^2-y^2==1, (x^2)/4+(y^2)/3==1],x,y)

and then type

print answer[0]
print answer[1]
print answer[2]
print answer[3]
print answer[4]

and that produces four answers and an error message

28



[x == -4/7*sqrt(7), y == -3/7*sqrt(7)]
[x == -4/7*sqrt(7), y == 3/7*sqrt(7)]
[x == 4/7*sqrt(7), y == -3/7*sqrt(7)]
[x == 4/7*sqrt(7), y == 3/7*sqrt(7)]
Traceback (click to the left of this block for traceback)
...
IndexError: list index out of range

which is SAGE’s way of telling you

Solution 1: x = 4
7

√
7, y = 3

7

√
7

Solution 2: x = 4
7

√
7, y = − 3

7

√
7

Solution 3: x = − 4
7

√
7, y = 3

7

√
7

Solution 4: x = − 4
7

√
7, y = − 3

7

√
7

but that there is no “Solution 5.”
Last but not least, note that we aren’t limited to polynomials. We can do

solve(sin(x+y)==0.5,x)

and obtain

[x == 1/6*pi - y]

Complex Numbers: Normally, we expect an 8th degree polynomial to have 8 roots, over the complex
plane, unless some are repeated roots. Therefore, if we ask “what are the roots of x8 +1?”, surely we expect
8 roots. These are the 8 eigthth-roots of -1 in the complex numbers. We can find them with

solve(x^8==-1, x)

which produces

[x == (1/2*I + 1/2)*(-1)^(1/8)*sqrt(2), x == I*(-1)^(1/8), x == (1/2*I -
1/2)*(-1)^(1/8)*sqrt(2), x == -(-1)^(1/8), x == -(1/2*I +
1/2)*(-1)^(1/8)*sqrt(2), x == -I*(-1)^(1/8), x == -(1/2*I -
1/2)*(-1)^(1/8)*sqrt(2), x == (-1)^(1/8)]

giving us eight distinct complex numbers, all of which have -1 as their eighth power. This can be calculated
(by hand) more slowly with DeMoivre’s formula, but for SAGE, this is an easy problem.

Advanced Cases: To see why we don’t ask undergraduates to memorize Cardano’s cubic formula, try
typing in:

solve(x^3 + b*x + c==0, x)

That gives you Cardano’s formula for a monic depressed cubic. A cubic polynomial is said to be depressed
if the quadratic coefficient is zero, and monic means that the leading coefficient (here, the cubic coefficient)
is zero. The full version of the cubic formula would be given by:

d = var(’d’)
solve(a*x^3 + b*x^2 + c*x + d==0, x)

29



which is just insanely complicated. Try it, and you’ll see. In fact, it is so complicated that one would have
to confess that it is not useable.

An even uglier formula would be the general formula for a quartic, or degree four, polynomial. Surely
any quartic can be written

a4x
4 + a3x

3 + a2x
2 + a1x + a0 = 0

and so we can ask SAGE to solve it with

a0, a1, a2, a3, a4 = var(’a0 a1 a2 a3 a4’)
solve( a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0 == 0, x)

and we get an answer that is a formula of horrific proportions.

1.9 Using SAGE as a numerical solver.

Let’s suppose you need to know the value of a root of

f(x) = x5 + x4 + x3 − x2 + x− 1

whose graph is

Furthermore, you are interested in a root between −1 and 1. This could come about because you graph
it (with or without SAGE), and see that there is a root in that region; or it could come about because you
see that f(−1) = −4 but f(1) = 2, and so clearly f crosses 0 at some point between −1 and 1, though we
don’t know where yet. Perhaps the problem in the textbook simply tells you that the root is between −1
and 1.

Okay, to solve the problem, you need only type this

find_root(x^5+x^4+x^3-x^2+x-1,-1,1)

and SAGE tells you that
0.71043425578721398

is the root. This is a numerical approximation, because quintic equations have a very special property—if
you don’t know what the special property is, just ask any math teacher.

While it is an approximation, the computer does several billion instructions per second, and so it is an
approximation that is trustworthy to around an accuracy of 10−16, which is one tenth of a quadrillionth. So
it is a good approximation.

Meanwhile, it turns out there’s no root between −1 and 0. Perhaps you are told that, or perhaps you
graph it (with or without SAGE). If you type

30



find_root(x^5+x^4+x^3-x^2+x-1,-1,0)

then SAGE tells you

RuntimeError: f appears to have no zero on the interval

which is perfectly honest, because there’s no root in the interval for SAGE to go and find! If you have no
idea where the root is, you can type

find_root(x^5+x^4+x^3-x^2+x-1,-10^12,10^12)

which is asking SAGE to find a root that is between plus/minus one trillion.
Extremely sophisticated problems can be asked about. Some favorites of mine include if someone asks

you about xx = 5, then you could try to find where xx − 5 = 0. You would type

find_root(x^x-5,1,10)

or equivalently

find_root(x^x==5,1,10)

Another one is to find where ex = 1/x and you’d do that by finding a root of ex − 1/x = 0. You could
graph that with

plot( e^x - 1/x, -3, 3, ymin=-10, ymax=10)

obtaining the plot

and then you can see the root is between −1 and 1. This means that we should type

find_root(e^x-1/x,-1, 1)

will result in finding out that the root is at

0.56714329040979539

Last but not least, another favorite is to find sinx = cos x. It happens to be between 0 and π/2, which
you can see by graphing. The graph is

31



Now here you could ask for a root of (sinx)− (cos x). Alternatively, you can also type

find_root( cos(x) == sin(x), 0, pi/2 )

which is just easier notation.

1.10 Using SAGE to take derivatives

The command for the derivative is just diff. For example, to take the derivative of f(x) = x3−x you would
type:

diff( x^3 - x, x)

to learn the answer

3*x^2 - 1

Or for f(x) = sin(x2) you would type:

diff( sin(x^2), x )

to receive the answer

2*x*cos(x^2)

Sometimes you might have earlier defined your own function by

g(x)=e^(-10*x)

earlier, and so you can then type

diff(g(x), x)

to get the derivative, which is naturally

-10*e^(-10*x)

but you can also type

gprime(x) = diff(g, x)

32



which is silent, but then you can type gprime(2) or gprime(3) and it does what you expect. It tells you
the values of g′(2) and g′(3).

Another 100% equivalent form is

g(x).derivative()

SAGE can also do very difficult derivatives:

diff( x^x, x)

which provides the answer

(log(x) + 1)*x^x

Now if you’re interested in giving your calculus skills a workout, but possibly a very intense one, you can
try to see how you would calculate the derivative of xx with your pencil. In fact, if you happen to know
Newton’s Method, you can use that derivative and Newton’s Method to calculate the self-logarithm of a
number. Of course, many calculus teachers omit Newton’s Method, so do not feel bad if you haven’t been
taught it yet.

Plotting f(x) and f ′(x) Together One of my favorite bits of code in SAGE is

f(x)=x^3-x
fprime(x)=f(x).derivative()
plot( f(x), -2, 2, color=’blue’) + plot( fprime(x), -2, 2, color=’red’)

and I use this quite frequently. This plots f(x) and f ′(x) on the same graph, with f(x) in blue, and f ′(x)
in red. You can very easily change what function you are analyzing, but just changing that first line. Here
we are analyzing f(x) = x3 − x, in blue, and its derivative, f(x) = 3x2 − 1, in red. The plot is as follows:

Higher-Order Derivatives While you can find the second derivative by using diff twice, you can jump
directly to the second derivative with

diff( x^3-x, x, 2)

to get the answer

6*x

33



Third or higher derivatives are also no problem. For example, the third derivative can be found with

diff( x^3-x, x, 3)

For those who don’t mind typing more, you can do

derivative( x^3-x, x, 2)

which is more readable than writing diff.

1.11 Derivatives and Gradients in Multivariate Calculus

In the previous section, we learned about derivatives of single-variable functions. Now we’ll learn about
multivariate derivatives.

Partial Derivatives You’re probably not surprised to learn that SAGE can do partial derivatives very
easily. For example, if you have

g(x, y) = xy + sin(x2) + e−x

you can type

g(x,y) = x*y + sin(x^2) + e^(-x)
diff(g(x,y), x)

and get

2*x*cos(x^2) + y - e^(-x)

which is ∂g/∂x, and you can type

derivative(g(x,y), y)

to learn that ∂g/∂y is just x. Note here this really shows how diff and derivative are synonyms.
You can even find

∂2

∂x∂y
f

by typing derivative( g(x,y), x, y).

Gradients If you want ∇f then you type

g.derivative()

and SAGE will correctly calculate the gradient. In fact, SAGE displays

(x, y) |--> (2*x*cos(x^2) + y - e^(-x), x)

which is to remind you that this is a map from a point (x, y) to a pair of real numbers, and not an
ordinary function. Interestingly, the gradient of a univariate function, done this way, is just the ordinary
first derivative, which is quite correct according to the laws of calculus.

An Extended Example: Marginal Cost Coming Soon!

34



1.12 Using SAGE to calculate integrals, both numerically and
symbolically.

The only thing you need to understand in order to do integrals in SAGE is that there are really three
types of integrals that can be done: a numerical approximate integral, an exact definite integral, and an
indefinite integral. The first two types result in numbers, but which will be found approximately or exactly,
respectively. The third one is the antiderivative. If this is confusing, then let us consider a simple example:

Background: What integral might you want to consider, in order to find the area between the x-axis and
f(x) = x2 + 1 on the interval 3 ≤ x ≤ 6? Well, that integral would be

∫ 6

3
x2 + 1 dx =

(
1
3
x3 + x

)∣∣∣∣
6

3

=
(

1
3
63 + 6

)
−

(
1
3
33 + 3

)
= 72 + 6− 9− 3 = 66

and that is a number. Here we’ve done it analytically, using calculus. This is an exact definite integral. It
is definite, because it ends with a number. It is exact, because we did no approximations.

On the other hand, ∫
x2 + 1 dx =

1
3
x3 + x + C

is an indefinite integral. It produces a function, and not a number. Of course, we calculate an indefinite
integral on the way to calculating a definite one, but they are two distinct categories. If you want a function,
you should use the indefinite, and if you want a number, then you should use the definite.

Some integrals are famously impossible. The two most famous are the Fresnel
∫ x

0
sin

πt2

2
dt

which is important in optics, and the Gaussian
∫

1√
2π

e(−x2)/2

which is pivotally important in probability. There is no function, built up of addition, subtraction, multipli-
cation, division, roots, exponents, logarithms, trigonometric functions and inverse trigonometric functions
(as well as their hyperbolic cousins, which you might or might not have been taught about) which will have,
as its derivative, either the Fresnel or the Gaussian.

Yet, in applied mathematics, we need to calculate these integrals. In particular, the Gaussian is superbly
important in statistics. So what is done, is that the definite integral can be computed by dividing the interval
into many, many tiny regions. Lots of infinitesimal rectangles and trapezoids can be used to approximate
the curve. Each of these has a small amount of error, but when you add up all the areas, the hope is that
the area cancels out a bit. You probably did this during your calculus class at some point, or will at some
future point. Even more sophisticated methods include using polynomials instead of trapezoids, and SAGE
uses extraordinarily intricate techniques to make the best approximation possible. These approximations
are an old and deep subject, going back to Simpson’s Rule, where Simpson used tiny parabolas instead of
trapezoids.

The above might have been a bit confusing, but the whole point of SAGE is that it will worry about these
details for you, so long as you know what you want from SAGE. I hope this background was interesting and
at least partially clear. If not, you should probably discuss it with your calculus instructor, before proceeding
further.

35



The Indefinite Integral: The indefinite integral is the simplest, and for example if you wanted to know
∫

x sin(x2)dx

you would simply type

integral( x*sin(x^2), x )

and then you’d learn the answer is

-1/2*cos(x^2)

Similarly, if you wanted to know ∫
x

x2 + 1
dx

you would simply type

integral( x/(x^2 + 1), x )

and then you’d learn the answer is

1/2*log(x^2 + 1)

The Definite Integral: Alternatively, we could put a lower bound of 0 and an upper bound of 1 on that
integral, and then get ∫ 1

0

x

x2 + 1
dx

becomes

integral( x/(x^2 + 1), x, 0, 1 )

and so we discover

1/2*log(2)

is the answer, but remember that “log” means the natural logarithm, not the common logarithm.

More Difficult Cases: Consider the following function f

f(x) = e−x3
sin(x2)

which is a nice continuous function. We can find its plot with

plot( exp( -x^3 ) * sin(x^2), -5, 5, ymin = 0, ymax=1 )

which yields the plot:

36



The function is interesting, but the integral is quite frustrating. I cannot solve that integral with my
pencil, and I am willing to wager that you cannot either. Try it if you like.

While it is the case that there is some function, somewhere, which has f as its derivative, which is a
logical consequence of some advanced real analysis and the fact that f is continuous, the practicalities of
the matter are that there is no way to write the integral. To be really precise, there is no function, built up
of addition, subtraction, multiplication, division, roots, exponents, logarithms, trigonometric functions and
inverse trigonometric functions (as well as their hyperbolic cousins, which you might or might not have been
taught about) which will have, as its derivative,

In other words f is integrable, but the integral cannot be written in terms of common (and not so
common) functions.

Thus since ∫
e−x3

sin(x2)dx

does not have a nice expression, then when you type

integral( exp(-x^3)*sin(x^2),x)

the SAGE replies not with an answer, but instead with

integrate(e^(-x^3)*sin(x^2), x)

which represents an admission of defeat. Have no fear, however, because we can calculate numerical answers
approximately, with very high accuracy, and we’ll learn about that momentarily.

A nefarious integral, famous among calculus teachers, is
∫

t20etdt

where the 20 could be any decently large number. This comes up in explaining what Euler’s gamma function
is, but we aren’t too concerned with that right now. In any case, we could just type

integral( (t^20)*(e^t), t )

but then we get back

(t^20 - 20*t^19 + 380*t^18 - 6840*t^17 + 116280*t^16 - 1860480*t^15 + 27907200*t^14
- 390700800*t^13 + 5079110400*t^12 - 60949324800*t^11 + 670442572800*t^10 -
6704425728000*t^9 + 60339831552000*t^8 - 482718652416000*t^7 +
3379030566912000*t^6 - 20274183401472000*t^5 + 101370917007360000*t^4
- 405483668029440000*t^3 + 1216451004088320000*t^2 - 2432902008176640000*t
+ 2432902008176640000)*e^t

which is large enough that it isn’t clear how to get an idea of what that means. If instead, we had certain
bounds, such as to calculate ∫ 3

2
t20etdt

then we would type

integral( (t^20)*(e^t), t, 2, 3 )

and get instead

-329257482363600896*e^2 + 121127059051462881*e^3

which is getting toward an answer! On the other hand, if you really want a numerical answer then you
should use our old friend n() and type

37



n( integral( (t^20)*(e^t), t, 2, 3 ) )

which would return the number

8.79797452800000e9

and that means 8.79797452800000× 109. This highlights the difference and similarities of the various types
of answer.

A Theoretical Side Note: That number which we just calculated looks like an integer, because it ends
with 528 when you carry out the 109 part—but when we look at the exact answer, we can see that no, it is
not an integer, because e2 and e3 are involved, and e is an irrational number. It is quite possible that you
haven’t yet learned what irrational numbers are, but if not, then ask any math teacher They will be happy
to discuss such an advanced topic with you. Whenever dealing with computations, it is critical to remember
what is an approximation, and what is exact. Irrational number can be expressed exactly on occasion (like
we just did here, using e2 and e3) but that is the exception and not the rule. In any case, this paragraph
has nothing to do with SAGE, and so we return to the topic at hand.

Numerical Integrals: Speaking of approximations, you can also jump to the numerical integral very
rapidly. I’m sure we can both calculate

∫ 1

0
x3 − x dx =

(
1
4
x4 − 1

2
x2

)∣∣∣∣
1

0

=
(

1
4
14 − 1

2
12

)
−

(
1
4
04 − 1

2
02

)
=

1
4
− 1

2
= −1

4

but if you wanted to ask SAGE to calculate this numerically, then you should type

numerical_integral( x^3 - x, 0, 1)

which would output

(-0.24999999999999997, 2.775557561562891e-15)

where the first number is the best guess SAGE has for the answer, while the second number is the uncertainty.
In this case, the uncertainty is 2.77 quadrillionths—which is very impressive.

Of course, SAGE can do this integral exactly as well, using the commands we learned moments ago.
What is interesting about numerical integration, are the cases when you cannot do the indefinite integral,
because like the Fresnel above it cannot be written, but you can find good numerical estimates. Consider
again ∫ 3

1
e−x3

sin(x2)dx

but now with bounds, so that it can be done numerically. We would type

numerical_integral( exp(-x^3)*sin(x^2),1,3)

and that returns back

(0.077997011262087815, 8.6840496851995037e-16)

with (as before) the first number being the answer, and the second the accuracy. In this case, the uncertainty
is 868 quintillionths—which is very impressive. Another way to say it is that the uncertainty is (1/1152)
trillionths.

38



Partial Fractions One thing that is very important in problems that arise from Differential Equations
and even Calculus II is the question of integration by partial fractions. If you want to know the partial
fraction break-down of

x3 − x

x2 + 5x + 6
then you must do

f(x)=(x^3-x)/(x^2+5*x+6)

followed by

f.partial_fraction()

and get the answer

x - 6/(x + 2) + 24/(x + 3) - 5

which is correct. In fact, it means

x− 6
x + 2

+
24

x + 3
− 5

However, you can also do the shortcut and ask instead

integral( (x^3-x)/(x^2+5*x+6), x )

which will result in

1/2*x^2 - 5*x - 6*log(x + 2) + 24*log(x + 3)

Improper Integrals While the following integral is mathematically valid
∫
−1 +

1
x2

dx = −x− 1
x

+ C

and the right-hand side can be evaluated at x = −1 and x = 1, there is no finite answer to
∫ −1

−1
−1 +

1
x2

dx

because this improper integral is divergent. The graph will reveal why that is the case. Here is the plot,

generated by

39



plot( -1+1/x^2, -10, 10, ymin=-2, ymax=2 )

Yet, SAGE knows this and will say

-x - 1/x

in response to

integral(-1+1/x^2,x)

but instead will respond

ValueError: Integral is divergent.

to the inquiry

integral(-1+1/x^2,x,-1,1)

Another type of improper integral is ∫ ∞

2

1
x2

dx

and the way to write that in SAGE is to type

integral(1/x^2,x,2,oo)

to which SAGE responds 1/2, or another example is
∫ ∞

−∞
e−x2

dx

which in SAGE is

integral(exp(-x^2),x,-oo,oo)

and it gives the correct response of
√

π.
The idea is simply that oo is a special code for “infinity.” It is two letter o’s, and the idea is that if you

squint, it looks like an infinity symbol.

The Function erf and Integrals: Among mathematicians and especially among statisticians, the integral
∫ y

0

2√
π

e(−x2) dx = erf(y)

which is just a slight variant of the one that I told you earlier cannot be found using the elementary functions
of mathematics, is so important that they gave it a name, and that name is erf. While being friendly and
pronounceable, erf stands for the “Error Function.”

Thus if you type into SAGE

integral( (2/sqrt(pi)) * exp(-x^2), x, -oo, 2)

it will respond

(sqrt(pi)*erf(2) + sqrt(pi))/sqrt(pi)

40



which is correct because

∫ 2

−∞

2√
π

e(−x2) dx =
∫ 0

−∞

2√
π

e(−x2) dx +
∫ 2

0

2√
π

e(−x2) dx = 1 + erf(2) =
√

π√
π

(1 + erf(2)) =
√

π +
√

πerf(2)√
π

Perhaps you might find that 1 + erf(2) is a more compact and simpler answer. I would be inclined to
agree. I’m not quite sure why SAGE does not simply its final answer further.

In any case, the point is that there are some functions out there which do not have integrals writable
using elementary functions, but, which SAGE calculates anyway, using the erf function. Not all calculus
textbooks are anticipating that, and there can be some unexpected surprises when you compute an answer
to a textbook problem, and look in the back of the book, only to find that your textbook tells you that the
problem is unsolvable. It really is a matter of whether or not you accept erf as a legitimate or illegitimate
member of the family of functions.

1.13 Using SAGE to Reduce, Multiply and Invert Matrices, and
Take Determinants

Coming soon!!

1.14 Some Extended Examples

Here are to be found three extended examples of using SAGE to explore a non-trivial problem in an area
outside of computer algebra. We present one example each from Pure Math, Finance, and Physics. Few
students will be interested in all three of these topics, so I just suggest that you pick one of the three that
suits your background, and go from there.

1.14.1 The Pure Math Example:

Coming Soon! The quintic, and finding the correct window for graphing, by Prof. Ben Jones.

1.14.2 The Finance Example:

This example assumes you know how to do mortgage calculations. If you don’t, then you might want to
read the physics example.

Let us say that you want to sell some mortgage products, and you want to compute the cost-per-thousand
for several loans at interest rate r and compounded monthly. If the length is for t years, then the number of
compoundings is n = mt = 12t. The interest-rate-per-compounding-period would be i = r/m = r/12 and
value would be V = 1000. So we would start with the basic formula

PMT =
V i

1− (1 + i)−n

and plug in all that data. Since V = 1000 is not going to change, we can assign that one with

V=1000

to make it a long term constant. Note, SAGE accepts your constant quietly, it does not give a response.
Then, we could define our own function, as described earlier

CostPerThousand (i, n) = ( V * i ) / (1 - (1+i)^(-n) )

and so for a 30 year mortgage at 6.5% compounded monthly, we can do

41



CostPerThousand ( 0.065/12, 30*12)

and then if the rate rises to 7% we can do

CostPerThousand ( 0.07/12, 30*12)

and so on, and so forth.
Notice that the function name has to be only one word, but by varying the capitalization that way (which

programmers call “Camel Case”), we could express an idea that was more than one word. Surely it is much
easier to read CostPerThousand than costperthousand or COSTPERTHOUSAND.

While this above function is nice, (for example it will save us from agonizing each time over the placement
of the parentheses,) it also isn’t quite perfect. Our data will be given in terms of the number of years of the
loan t, not the number of payments n = mt = 12t. Likewise, the rate will be the nominal, published rate r
not the per-period rate i = r/m = r/12. One student once described this to me by saying that the n and i
are math-friendly, whereas the t and r are human-friendly.

This can be fixed by doing

CostPerThousand1 (r, t)=CostPerThousand( i=r/12, n=12*t )

and now we have made a new formula, which uses the rate in terms of r as we liked, and the number of years
t, not the number of compounding periods. And now, for a 30 year mortgage at 6.5% compounded monthly,
we can do

CostPerThousand1 ( 0.065, 30)

and get a more user-friendly input and output.

1.14.3 The Physics Example:

Let’s say you’re analyzing a satellite in its orbit around the earth. Newton’s formula for gravity is

F =
GMeMs

r2
s

where G = 6.77 × 10−11Nm2/kg2 is the universal constant for gravitation; Me = 5.9742 × 1024 kg is the
mass of the earth; next rs is the distance from the satellite to the center of the earth in meters; and finally
Ms kg is the mass of the satellite. Surely G and Me will not change, so we can set those with

G= 6.77 * 10^(-11)
Me = 5.9742 * 10^(24)

just like we set c = 355/113 earlier.
Unlike the mass of the earth, or the universal constant of gravitation, the distance to the satellite might

change quite often, and the mass of the satellite could change also (particularly if it has fuel aboard, which
will be burned during maneuvers). So for those, we should make a function

Force( Ms, rs ) = (G * Me * Ms)/(rs^2)

and you could do things like

Force( 1000, 10 * 10^6 )

to get answers. You could even use this while plotting, which we haven’t told you about yet. This is great
if you have a large number of points that you’re interested in, and want to save a lot of typing.

Suppose now that you really wanted the function to work in terms of altitude, as measured from the
earth’s surface, and not from the center of the earth. Well it is easy to realize that you just have to add the
radius of the earth. First, you put in the radius of the earth, which is 6378.1 km, but of course we should
switch it to meters to avoid unit conflicts.

42



re = 6378100

Then you can define

Force1( Ms, alt ) = Force( Ms, alt + re )

and then you can just go ahead and use Force1. This idea of building functions on top of functions is very
powerful. I have often written large suites of functions in this way—one function on top of the other function,
on top of the next—to model complex phenomena in SAGE. For example,

Force1( 1000, 3621900 )

is roughly equivalent to what we had before. I suppose it depends upon if the problem you are given is in
terms of altitude, or distance from the center of the earth.

The Grouping Symbols: Just a reminder, while a mathematician might write

PV = PMT [1− (1 + i)−n]/i

for the present value formula, using the [ and ] as a sort of auxiliary ( and ), in SAGE, the only grouping
operators are parentheses. So that formula is

PV = PMT * (1 - (1+i)^(-n))/i

with additional explanation found on Page 3.

43



Chapter 2

Advanced Features of SAGE

2.1 Using SAGE to work with integers. (gcd, lcm, factorization,
sigma, tau, etc. . . )

The study of problems that deal with the integers, in pure mathematics, is called “number theory”, and in
certain types of applied mathematics, called “integer programming.” This subject can be started at a very
young age (e.g. “what is a prime number?”) but can be very advanced too. Many Ph.D. dissertations are
written every year with new results in number theory. Mostly, number theory is about writing proofs, and
so you’d imagine that SAGE is not very useful for that. Actually, SAGE is very good at working with the
integers to help you work out specific examples on what the instruments of number theory do to specific
integers. This can help you understand new concepts more intimately, and I find it can form a bridge between
the lecture on a topic and the time when you are really ready to write serious proofs about a topic.

For example, you can type factor(-2007) to find the factorization of that integer, which is

-1 * 3^2 * 223

and likewise

factor(2008)

is

2^3 * 251

To find the next prime number after one million, you can do

next_prime( 10^6 )

and discover the answer is 1,000,003.

The gcd and the lcm To find the “greatest common denominator” or “gcd” of two numbers, perhaps
120 and 64, just type

gcd ( 120, 64 )

and you will learn that the answer is 8. This makes sense because 120/8 = 15 while 64/8 = 8, and as you can
see, 15 and 8 share no common factors. More explicitly, we can look at the prime factorizations 15 = 5× 3
and 8 = 2× 2× 2. Another way of looking at that is

120 = 23 × 3× 5 while 64 = 26

and so all that 120 and 64 have in common is just 23, which is 8.
Likewise, you can find the “least common multiple” or lcm. This is done by typing

44



lcm( 120, 64 )

from which you learn that the lcm is 960. This makes sense because 960/120 = 8 and also 960/64 = 15,
and again 8 shares no factors with 15. A mathematician would say “8 is coprime to 15.” Some authors say
“mutually prime” instead of “coprime.”

Another way to look at it is that the lcm should be

26 × 31 × 51 = 960

because the 2 appears 6 times in 64 and 3 times in 120 (thus a maximum of 6), while the 3 and 5 both
appear 0 times in 64 and 1 time in 120 (thus a maximum of 1 each). Raising each of those primes (2, 3, and
5) to those powers (6, 1, and 1) gives the lcm.

Before we continue, one more example is helpful. Let’s work with slightly larger numbers, perhaps 3600
and 1000. First, we do the prime factorizations

3600 = 24 × 32 × 52 while 1000 = 23 × 53

and we can compute the lcm by taking the maximum exponent each time

24 × 32 × 53 = 18, 000

and the gcd by taking the minimum exponent each time

23 × 30 × 52 = 200

Take a moment to verify that 200 goes into both 1000 and 3600, as well as the fact that no higher number
will. Next, take another moment to verify that both 1000 and 3600 go into 18,000, but there is no lower
number for which that’s true. And of course, the product of the numbers divided by the gcd is the lcm, and
the product of the numbers divided by the lcm is the gcd.

The key here is to realize that the prime factorization of a number communicates an enormous amount
of information about that number.

Several gcds or lcms at Once If you want to take the gcd of many numbers at once (for example 120,
55, 25, and 35), there’s no need to do

gcd( 120, gcd(55, gcd(25, 35 ) ) )

because you can do instead

gcd( [ 120, 55, 25, 35 ] )

to get 5 and likewise

lcm( [ 120, 55, 25, 35 ] )

to get 46,200. This is another example of a list in SAGE. You can enclose any data with [ and ], and
separate the entries with commas, to make a list. We saw this in graphing multiple functions at once, on
Page 16, and in solving equations exactly, on Page 29.

And you can even verify the theorem that says the product of all the numbers in the list, divided by their
gcd raised to the power of one less than the length of the list, equals the lcm. Since we have four numbers
in our list, we would divide by the cube of the gcd. This is done by

120*55*25*35 / 5^3

45



More about Prime Numbers One neat trick is that if you wanted to find the 54,321th prime number,
you could type

nth_prime(54321)

and discover that it is 670177. You can double check this with

factor(670177)

which returns itself, confirming that the number is prime.

Phi Sometimes it is useful to know how many integers are coprime to x, from the range 1 to x. For
example, how many numbers from 1 to 100 share a factor with 10, and how many are coprime with 10. Well,
the prime factors of 100 are 2 and 5, and so any number composed only of twos and fives will work. This
would be

{2, 4, 5, 6, 8, 10}

and so the other numbers
{1, 3, 7, 9}

are coprime with 10. In particular, if you know what modular arithmetic is, then these are the numbers that
have “multiplicative inverses” or “reciprocals” mod 10. Since 4 numbers are coprime to 10, we will write
φ(10) = 4.

Even if you don’t know what modular arithmetic is, consider 7. Each of

{1, 2, 3, 4, 5, 6}

is coprime to 7, because the only prime that divides 7 is 7, and 7 does not divide any of those. So, 6 out of
the 6 numbers are coprime to 7, and we would then write φ(7) = 6. It will always be the case for a prime
number that φ(p) = p− 1. On the other hand, consider 12. Then among

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

we see that both 2 and 12 are divisible by 2; both 3 and 12 are divisible by 3; both 4 and 12 are divisible by
2; both 6 and 12 are divisible by either 2 or 3; both 8 and 12 are divisible by 2; both 9 and 12 are divisible
by 3; both 10 and 12 are divisible by 5. Finally, this means that only 1, 5, 7, and 11 are coprime to 12, and
so φ(12) = 4.

It would be very annoying to calculate φ of a 100-digit number, such as when working with cryptography,
the science of codes. All you need to do in SAGE is type

euler_phi(12)

and then you learn that the answer is 4. It is called “euler phi” because it was discovered by Leonhard
Euler.

The Divisors of a Number Meanwhile, consider the set of divisors of a number. If you want to know
the set of divisors of 12, which means the set of positive integers dividing 12, you would type

divisors(12)

and get then

[1, 2, 5, 10, 25, 50, 125, 250]

and likewise

divisors(312500)

46



gives you

[1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500, 625, 1250, 2500,
3125, 6250, 12500, 15625, 31250, 62500, 78125, 156250, 312500]

but remember, it is very important to not have any commas separating the thousands, when inputting large
numbers into SAGE.

Sometimes in number theory, we want to calculate the sums of the squares or cubes of the divisors. I
can’t think of an example why at the moment, but I’m sure there’s a good one. Consider that 45 has as its
divisors {1, 3, 5, 9, 15, 45}. Then we have sigma coming to 78, because

1 + 3 + 5 + 9 + 15 + 45 = 78

and then the sum of squares would be

12 + 32 + 52 + 92 + 152 + 452 = 2366

and with cubes
13 + 33 + 53 + 93 + 153 + 453 = 95, 382

but in SAGE the commands for that are

sigma( 45, 2 )

for squares and

sigma( 45, 3 )

for cubes.
Likewise

sigma( 45, 1 )

is the same as sigma.
Now there’s a fun game that the Arabs used to play in the Medieval Period. Consider two particular

numbers 220 and 284. The divisors are

divisors(220) = {1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220}

and then they would calculate

1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

but on the other hand
divisors(284) = {1, 2, 4, 71, 142, 284}

which yields
1 + 2 + 4 + 71 + 142 + 284 = 220

and so we see 220 and 284 are intimately related.
The Arabs found this so moving that they inscribed these numbers on jewelry that they would give to

their spouses and so forth. These are called Amicable Pairs—220 representing the young lady, and 284
representing the young gentleman. You can find this in SAGE via

sigma( 220 )-220

and

sigma( 284 )-284

47



Tau As you know, some fractions like 1/4 and 1/2 as well as 1/25 can be expressed as decimal fractions
which terminate. Others, like 1/3 or 1/9 will repeat. It is pretty easy to see why a fraction can be expressed
as an exact terminating decimal fraction of n decimal places (or fewer) if and only if the denominator divides
10n. Take a moment to convince yourself of this, or alternatively, consider the following example. If we want
to know what denominators result in a two-decimal place (or fewer) exact terminating decimal, we would
just need to see what positive integers divide 100. In SAGE we’d do

divisors(100)

and then get

[1, 2, 4, 5, 10, 20, 25, 50, 100]

but in binary, the analogous rule would be 2n. It is obvious that the only positive integers which divide
2n are the numbers 1, 2, 4, 8, . . . , 2n. Therefore, we can use this criterion for seeing which number bases are
convenient for fractions, and which are not.

Now, we’ll consider the Babylonian numbering system which is base 60. Two symbols would be sufficient
to describe any fraction with the following denominators:

[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36,
40, 45, 48, 50, 60, 72, 75, 80, 90, 100, 120, 144, 150, 180, 200, 225, 240,
300, 360, 400, 450, 600, 720, 900, 1200, 1800, 3600]

Did you notice how in decimal, there were 9 denominators, but in base 60, there were 45 denominators?
Or if you do not count one, then 8 versus 44? What we really wanted to do was count the divisors. The
function for counting the number of (positive integer) divisors of an integer is τ , and in SAGE is given by

sigma(3600, 0)

which just tabulates 1 for each divisor. In other words, each divisor is raised to the 0th power, thus becomes
1, and then if you add those up, you learn how many divisors there are.

Modular Arithmetic: To find out what 1939 is mod 37, you can type

1939 % 37

but the % operator takes the modular reduction only of the nearest number. This means that to evalulate

(32)4 + 2 mod 5

you must not type

3^2*4 + 2%5

which evaluates to 38, but rather

(3^2*4 + 2) %5

which gives 3, the correct residue.
The opposite of the “mod” operator is the integer quotient. To find the integer quotient of a number,

use
25 // 4
to get 6. This is the quotient rounded down to the nearest integer.
You can define

def is_even(n): return n%2 == 0

which will return True for even integers, and False for odd ones. This can then be used to wrap up into
other if statements. We’ll talk much more about if statements in the chapter on programming.

48


