Math 1062, Spring 2012, Homework 2

William Stein (wstein@uw.edu)

Due: Friday, Feb 3, 2012

- You may work with other people (cite them explicitly in your write up) and you can find the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ of this file at http://wstein.org/edu/2012/1062/hw/.
- I will have office hours 11am-2pm in Padelford C423 on Thursdays.
- For this assignment, it is easiest for me if you email your solutions as a Sage worksheet (an .sws file) to wstein@uw.edu, which you get by clicking "File... Save worksheet to a file..." in the Sage notebook. It is very useful if you put "1062 homework 2" in the subject line, which I'll use as a double check that I don't miss any assignments.

1 Homework

1. For each of the following, your code should define a Python function called f [letter] (i.e., $f a, f b, f c, f d, f e, f f, f g, f h$) that has the given behavior for the given input. You do not have to handle input that is not of the given type, unless explicitly asked to do so. I will grade this by writing a program that evaluates your solution in Sage, which better define a function f [letter], then calls f [letter] with some random input and verifies that the output is correct. By "output" I mean what f [letter] returns. My grader program will ignore anything printed when f [letter] runs.
(a) Input: an integer n Output: the cube of n
(b) Input: a positive integer n Output: the sum of the cubes of the positive integers up to and including n
(c) Input: a list v

Output: the new list got from v by reversing the order of the elements; your function should not change v
(d) Input: a positive integer k

Output: list of the Fibonacci numbers $F_{0}=0, F_{1}=1, \ldots, F_{k}=F_{k-1}+F_{k-2}$
(e) Input: a list v of integers

Output: the number of distinct integers in v
(f) Input: an integer n and an optional list v that defaults to [] if not given Output: appends n copies of n to v
(g) Input: a string s

Output: an instance of a Python class with an attribute foo that equals s and a method bar that returns s
(h) Input: two numbers a and b Output: returns $\mathrm{a}+\mathrm{b}$ if the addition works without raising an error; otherwise raise a NotImplementedError exception.
2. Get started on your final project:
(a) Write a paragraph describing a topic that you would like to do a final project about.
(b) What are the deliverables of your project? (E.g., Code? A paper? A Sage worksheet? A patch? A bugfix?)
(c) List other students in class you might work with on your project.
(d) What key aspects of Sage do you need to learn in order to succeed at your project? (E.g., linear algebra, symbolic calculus, 2d or 3d plotting, Cython?)
(e) Estimate how many hours it will take you to complete (then double the number you get).

