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1 Kummer Theory of Fields

Kummer theory is concerned with classifying the abelian extensions of exponent n of a
field K, assuming that K contains the nth roots of unity. It’s a generalization of the
correspondence between quadratic extensions of Q and non-square squarefree integers.

Let n be a positive integer, and let K be a field of characteristic prime to n. Let L
be a separable closure of K. Let µn(L) denote the set of elements of order dividing n
in L.

Lemma 1.1. µn(L) is a cyclic group of order n.

Proof. The elements of µn(L) are exactly the roots in L of the polynomial xn−1. Since
n is coprime to the characteristic, all roots of xn − 1 are in L, so µn(L) has order at
least n. But K is a field, so xn−1 can have at most n roots, so µn(L) has order n. Any
finite subgroup of the multiplicative group of a field is cyclic, so µn(L) is cyclic.

Consider the exact sequence

1→ µn(L)→ L∗
x 7→ xn

−−−−−→ L∗ → 1

of GK = Gal(L/K)-modules. The associated long exact sequence of Galois cohomology
yields

1→ K∗/(K∗)n → H1(K,µn(L))→ H1(K,L∗)→ · · · .

We proved that H1(K,L∗) = 0, so we conclude that

K∗/(K∗)n ∼= H1(K,µn(L)),

where the isomorphism is via the δ connecting homomorphism. If α ∈ L∗, we obtain the
corresponding element δ(α) ∈ H1(K,µn(L)) by finding some β ∈ L∗ such that βn = α;
then the corresponding cocycle is σ 7→ σ(β)/β ∈ µn(L).

As a special case, consider n = 2 and K = Q. Then we have µ2(Q) = {±1}, on
which GQ acts trivially. Recall that H1(G,A) = Hom(G,A) when G acts trivially on A.
Thus

Q∗/(Q∗)2 ∼= Hom(GQ, {±1}),

where the homomorphisms are continuous. The set of squarefree integers are represen-
tative elements for the left hand side of the above isomorphism. The right hand side is
the set of continuous homomorphisms ϕ : GQ → {±1}. To give such a nontrivial homor-
phism ϕ is exactly the same as giving a quadratic extension of Q. We thus recover—in a
conceptual way—the standard bijection between quadratic fields and squarefree integers
6= 1, which is one of the basic facts one learns in a first algebraic number theory course.
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We generalize the above construction as follows. Suppose µn ⊂ K, i.e., all the nth
roots of unity are already in K. Then we have

K∗/(K∗)n ∼= Hom(GK ,Z/nZ), (1.1)

where as usual the homomorphisms are continuous. We associate to a homomor-
phism ϕ : GK → Z/nZ an extension LH of K, where H = ker(ϕ), and by Ga-
lois theory, Gal(LH/K) ∼= image(ϕ) ⊂ Z/nZ. Conversely, given any Galois exten-
sion M/K with Galois group contained in Z/nZ, there is an associated homorphism
ϕ : GK → Gal(M/K) ⊂ Z/nZ. Define an equivalence relation ∼ on Hom(GK ,Z/nZ)
by ϕ ∼ ψ if ker(ϕ) = ker(ψ) (equivalently, ϕ = mψ for some integer m coprime to n).
Then we have a bijection

Hom(GK ,Z/nZ)/∼
∼=−−→ { Galois extensions M/K with Gal(M/K) ⊂ Z/nZ }.

Using Equation 1.1 along with the explicit description of δ mentioned above, we thus
see that the Galois extensions of K with Gal(M/K) ⊂ Z/nZ are the extensions of the
form K( n

√
α) for some α ∈ K∗. An element σ ∈ Gal(M/K) acts by n

√
α 7→ n

√
α

b for
some b, and the map Gal(M/K) ⊂ Z/nZ is σ 7→ b.

The above observation is Kummer theory: There is a conceptually simple descrip-
tion of the exponent n abelian extensions of K, assuming that all nth roots of unity are
in K. Of course, understanding K∗/(K∗)n well involves understanding the failure of
unique factorization into primes, hence understanding the unit group and class group
of the ring of integers of K well.

When the nth roots of unity are not in K, the situation is much more complicated,
and is answered by Class Field Theory.

Remark 1.2. A concise general reference about Kummer theory of fields is Birch’s
article Cyclotomic Fields and Kummer Extensions in Cassels-Frohlich. For a Galois-
cohomological approach to Class Field Theory, see the whole Cassels-Frohlich book.

2 Kummer Theory for an Elliptic Curve

Let n be a positive integer, and let E be an elliptic curve over a field K of characteristic
coprime to n, and let L = Ksep. We mimic the previous section, but for the GK-module
E(L) instead of L∗. Consider the exact sequence

0→ E[n]→ E
[n]−−−→ E → 0.

Taking cohomology we obtain an exact sequence

0→ E(K)/nE(K)→ H1(K,E[n])→ H1(K,E)[n]→ 0.

Unlike the above situation where H1(K,L∗) = 0, the group H1(K,E)[n] is often very
large, e.g., when K is a number field, this group is always infinite.

In Kummer theory, we obtained a nice result under the hypothesis that µn ⊂ K.
The analogous hypothesis in the context of elliptic curves is that every element of E[n]
is defined over K, in which case

H1(K,E[n]) ≈ Hom(GK , (Z/nZ)2),

where we have used that E[n](L) ≈ (Z/nZ)2, which is a standard fact about elliptic
curves, and as usual all homomorphisms are continuous. Another consequence of our

2



hypothesis that E[n](K) = E[n] is that µn ⊂ K; this later fact can be proved using the
Weil pairing, which is a nondegenerate GK-invariant map

E[n]⊗ E[n]→ µn.

As above, we can interpret the elements ϕ ∈ Hom(GK , (Z/nZ)2) (modulo an equiv-
alence relation) as corresponding to abelian extensions M of K such that Gal(M/K) ⊂
(Z/nZ)2. Moreover, we have upon fixing a choice of basis for E[n], an exact sequence

0→ E(K)/nE(K)→ Hom(GK , (Z/nZ)2)→ H1(K,E)[n]→ 0,

or, using Kummer theory from the previous section,

0→ E(K)/nE(K)→ (K∗/(K∗)n)2 → H1(K,E)[n]→ 0.

Another standard fact about elliptic curves—the (weak) Mordell-Weil theorem—is that
when K is a number field, then E(K)/nE(K) is finite. Thus when E[n](K) = E[n] ,
we have a fairly explicit description of H1(K,E)[n] in terms of K∗ and E(K). This idea
is one of the foundations for using descent to compute Mordell-Weil groups of elliptic
curves.

If we restrict to classes whose restriction everywhere locally is 0 we obtain the se-
quence

0→ E(K)/nE(K)→ Sel(n)(E/K)→X(E/K)[n]→ 0.

Here

Sel(n)(E/K) = ker

(
H1(K,E[n])→

⊕
all v

H1(Kv, E)

)
,

and

X(E/K) = ker

(
H1(K,E)→

⊕
all v

H1(Kv, E)

)
.

When K is a number field, it is possible to describe Sel(n)(E/K) so explicitly as a
subgroup of (K∗/(K∗)n)2 that one can prove that Sel(n)(E/K) is computable.

Theorem 2.1. Given any elliptic curve E over any number field K, and any integer
n, the group Sel(n)(E/K) defined above is computable.

It is a major open problem to show that E(K) is computable. A positive solution
would follow from the following conjecture:

Conjecture 2.2 (Shafarevich-Tate). The group X(E/K) is finite.

Conjecture 2.2 is extremely deep; for example, it is a very deep (hundreds of pages!)
theorem when E/Q has “analytic rank” 0 or 1, and is not known for even a single elliptic
curve defined over Q with analytic rank ≥ 2.

Example 2.3. Consider an elliptic curve E over Q of the form y2 = x(x − a)(x + b),
so that all the 2-torsion of E is Q-rational. As above, we obtain an exact sequence

0→ E(Q)/2E(Q)→ ((Q∗)/(Q∗)2)2 → H1(Q, E)[2]→ 0.

From this diagram and the fact that E(Q)/2E(Q) is finite, we see that H1(Q, E)[2]
is infinite. Moreover, given any pair (α, β) of nonzero rational numbers, we can write
down an explicit Galois cohomology class in H1(Q, E)[2], and given any rational point
P ∈ E(Q) we obtain a pair of rationals in ((Q∗)/(Q∗)2)2.
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