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Abstract. In this article, the properties of character sums, including Gauss

sums and Jacobi sums are investigated.

1. Introduction–Historical Notes

The origin of the Gauss sum and Jacobi sum in the work of C.F. Gauss and C.G.J.
Jacobi. Gauss introduced the Gauss sum in his Disquisitione Arithmeticae[Ga1] in
July, 1801, and Jacobi introduced the Jacobi sum in a letter to Gauss[Ja1] dated
February 8, 1827.

The sum introduced by Gauss in 1801 is

𝑘−1∑
𝑛=0

𝑒2𝜋𝑖𝑚𝑛2/𝑘,

which is now called a quadratic Gauss sum. This sum is not easy to evaluate, even
in the special case that 𝑚 = 1 and 𝑘 is an odd positive integer. In this case, Gauss
was easily able to show that this sum has the value ±√

𝑘 or ±𝑖√𝑘, according as
𝑘 is of the form 4𝑢+ 1 or 4𝑢+ 3, respectively. Specific examples convinced Gauss
that the plus sign is always correct. On August 30, 1805, Gauss wrote in his diary
he was able to prove his conjecture on the sign of these sums. A few years later,
Gauss[Ga2] published an evaluation of his quadratic Gauss sum for all positive
integer 𝑘.

In his study of primes in arithmetic progressions, G.L. Dirichlet [Di1] introduced
the multiplicative character 𝜒 modulo 𝑘 and the sum

𝐺(𝜒) =
𝑘−1∑
𝑛=0

𝑒2𝜋𝑖𝑚𝑛/𝑘.

This is also called a Gauss sum, as it coincides with the quadratic Gauss sum
above in the case that 𝜒 has order 2 and 𝑘 is a prime not dividing 𝑚.

The sum now called a Jacobi sum, which is in essence the one Jacobi introduced
in 1827, is
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𝐽(𝜒, 𝜓) =
∑

𝑛 mod 𝑝

𝜒(𝑛)𝜓(1− 𝑛),

where 𝜒 and 𝜓 are multiplicative characters modulo a prime 𝑝. Jacobi was
already aware in 1827 that Gauss and Jacobi sums are related like gamma and beta
functions, i.e., for 𝑘 = 𝑝 and 𝑚 = 1.

𝐽(𝜒, 𝜓) = 𝐺(𝜒)𝐺(𝜓)/𝐺(𝜒𝜓)

when 𝜒𝜓 is non-trivial.

After the initial work of Gauss, Dirichlet, and Jacobi, many well-known math-
ematicians made contributions to the theory of Gauss and Jacobi sums, including
L. Carlitz, A. Cauchy, S. Chowla, H. Davenport, G. Eisenstein, B. Gross, H. Hasse,
N.M. Katz, N. Koblitz, L. Kronecker, E.E. Kummer, D.H. and E. Lehmer, I.J.
Mordell, S.J. Patterson, C.L. Siegel, L. Stickelbegger, and A. Weil.

In the following sections, Gauss and Jacobi sums are introduced via the language
of characters over finite fields.

2. Characters of finite fields

Suppose 𝐹 be a finite field with 𝑞 = 𝑝𝑑 elements, where 𝑝 is a prime number.
It is obvious that 𝔽𝑝 = ℤ/ℤ𝑝 and therefore 𝐹 is a dimension 𝑑 vector space over
𝔽𝑝. We say that 𝜒 is a character of 𝐹 ∗, or just of 𝐹 if there is no ambiguity,
if 𝜒 is a multiplicative group homomorphism of 𝐹 into ℂ∗. 𝜒 is called primitive
if it is injective. Note that 𝐹 ∗ is a cyclic group with a generater, say, 𝑔. Then
𝜒 is determined by 𝜒(𝑔) ∈ ℂ∗. If 𝜒 is primitive, one may choose 𝑔 such that

𝜒(𝑔) = 𝑒
2𝜋𝑖
𝑝−1 . Note that Hom(𝐹 ∗,ℂ∗) has a natural abelian group structure, i.e.,

for 𝜒, 𝜓 ∈ Hom(𝐹 ∗,ℂ∗), 𝜒𝜓(𝑎) = 𝜒(𝑎)𝜓(𝑎), for any 𝑎 ∈ 𝐹 ∗. It is not hard to verify
that the identity for Hom(𝐹 ∗,ℂ∗) is the character that maps every element of 𝐹 ∗

to 1 ∈ ℂ, we shall call this character the identity character and denote it by 1.

For a given character, let 𝑚 be the smallest positive integer such that 𝜒𝑚 = 1.
Hence 𝑚 divides 𝑞 − 1. It follows that there is a primitive order 𝑚 character of 𝐹
if and only if 𝑚 divides 𝑞 − 1. For example, if 𝐹 is a prime field and char𝐹 > 2,
then 2 ∣ 𝑝 − 1, therefore there exist an order 2 character of 𝐹 . Since 𝐹 ∗ is cyclic,
therefore this order 2 character is unique, which is the well-known the Legendre
symbol:

( ⋅
𝑝

)
, which maps a quadratic residue to 1 and a non-residue to −1.

We say that 𝜏 is an additive character if 𝜏 is a group homomorphism from the
additive group of 𝐹 into the multiplicative group ℂ∗. Note that the trace map tr
is an additive map, which will be used for the construction of the Gauss sum in the
next section.
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3. Gauss Sums

Let 𝐹 be a finite field with 𝑞 elements, and let tr be the trace map from 𝐹 to
the prime field 𝔽𝑝. The Gauss sum of a character 𝜒 of 𝐹 is defined as follows:

𝐺(𝜒) :=
∑
𝑡∈𝐹

𝜒(𝑡)𝜁 tr𝑡
𝑝 .

In general, according to an additive character 𝜏 , we can form the Gauss sum in
the following way:

𝐺𝑎(𝜒; 𝜏) =
∑
𝑡∈𝐹

𝜒(𝑡)𝜏(𝑎𝑡)

for some fixed 𝑎 ∕= 0 ∈ 𝐹 .

Note that if we consider the case when 𝐹 itself is the prime field 𝔽𝑝, then the
Gauss sum becomes:

𝐺𝑎(𝜒) :=
∑
𝑡∈𝐹

𝜒(𝑡)𝜁𝑎𝑡𝑝 .

For now on and to the end of this section we will consider the case when 𝐹 is the
prime field. Note that 𝜒(𝑡) is a power of 𝜁𝑝−1 for any 𝜒 and any 𝑡 ∈ 𝐹 , therefore
the Gauss sum 𝐺(𝜒) ∈ ℚ(𝜁𝑝−1, 𝜁𝑝). We also have the following basic property of
the Gauss sums[Ir1, Co1]:

Proposition 3.1. If 𝜒 ∕= 𝜀, then ∣𝐺(𝜒)∣ = √
𝑝.

Proof. The ideal is to evaluate the sum∑
𝑎

𝐺𝑎(𝜒)𝐺𝑎(𝜒)

in two ways.
If 𝑎 ∕= 0, then𝐺𝑎(𝜒) = 𝜒(𝑎)𝐺(𝜒) and𝐺𝑎(𝜒) = 𝜒(𝑎)−1𝐺(𝜒). Thus𝐺𝑎(𝜒)𝐺𝑎(𝜒) =

∣𝐺(𝜒)∣2. Since 𝐺0 = 0, the sum evaluates as (𝑝− 1)∣𝐺(𝜒)∣2.
On the other hand,

𝐺𝑎(𝜒)𝐺𝑎(𝜒) =
∑
𝑥

∑
𝑦

𝜒(𝑥)𝜒(𝑦)𝜁𝑎𝑥−𝑎𝑦.

Summing both sides over 𝑎 yields,

𝑠𝑢𝑚𝑎𝐺𝑎(𝜒)𝐺𝑎(𝜒) =
∑
𝑥

∑
𝑦

𝜒(𝑥)𝜒(𝑦)𝛿(𝑥, 𝑦)𝑝 = (𝑝− 1)𝑝,

where 𝛿(𝑥, 𝑦) = 1 if 𝑥 = 𝑦 and zero otherwise.
Hence ∣𝐺(𝜒)∣ = √

𝑝. □
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4. Jacobi Sums

The Jacobi sum was first introduced by Jacobi in a letter to Gauss, which is
defined as following. For two multiplicative character on 𝔽∗

𝑝, we defined the Jacobi
sum to be
𝐽(𝜒, 𝜓) =

∑
𝑡 𝜒(𝑡)𝜓(1− 𝑡)

Here are some basic properties of the Jacobi sum:

Proposition 4.1. Let 𝜀 be the trivial character. Then,

(a) 𝐽(𝜀, 𝜀) = 𝑝.
(b) 𝐽(𝜀, 𝜒) = 0.
(c) 𝐽(𝜒, 𝜒−1) = −𝜒(−1).
(d) If 𝜒𝜓 ∕= 𝜀, then

𝐽(𝜒, 𝜓) =
𝐺(𝜒)𝐺(𝜓)

𝐺(𝜒𝜓)
.

Proof. Part (a) is immediate. Part (b) is a consequence of Lemma 7.3.

To prove (c), notice that

𝐽(𝜒, 𝜒−1) =
∑

𝑎+𝑏=1

𝜒(𝑎)𝜒−1(𝑏) =
∑

𝑎+𝑏=1,𝑏 ∕=0

𝜒
(𝑎
𝑏

)
=
∑
𝑎∕=1

𝜒

(
𝑎

1− 𝑎

)
.

Set 𝑎/(1 − 𝑎) = 𝑐. If 𝑐 ∕= 1, then 𝑎 = 𝑐/(1 + 𝑐). It follows that as 𝑎 varies over
𝔽𝑝, except the element 1, then 𝑐 varies over 𝔽𝑝, except for −1. Thus

𝐽(𝜒, 𝜒−1) =
∑
𝑐∕=−1

𝜒(𝑐) = −𝜒(−1).

To prove (d), notice that

𝐺(𝜒)𝐺(𝜓) =

(∑
𝑥

𝜒(𝑥)𝜁𝑥

)(∑
𝑦

𝜓(𝑦)𝜁(𝑦)

)
=

∑
𝑥,𝑦

𝜒(𝑥)𝜓(𝑦)𝜁𝑥+𝑦

=
∑
𝑡

( ∑
𝑥+𝑦=𝑡

𝜒(𝑥)𝜓(𝑦)

)
𝜁𝑡.

If 𝑡 = 0, then∑
𝑥+𝑦=0

𝜒(𝑥)𝜓(𝑦) =
∑
𝑥

𝜒(𝑥)𝜓(−𝑥) = 𝜓(−1)
∑
𝑥

𝜒𝜓(𝑥) = 0,

since 𝜒𝜓 ∕= 𝜀 by assumption.

If 𝑡 ∕= 0, define 𝑥′ and 𝑦′ by 𝑥 = 𝑡𝑥′ and 𝑦 = 𝑡𝑦′. If 𝑥+ 𝑦 = 𝑡, then 𝑥′ + 𝑦′ = 1.
It follows that
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𝐺(𝜒)𝐺(𝜓) =
∑
𝑡

𝜒𝜓(𝑡)𝐽(𝜒, 𝜓)𝜁𝑡 = 𝐽(𝜒, 𝜓)𝐺(𝜒𝜓).

Substituting into Equation (7.1) yields

𝐺(𝜒)𝐺(𝜓) = 𝐽(𝜒, 𝜓)𝐺(𝜒𝜓).

□

We have the following consequence

Corollary 4.2. If 𝜒, 𝜓, 𝜒𝜓 are all not equal to 𝜀, then ∣𝐽(𝜒, 𝜓)∣ = √
𝑝.

Proof. Clear from Proposition 4.1. □

5. The Analogy between Gauss and Jacobi sums and Gamma and Beta
functions

Gross and Koblitz [Ko1, Ko2]noted that there is an analogy between the Gauss
sums and Jacobi sums, to the Gamma and Beta functions respectively. In this
section the analogy is stated briefly.

Recall the (real) gamma function on 𝑥 > 0 is defined as:

Γ(𝑥) =

∫ ∞

0

𝑡𝑥−1𝑒−𝑡𝑑𝑡,

and the (real) beta function on 𝑥 > 0, 𝑦 > 0 is defined as:

𝐵(𝑥, 𝑦) =

∫ 1

0

𝑡𝑥−1(1− 𝑡)𝑥−1𝑑𝑡.

Note that the relation between Beta and Gamma function could be written as:

𝐵(𝑥, 𝑦) =
Γ(𝑥)Γ(𝑦)

Γ(𝑥+ 𝑦)

Here comes the analogy: the integration
∫
𝑑𝑡 could be viewed as a sum on the

domain (0, 1). Note that 𝑡 7→ 𝑡𝑥−1 is a multiplicative character from the multi-
plicative group of ℝ≥0 to itself, determined by 𝑥. Also note that 𝑒−𝑡 is an additive
character from [0,+∞) to [0, 1]. The analogy is then visually clear.



6 WEN WANG

6. Eisenstein Sums

Let 𝔽𝑝 = 𝑘 ⊂ 𝐾 ⊂ 𝐹 be a tower of extensions of finite fields. Let 𝐾 = 𝔽𝑞 and
𝐹 = 𝔽𝑞𝑛 and put 𝑞 = 𝑝𝑓 . Then 𝐹 is a finite extension of 𝐾 and 𝑘. Denote with Tr
the trace from 𝐹 to 𝑘, and tr the trace form 𝐾 to 𝑘, and T the trace from 𝐹 to
𝐾. Note that Tr = T ∘ tr.

For a character 𝜒 on 𝐹 with order 𝑚 > 1 and an element 𝛼 ∈ 𝐾, we could form
the Eisenstein sum

𝐸(𝜒;𝛼) =
∑

𝑇 (𝑡)=𝛼

𝜒(𝑡).

It is clear that 𝐸(𝜒;𝛼) ∈ ℤ[𝜁𝑚]. If 𝛼 = 𝑎 ∈ 𝐹 , we put 𝐸(𝜒;𝛼) = 𝐸𝑎(𝜒),
𝐸(𝜒) = 𝐸1(𝜒). Denote by 𝜒𝐾 be the restriction of 𝜒 on 𝐾∗. The following
properties of Eisenstein sums follows immediately from definition[?]:

Proposition 6.1. Let 𝜒 be a character defined on 𝐹 ∗, where 𝐹 is the extension of
degree 𝑛 over 𝐾 = 𝔽𝑞.

(1) 𝐸(𝜒;𝛼) = 𝜒(𝛼)𝐸(𝜒) for all 𝛼 ∈ 𝐾∗;
(2) 𝐸(𝜒𝑝;𝛼) = 𝐸(𝜒;𝛼𝑝);
(3) 𝐺𝛼(𝜒) = 𝐸(𝜒)𝐺𝛼(𝜒𝐾) + 𝐸0(𝜒) for all 𝛼 ∈ 𝐾;
(4) The table below gives some useful relations between Gauss and Eisenstein

sums depending on whether 𝜒𝐾 = 1𝐾 or not:

𝐸0(𝜒) 𝐺𝛼(𝜒) 𝐸(𝜒)𝐸(𝜒−1)
𝜒𝐾 ∕= 1𝐾 0 𝐸(𝜒)𝐺𝛼(𝜒) 𝑞𝑛−1

𝜒𝐾 = 1𝐾 (1− 𝑞)𝐸(𝜒) 𝑞𝐸(𝜒) 𝑞𝑛−2

7. Power Residue Characters of Small Primes

Recall that the definition of Jacobi sums gives rise to the following proposition[Le1]:

Proposition 7.1. Let 𝑝 = 𝑚𝑛 + 1 be a prime, and let 𝜒 be a character of order
𝑚 on 𝔽∗

𝑝. Then 𝜒(2) = −𝐽(𝜒𝑛, 𝜒𝑛) mod 2. In particular, if 𝑚 is odd then 2 is an
𝑚-th power residue modulo 𝑝 if and only if 𝐽(𝜒, 𝜒) ≡ 1 mod 2.

Proof. The key observation is that the summation over 𝑡 in the Jacobi sum

−𝐽(𝜒𝑛, 𝜒𝑛) =

𝑝−2∑
𝑡=2

𝜒𝑛(𝑡)𝜒𝑛(1− 𝑡)

is symmetric with respect to 𝑝+1
2 : since the contributions from 𝑡 and 𝑝+ 𝑡− 1 are

equal and therefore cancel modulo 2, we find

−𝐽(𝜒𝑛, 𝜒𝑛) ≡ 𝜒𝑛
(𝑝+ 1

2

)
𝜒𝑛
(
1− 𝑝+ 1

2

)
= 𝜒−2𝑛(2) = 𝜒(2) mod 2.
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Since different 𝑚-th roots of unity differ modulo 2 when 𝑚 is odd, this implies
that 𝜒(2) = 1 if and only if 𝐽(𝜒𝑛, 𝜒𝑛) ≡ 1 mod 2. But 𝐽(𝜒𝑛, 𝜒𝑛) = 𝜎𝑛𝐽(𝜒, 𝜒),
where 𝜎𝑛 is the automorphism of ℚ(𝜁𝑚) that sends 𝜁𝑚 7→ 𝜁𝑛𝑚, and our claim follows.

□

We also have the following Proposition that characterizes the power residue
modulo small primes ([Le1], Prop.4.28.).

Proposition 7.2. Let 𝔭 be a prime ideal of degree 1 in 𝐾 = ℚ(𝜁𝑚); its norm is

then a prime 𝑝 ≡ 1 mod 𝑚. Let 𝜒 =
(

⋅
𝑝

)
𝑚

be an 𝑚-th power character modulo 𝔭.

Then 𝐽(𝜒𝑎, 𝜒𝑏) ≡ 0 mod 𝔭 for all integers 𝑎, 𝑏 ≥ 1 such that 𝑎+ 𝑏 ≤ 𝑚− 1.

Proof. We have 𝜒(𝑡) ≡ 𝑡(𝑝−1)/𝑚 mod 𝔭 for every integer 𝑡 coprime to 𝑝 by definition
of the power residue symbol. Hence

𝐽(𝜒𝑎, 𝜒𝑏) = 𝑡𝑎(𝑝−1)/𝑚(1− 𝑡)𝑏(𝑝−1)/𝑚 mod 𝑝.

The lemma below shows that the right hand side is divisible by 𝑝 whenever the
degree (𝑎+ 𝑏)(𝑝− 1)/𝑚 of the polynomial is strictly smaller than 𝑝− 1. Since 𝔭 ∣ 𝑝,
our claim follows.

□

Lemma 7.3. Let 𝑝 be a prime; then

𝑝−1∑
𝑎=1

𝑎𝑘 ≡
{

0 mod 𝑝, if 0 < 𝑘 < 𝑝− 1;
−1 mod 𝑝, if 𝑘 = 𝑝− 1.

Proof. □

Lemma 7.4. Let 𝜒 be a character on 𝔽𝑞, and let 𝜌 be the quadratic character on
𝔽𝑞, then 𝐽(𝜒, 𝜌) = 𝜒(4)𝐽(𝜒, 𝜒).

8. Number of Points on Certain Elliptic Curves and Jacobi Sums

A good use of the Jacobi sum is to determine the number of points on diagonal
surfaces. As an example, here we evaluate the number of points of the special
elliptic curves

𝐸 : 𝑦2 = 𝑥3 +𝐷

Let 𝜌 be the character of 𝔽𝑝 of order 2 and 𝜒 be the character of 𝔽𝑝 with order
3. Then the number of points on 𝐸1 could be written as
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𝑁(𝑦2 = 𝑥3 +𝐷) =
∑

𝑢+𝑣=𝐷

𝑁(𝑦2 = 𝑢)𝑁(𝑥3 = −𝑣)

=
∑

𝑢+𝑣=𝐷

(1 + 𝜌(𝑢))(1 + 𝜒(−𝑣) + 𝜒(−𝑣)2)

= 𝑝+
∑

𝑢+𝑣=𝐷

𝜌(𝑢)𝜒(𝑣) +
∑

𝑢+𝑣=𝐷

𝜌(𝑢)𝜒2(𝑣)

= 𝑝+ 1 + 𝜌𝜒(𝐷) + 𝜌𝜒(𝐷)𝐽(𝜌, 𝜒)

By applying the fact 𝐽(𝜌, 𝜒) = 𝜒(4)𝐽(𝜒, 𝜒), one gets

𝑁(𝑦2 = 𝑥3 +𝐷) = 𝑝+ 1 + 𝜌𝜒(4𝐷)𝐽(𝜒, 𝜒) + 𝜌𝜒(4𝐷)𝐽(𝜒, 𝜒).

For example let us consider the curve 𝑦2 = 𝑥3 + 5 over 𝔽19. Note that 19 =
(5+ 3𝜔)(3 + 3𝜔2), where 𝜔 is a primitive third root of unity. Note that 5 + 3𝜔 ≡ 2
mod 3, then 𝐽(𝜒, 𝜒) = 5 + 3𝜔. Since 4 ⋅ 5 = 1 is sixth power in 𝔽19, therefore the
number of points is given by 19 + 1 + 5 + 3𝜔 + 5 + 3𝜔2 = 27.
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