
University of Washington

Number Theory Final Project

Monte-Carlo Approximation of
the Prime Counting Function

Author:
Kevin Stueve

Instructor:
Dr. William Stein

Winter 2010
Last edited March 17, 2010

Abstract

We describe an apparently new method of approximating π(x), the prime
counting function. We name this method the Monte-Carlo method because
of its reliance on pseudorandomness in the distribution of the primes. The
Monte-Carlo method combines information from the exact distribution of
primes surrounding x with information from multiple samples of an analytic
approximation surrounding x. The analytic approximation is based on a
sum over the nontrivial zeros of the Riemann zeta function. The Monte-
Carlo method requires that the mean error of the analytic approximation
approaches zero. The Monte-Carlo method would still work under failure of
the Riemann hypothesis. It is plausible that a probabilistic exact π(x) im-
plementation could be produced from the Monte-Carlo method. We provide
a heuristic argument that the Monte–Carlo method reduces the time com-
plexity of the explicit formula from essentially O(x1.38) to essentially O(x

7
8).

Primes

Integers have unique factorization. A whole number greater than one is prime
if it cannot be broken up into the product of two smaller whole numbers,
otherwise it is composite. The number one is considered a unit, neither
prime nor composite. The prime counting function, π(x) is the number
of primes less than or equal to a given x. The prime counting function
grows without bound and its asymptotic behavior can be studied. We need
to be careful about discontinuities (at the primes), so we define π0(x) =

limε→0
π(x−ε)+π(x+ε)

2
. Analytic formulas will converge to π0(x) rather than

π(x). This issue is often glossed over, because usually the error of an analytic
approximation for the prime counting function is much greater than 0.5–and
the issue can be completely ignored by considering x 0.1 greater than an
integer.

Asymptotic Growth of the Prime Counting Function

The prime number theorem says that:
π(x) ∼ x

log(x)
∼ li(x) ∼ Li(x) ∼ R(x), where:

li(x) =
∫ x
0

dt
log(t)

Li(x) =
∫ x
2

dt
log(t)

R(x) =
∑∞
n=1

µ(n)
n
li(x1/n)

µ(n) = 1 if n is a square-free positive integer with an even number of distinct
prime factors.
µ(n) = −1 if n is a square-free positive integer with an odd number of distinct
prime factors.
µ(n) = 0 if n is not square-free.
We call li(x) the logarithmic integral. Li(x) is the offset logarithmic integral.
R(x) is the Riemann prime counting function. R(x) is more accurate than

li(x), but harder to calculate. R(x) is less than li(x) by approximately li(x1/2)
2

.

The “Smooth” and Periodic Components of the Prime
Counting Function

The best “smooth” (not in the sense of being infinitely differentiable) ap-
proximation to π(x) is due to Andrey V. Kulsha:
R(x)− 1

log x
+ 1

π
arctan π

log x

The error of the smooth component of the prime counting function fluctuates
between positive and negative, with a mean of zero. The error of the smooth
component is called the periodic component of the prime counting function.
The periodic component of the prime counting function is
−∑ρR(xρ)
where the sum is taken over nontrivial zeros of the Riemann zeta function.
This sum is only conditionally convergent–the zeros must be taken in order
of increasing distance from the origin.

The Explicit Formulas for π(x)

There is an R-based and a li-based explicit formula for π(x).
The R based explicit formula is:
π0(x) = R(x)−∑ρR(xρ)− 1

log x
+ 1

π
arctan π

log x

and the li-based formula is:
π0(x) = li(x)−∑ρ li(x

ρ)− log(2)−∑∞k=2 π0(x
1/k) +

∫∞
x

dt
t(t2−1)log(t)

.

The R-based formula is more commonly quoted (usually without the o(1)
terms) and could be considered more elegant. Computing π(x) using the

2

li-based formula requires recursive π(x) calls up to
√
x, but if these are

available, the calculations and analysis may be easier than for the R-based
formula. Each of the li(x0.5+It) + li(x0.5−It) terms in the li-based formula is
a sinusoid. Each of the R(x0.5+It) +R(x0.5−It) terms in the R-based formula
is composed of infinitely many sinusoids and not as simple. The connection
between the prime counting function and Fourier analysis comes through
better in the li-based formula.
For large x, the prime counting function can be approximated by:
li(x)− li(

√
x)

2
−∑ρ li(x

ρ)

The Nontrivial Zeros of the Riemann Zeta Function and
The Riemann Hypothesis

The Riemann Zeta function has trivial zeros at the negative even integers. All
of the other zeros, the nontrivial zeros, are in the critical strip 0 < Re(s) < 1.
The Riemann Hypothesis (RH) says that the nontrivial zeros of the Riemann
hypothesis all lie on the critical line, Re(s) = 1

2
. The nontrivial zeros come

in conjugate pairs. Additional, the locations of the nontrivial zeros must be
symmetrical about the critical line. It is known that infinitely many, and
at least 40% of the zeros are on the critical line. To verify the Riemann
Hypothesis numerically up to some bound, the best we can presently do
is simply traverse the critical line. We can count the number of zeros in a
region of the critical strip, or along an interval of the critical line. The largest
number of nontrivial zeros has been calculated using the Odlyzko–Schönhage
algorithm, which uses optimizations to evaluate the Riemann zeta function
at many points. The prime number theorem results from no zeros having
real part 1. The infinitude of primes results from there being a pole at
s = 1. RH would mean that the size of the periodic component is bounded
by essentially

√
x, where “essentially” means that logarithmic factors are

ignored. The number of nontrivial zeros with height below T is given by the
Riemann–von Mangoldt formula: N(T) = T

2π
log T

2π
− T

2π
+O(log T).

Calculating the Logarithmic Integral Based Explicit For-
mula

Although the logarithmic integral has an exact series based on the exponen-
tial integral, in practice the asymptotic series

li(x) ∼ x

log x

∞∑
k=0

k!

(log x)k

3

can be used. The asymptotic series is not strictly convergent and is only
valid if a limited number of terms is used. Below is a demonstration of the
accuracy of the asymptotic series for real numbers. The error is ∼1 (slightly
more only for small values). See the code listing in appendix B for the im-
plementation of li approx and li by Fredrik Johansson.
Code Listing 1:

for n in range(1,12):

... y = 10**n

... print "%14.3f %14.3f" % (li_approx(y)-li(2), li(y)-li(2))

...

8.957 5.120

31.184 29.081

177.941 176.564

1246.918 1245.092

9630.136 9628.764

78627.536 78626.504

664918.780 664917.360

5762209.464 5762208.330

50849234.805 50849233.912

455055614.772 455055613.541

4118066400.588 4118066399.576

Tomás Oliveira e Silva provided the present author with an implementation
of the li–based explicit formula in pari–gp. Of the terms in the li–based ex-
plicit formula, the

∑
ρ li(x

ρ) terms are the major bottleneck. The asymptotic
series is used for li, and the terms are evaluated in conjugate pairs–there is
a function li(x, t) that computes li(x0.5+It) + li(x0.5−It). The present author
rewrote and optimized for speed this code in C with li(x0.5+It) + li(x0.5−It)
written in terms of sines and cosines (see the code listing in appendix A).

li(x) ∼ x

log x

∞∑
k=0

k!

(log x)k

so

li(x0.5+It) + li(x0.5−It) ∼ Re(2
x0.5+It

log x0.5+It

∞∑
k=0

k!

(log x0.5+It)k
)

= Re(2

√
x

log x

[cos (t log x) + I sin (t log x)]
1
2

+ It

∞∑
k=0

k!

(log x0.5+It)k
)

4

Note that we have symmetry about the real axis and that the imaginary
components cancel out. It is worthwhile to study the asymptotic properties
of li(x0.5+It) + li(x0.5−It) for large x.
For large x,

∞∑
k=0

k!

(log x0.5+It)k

will approach one.
We are left with li(x0.5+It) + li(x0.5−It) ∼ Re(2

√
x

log x
[cos (t log x)+I sin (t log x)]

1
2
+It

) =

2
√
x

log x
0.5 cos (t log x)+t sin (t log x)

0.25+t2
∼ 2

√
x

log x
sin (t log x)

t
.

Now we can see a hint of why RH implies that the error of the smooth ap-
proximations is bounded by essentially

√
x–the real part of the nontrivial

zeros translates directly into the exponent in the explicit formula.
∑
ρ li(x

ρ)
is in some sense very roughly an infinite series of sinusoids in the logarithmic
domain where the amplitudes are (assuming RH) 2

√
x

t log x
and the frequencies

are t
2π

, the heights of the nontrivial zeros of the Riemann zeta function di-
vided by 2π. Below is a plot of li(x0.5+It) + li(x0.5−It) for the first nontrivial

zero, along with the amplitude, 2∗sqrt(x)
tlog(x)

. Take special note of the exponential
change of variable.
Code Listing 2:

def f(x):

return li(x,zz[1])

li_list=[]

for x in range(int(10),int(100*10**11),int(10**10)):

li_list.append((x,f(x)))

def g(x):

return 2*sqrt(x)/zz[1]/log(x)

list_plot(li_list)+plot(g,(1,100*10**11))

5

Figure 1:

The perfect symmetry is broken as soon as we add the second term:
Code Listing 3:

def f(x):

return li(x,zz[1])+li(x,zz[2])

li_list=[]

for x in range(int(10),int(100*10**11),int(10**10)):

li_list.append((x,f(x)))

list_plot(li_list)

6

Figure 2:

With more and more terms, we will more closely approximate the prime
counting function. We may call the explicit formula the analytic approxima-
tion when truncated after some finite number of terms.

The Accuracy of the Logarithmic Integral Based Ex-
plicit Formula

Below are plots of the error of the logarithmic integral based explicit formula
with 1000 (yellow), 10000 (red), and 100000 (blue) zeros. It can be seen that
the error decreases when more zeros are used.
Code Listing 4:

l=[]

l2=[]

l3=[]

start=int(10^12)

step=int(10^6)

stop=int(start+step*100)

for x in range(start,stop,step):

l.append((x,riemann_pi(x,100000)-prime_pi(x)))

l2.append((x,riemann_pi(x,10000)-prime_pi(x)))

l3.append((x,riemann_pi(x,1000)-prime_pi(x)))

list_plot(l)+list_plot(l2,color="red")+list_plot(l3,color="yellow")

7

Figure 3:

Below are plots of the logarithmic integral based explicit formula with 0 (red),
10 (orange), 100 (yellow), 1000 (green), and 10000 (blue) zeros. Notice the
convergence to the true prime counting function.
Figure 3b:

Let’s see how the error decreases as the number of zeros increases.
Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to

8

store the error of the approximation as a function of the base 10 logarithm
of the number of zeros used for x = 1010:
Line of best fit: y = −1.5253066915024995x+ 11.028726382380231
Increasing the number of zeros by a factor of ten decreases error by a factor
of 2.87.
Figure 4:

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the approximation as a function of the base 10 logarithm
of the number of zeros used for x = 1011:
Line of best fit: y = −1.0368869521503168x+ 11.705300338338557
Increasing the number of zeros by a factor of ten decreases error by a factor
of 2.05.
Figure 5:

9

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the approximation as a function of the base 10 logarithm
of the number of zeros used for x = 1012:
Line of best fit: y = −0.7960336635220191x+ 12.837456191781575
Increasing the number of zeros by a factor of ten decreases error by a factor
of 1.73.
Figure 6:

10

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the approximation as a function of the base 10 logarithm
of the number of zeros used for x = 1013:
Line of best fit: y = −1.3366081667372423x+ 16.060337604210417
Increasing the number of zeros by a factor of ten decreases error by a factor
of 2.53.
Figure 7:

11

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the approximation as a function of the base 10 logarithm
of the number of zeros used for x = 1014:
Line of best fit: y = −0.59705527779850254x+ 15.392726387621201
Increasing the number of zeros by a factor of ten decreases error by a factor
of 1.51.
Figure 8:

12

The benefit of using additional zeros seems to depend strongly on the value
of x. Let’s calculate an average slope for many values of x. See Appendix C
for the linear regression Code used.
Code Listing 5:

data=[]

list1=[10^10,10^11,10^12,10^13,10^14,10^15,10^16]

list2=[]

for x in list1:

for multiplier in (1,2,3,4,5,6,7,8,9):

list2.append(x*multiplier)

for n in (0,.1,..5):

for x in (list2):

data.append((n,log(abs(riemann_pi(x,10^n)-prime_pi(x)))/log(2)+1))

thefit=polyfit(data,1)

a=thefit[’polynomial’][0]

b=thefit[’polynomial’][1]

def f(x):

return a*x+b

list_plot(data)+plot(f,(0,5))

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the approximation as a function of the base 10 logarithm of

13

the number of zeros used. Values of x between 1010 and 9∗1016 and numbers
of zeros between 1 and 105 are used:
Line of best fit: y = −1.02884846072x+ 15.8755002601
Increasing the number of zeros by a factor of ten decreases error by a factor
of 2.04.
Figure 9:

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the approximation as a function of the logarithm of the
number of zeros used. Values of x between 1010 and 9 ∗ 1016 and numbers
of zeros between 100 and 105 are used (to remove outliers from the previous
plot):
Line of best fit: y = −1.24079579286x+ 16.6412116696
Increasing the number of zeros by a factor of ten decreases error by a factor
of 2.36, consistent with Patrick Demichel’s value of 2.3:
Figure 10:

14

With this figure, we can make the very very rough heuristic estimate that to
decrease the error of the li-based analytic approximation from essentially

√
x

to about 0.5, we need essentially about O(x1.38) terms–not a very efficient
way to calculate the prime counting function.

The Monte-Carlo Approximation of the Prime Count-
ing Function

Wikipedia says:
“Monte Carlo methods are a class of computational algorithms that rely on
repeated random sampling to compute their results.”
The Monte–Carlo method takes advantage of the observation that the error
of the analytic approximation is normally distributed with mean 0. By us-
ing a formula that samples the error of the analytic approximation, we can
obtain better accuracy from the explicit formula with the same number of
zeros.
Tomás Oliveira e Silva says:
“Assuming that the values of t log(x) are uniformly distributed modulo 2pi,
where t is, as before, the imaginary part of the zero, it is possible to model the
terms not used in the formula as a Gaussian random variable with zero mean
and an approximate standard deviation which is easy to compute. Unfor-
tunately, this standard deviation decreases slowly with the number of zeros
used, to the point that one hundred times the number of zeros gives us less
than one extra digit of precision.”

15

Patrick Demichel says:
“The worst theoretical error is much greater, but will occur only if a large
number of the millions of sinusoids would coincide in one place. Otherwise
they have a natural tendency to cancel each other. Thats why the worst
observed error, is orders of magnitude smaller than the worst theoretical
maximum. Then without any special property of the distribution of the ze-
ros, we can consider the values as random. And as it seems to be the case,
the errors distribution follows perfectly the normal distribution.”
Below is a histogram of the error of the li-based analytic approximation with-
out any of the zeros being used for 8000 values of x just below 1012. The
values of x are in an arithmetic progression separated by a stepsize 107:
Figure 10b:

By evaluating the analytic approximation at many points in an interval
around some x, and also calculating the fluctuations of the prime counting
function in that interval (with local sieving), we can obtain a more accurate
approximation of the prime counting function than the analytic approxima-
tion. Statistics says that if the number of samples from a normal distribution
increases by a factor of m, then the standard error of the mean decreases
by a factor of

√
m. In practice we might not obtain such good results. Al-

though a normally distributed error in the analytic approximation may allow
faster convergence, the Monte–Carlo method does not require a normally dis-
tributed error, it will work as long as the mean error approaches zero for a
larger number of samples.
Define:

16

Lin(x) = li(x)− log(2)−∑∞k=2 π(x1/k) +
∫∞
x

dt
t(t2−1)log(t)

−∑ρ li(x
ρ) (over the

first n nontrivial zeros) so that
π0(x) ≈ Lin(x) and
π0(x) = Lin(x) + E(x)
where E(x) is the error of Lin(x).
Algorithm:
1) Determine π(x1)−π(x0), π(x2)−π(x1), π(x3)−π(x2), etc for many values
in an interval around x.
2) Use the formula:
E(b) − E(a) = π(b) − π(a) − Lin(b) + Lin(a) to calculate E(x1) − E(x0),
E(x2)− E(x1), E(x3)− E(x2), etc for many values in an interval around x.
3) Use some x as a reference point. Calculate E(x)− E(x0), E(x)− E(x1),
E(x)− E(x2), E(x)− E(x3), etc based on the data from the previous step.
Calculate the mean of this list of numbers and call it Eest(x).
Because the mean of E(x) approaches zero for larger intervals, the mean we
just calculated is an approximation to E(x).
4) Use Lin(x) + Eest(x) as an approximation to π0(x) that is better (on av-
erage) than Lin(x).

Note that it is really E(x) ∗ log(x)√
x

that has mean approaching zero, not E(x),

so it is desirable for the interval used to be small, ideally on the order of
√
x

so that the change in log(x)√
x

over the interval is negligible–that way it is valid

to consider E(x).

The Accuracy of the Monte-Carlo Approximation

The error of the Monte-Carlo Approximation is the error in Eest(x), i.e. the
error is the value Eest(x)− E(x).
Eest(x) = Avg[E(x)−E(xi)] = Avg[π0(x)−π0(xi)−Lin(x) +Lin(xi)] where
the average is over i.
Now Eest(x) = Avg[E(x)− E(xi)] = E(x)− Avg[E(xi)], so
Eest(x)− E(x) = −Avg[E(xi)]
In other words, the error of the Monte–Carlo approximation is the average
of the error of the analytic approximation. This is why it is important for
the analytic approximation used to have mean error 0. This reliance on the
pseudorandom properties of the prime counting function is the reason this
method is given the name the Monte–Carlo approximation.
Let’s look at some examples of the accuracy of the Monte–Carlo approxima-
tion.
Code Listing 6:

17

start=int(10^10)

stepsize=int(10^5)

numchanges=0

last=0

differences=[]

plotpoints=[]

for steps in range(0,1000+1,1):

x=start-steps*stepsize

difference=riemann_pi(x,100000)-prime_pi(x)

if value*last<0:

numchanges+=1

differences.append(difference)

plotpoints.append((steps,log(abs(mean(differences)))/log(2)+1))#add 1 for

sign bit

list_plot(plotpoints)

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1010) as a function
of the number of evaluations (separated by 105) of Li104(xi)–the x–axis also
represents the amount of sieving (in units of 105) required to calculate this
approximation:
Figure 11:

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1010) as a function
of the number of evaluations (separated by 105) of Li105(xi)–the x–axis also

18

represents the amount of sieving (in units of 105) required to calculate this
approximation:
Figure 12:

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1010) as a function
of the number of evaluations (separated by 105) of Li106(xi)–the x–axis also
represents the amount of sieving (in units of 105) required to calculate this
approximation:
Figure 13:

19

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed
to store the error of the Monte-Carlo approximation of π(1011) as a function
of the number of evaluations (separated by 106) of Li104(xi)–the x–axis also
represents the amount of sieving (in units of 106) required to calculate this
approximation:
Figure 14:

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1011) as a function
of the number of evaluations (separated by 106) of Li105(xi)–the x–axis also
represents the amount of sieving (in units of 106) required to calculate this
approximation:
Figure 15:

20

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1011) as a function
of the number of evaluations (separated by 106) of Li106(xi)–the x–axis also
represents the amount of sieving (in units of 106) required to calculate this
approximation:
Figure 16:

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed
to store the error of the Monte-Carlo approximation of π(1012) as a function

21

of the number of evaluations (separated by 107) of Li104(xi)–the x–axis also
represents the amount of sieving (in units of 107) required to calculate this
approximation:
Figure 17:

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1012) as a function
of the number of evaluations (separated by 107) of Li105(xi)–the x–axis also
represents the amount of sieving (in units of 107) required to calculate this
approximation:
Figure 18:

22

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1012) as a function
of the number of evaluations (separated by 107) of Li106(xi)–the x–axis also
represents the amount of sieving (in units of 107) required to calculate this
approximation:
Figure 19:

23

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed
to store the error of the Monte-Carlo approximation of π(1013) as a function
of the number of evaluations (separated by 108) of Li104(xi)–the x–axis also
represents the amount of sieving (in units of 108) required to calculate this
approximation:
Figure 20:

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1013) as a function
of the number of evaluations (separated by 108) of Li105(xi)–the x–axis also
represents the amount of sieving (in units of 108) required to calculate this
approximation:
Figure 21:

24

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1013) as a function
of the number of evaluations (separated by 108) of Li106(xi)–the x–axis also
represents the amount of sieving (in units of 108) required to calculate this
approximation:
Figure 22:

The error of the Monte–Carlo method with respect to the size of the in-
terval used for the sieving and analytic approximation evaluations has an

25

apparent periodic structure. For simplicity and ease of calculation, we will
direct our focus on the approximation based on Li104(xi).
Let’s take a closer look at Figure 20.
Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1013) as a function
of the number of evaluations (separated by 107) of Li104(xi)–the x–axis also
represents the amount of sieving (in units of 107) required to calculate this
approximation:
Figure 23:

This periodic structure comes from the periodic nature of the error of Li104(x).
The error of Li104(x) is equal to the contributions from the zeros past the
first 104. Patrick Demichel has observed that “In practice a higher group
of zeros 10 times bigger tends to offer 2 times smaller contribution to the
sum”. The main contributors to the error of Li104(x) are from the sinusoids
from the first zeros after the first 104. The period of each sinusoid is 2π

t
(in

the logarithmic domain), i.e. one wavelength is completed each time log x
increases by 2π

t
. The value of zero number 104 + 1 is 9878.65477238, so one

wavelength of the contribution from this zero is completed each time log x
increases by 0.000630365305. Because the code in code listing 6 sieves down
from 1013, we calculate that the contribution from zero 104 + 1 completes
its first period after an interval of size 6.358343021 ∗ 109. This is reasonably
close to the first wavelength completion between 5 ∗ 109 and 6 ∗ 109 (between
tick-marks 500 and 600 in figure 23. It is also an overestimate, which is
reasonable considering that the periods of the sinusoids are smaller for later

26

zeros. Maybe a better estimate could be made by considering the periods of
the later zeros and their predicted contribution. Let’s take a closer look at
figure 23.
Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1013) as a function
of the number of evaluations (separated by 106) of Li104(xi)–the x–axis also
represents the amount of sieving (in units of 106) required to calculate this
approximation:
Figure 24:

In figure 24 the first wavelength is completed between 5.0 ∗ 109 and 5.5 ∗ 109

(between tick-marks 50 and 55). If we approximate the location as 5.3 ∗ 109,
then the frequency in the logarithmic domain is about the same as that of
zero number 12341.
Let’s zoom into the first region of high accuracy in figure 24.
Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1013) as a function
of the number of evaluations (separated by 105) of Li104(xi)–the x–axis also
represents the amount of sieving (in units of 105) required to calculate this
approximation:
Figure 25:

27

Let’s look at the absolute error of the Monte-Carlo approximation instead of
the number of bits (i.e. the log base 2 plus 1) needed to store the error.
Below is a plot of the absolute error of the Monte-Carlo approximation of
π(1013) as a function of the number of evaluations (separated by 105) of
Li104(xi)–the x–axis also represents the amount of sieving (in units of 105)
required to calculate this approximation:
Figure 26:

This behavior may be a fluke from the fact that Li104(x) has a below average

28

error at 1013. The error of Li104(1013) is only 189 (8.56 bits) significantly
less than errors of 2002, 1196, and 1620 for Li104(0.9∗1013), Li104(1.1∗1013),
and Li104(1.2 ∗ 1013), respectively. Perhaps random fluctuations of the value
of Li104(x) cause the Monte–Carlo method’s error to be zero here just by
chance. The region of high accuracy after one wavelength can be seen to be
a crossing of the x-axis rather than a “kissing” in the plot below. Perhaps
this is another hint that the region of high accuracy in figure 25 is a fluke.
Below is a plot of the absolute error of the Monte-Carlo approximation of
π(1013) as a function of the number of evaluations (separated by 106) of
Li104(xi)–the x–axis also represents the amount of sieving (in units of 106)
required to calculate this approximation:
Figure 27:

A region of high accuracy before the first period is not seen for the Monte–
Carlo approximation of π(1014).
Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1014) as a function
of the number of evaluations (separated by 108) of Li104(xi)–the x–axis also
represents the amount of sieving (in units of 108) required to calculate this
approximation:
Figure 28:

29

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1014) as a function
of the number of evaluations (separated by 107) of Li104(xi)–the x–axis also
represents the amount of sieving (in units of 107) required to calculate this
approximation:
Figure 29:

30

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1014) as a function
of the number of evaluations (separated by 105) of Li104(xi)–the x–axis also
represents the amount of sieving (in units of 105) required to calculate this
approximation:
Figure 30:

31

Let’s look more at the Monte–Carlo approximation of π(1011). Let’s look at
the absolute error for figure 14.

Below is a plot of the absolute error of the Monte-Carlo approximation
of π(1011) as a function of the number of evaluations (separated by 106) of
Li104(xi)–the x–axis also represents the amount of sieving (in units of 106)
required to calculate this approximation:
Figure 31:

32

Let’s zoom in on figures 14 and 31.
Below is a plot of the absolute error of the Monte-Carlo approximation of
π(1011) as a function of the number of evaluations (separated by 106) of
Li104(xi)–the x–axis also represents the amount of sieving (in units of 106)
required to calculate this approximation:
Figure 32:

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1011) as a function
of the number of evaluations (separated by 106) of Li104(xi)–the x–axis also
represents the amount of sieving (in units of 106) required to calculate this
approximation:
Figure 33:

33

Let’s see how the last two plots change when the step size is changed from
106 to 105.

Below is a plot of the absolute error of the Monte-Carlo approximation
of π(1011) as a function of the number of evaluations (separated by 105) of
Li104(xi)–the x–axis also represents the amount of sieving (in units of 105)
required to calculate this approximation:
Figure 34:

Below is a plot of the number of bits (i.e. the log base 2 plus 1) needed to
store the error of the Monte-Carlo approximation of π(1011) as a function

34

of the number of evaluations (separated by 105) of Li104(xi)–the x–axis also
represents the amount of sieving (in units of 105) required to calculate this
approximation:
Figure 35:

Notice that the error of the Monte-Carlo approximation of 1011 with a total
sieving interval size of size 5 ∗ 107 (i.e. tick-mark 500 in figures 34/35 and
tick-mark 50 in figures 32/33) is greater for a step size of 105 (figures 34/35)
than for a step size of 106 (figures 32/33). More steps does not always mean
less error.
Also notice that the last four figures show periodic behavior and are con-
sistent with a wavelength somewhat less than that of the sinusoid for zero
104 + 1, 6.358343021 ∗ 1011 (i.e. tick-marks 60/600 in the last four figures).
However this is less apparent than the corresponding periodic behavior in
figure 23. The observed wavelength is also smaller for the last four figures
than for figure 23.

Comparing the Accuracy of the Monte–Carlo Method
and the Explicit Formula

Let’s compare the error of the Monte–Carlo method and the logarithmic in-
tegral based analytic approximation over a range of input values. First let’s
compare the results of changing the size of the sieving interval.
Below is a plot of the absolute error of the Monte-Carlo approximation with

35

104 zeros and 100 sampling points separated by 107 (a total sieving interval
of size 109) (red) and the error of the analytic approximation with 104 terms
(blue).
Figure 36:

The error is significantly less, and closer to the factor of 10 improvement we
would expect if we were sampling a random variable if we increase the size
of the sieving interval to 1010.
Below is a plot of the absolute error of the Monte-Carlo approximation with
104 zeros and 100 sampling points separated by 108 (a total sieving interval
of size 1010) (red) and the error of the analytic approximation with 104 terms
(blue).
Figure 37:

36

We obtain similar results by increasing the number of zeros.
Below is a plot of the absolute error of the Monte-Carlo approximation with
105 zeros and 100 sampling points separated by 107 (a total sieving interval
of size 109) (red) and the error of the analytic approximation with 105 terms
(blue).
Figure 38:

Below is a plot of the absolute error of the Monte-Carlo approximation with
106 zeros and 100 sampling points separated by 107 (a total sieving interval
of size 109) (red) and the error of the analytic approximation with 106 terms

37

(blue).
Figure 39:

These results can be explained by considering the periods of the terms left
out of the explicit formula in the Monte–Carlo method. The value of zero
number 104 + 1 is 9878.65477238, so the period (in the logarithmic domain)
of its sinusoid is 2π

9878.65477238
= 6.360365305 ∗ 10−4. Taking the exponential of

this number, we see that x must change by a factor of 1.000636239 for one
complete period. This corresponds to an absolute change in x of approxi-
mately 6.4 ∗ 108 per period for an x near 1012. For 105, 106, and 109 zeros
this value becomes a change of 8.4 ∗ 107, 1.0 ∗ 107, and 1.7 ∗ 104 respectively.
After a change in x on the order of this size, we might expect the arguments
of the sinusoids for zeros after the n–th to become sufficiently shuffled that
the error of the analytic approximation can be considered a random variable
where each value is not correlated to the previous. The accuracy is not opti-
mal in figure 36 because the sampling points are not sufficiently separated for
the error of the analytic approximation to be considered a random variable.
We can use a smaller sieving interval if we use more zeros.
Below is a plot of the absolute error of the Monte-Carlo approximation with
106 zeros and 100 sampling points separated by 106 (a total sieving interval
of size 108) (red) and the error of the analytic approximation with 106 terms
(blue).
Figure 40:

38

But we still cannot use too small a sieving interval for the number of zeros,
or the error of the analytic approximation at successive sampling points will
be too strongly correlated, and not act like a random variable.
Below is a plot of the absolute error of the Monte-Carlo approximation with
105 zeros and 100 sampling points separated by 106 (a total sieving interval
of size 108) (red) and the error of the analytic approximation with 105 terms
(blue).
Figure 41:

We now have another possible explanation for the periodic nature of the error

39

of the Monte-Carlo method with respect to the size of the sieving interval
seen in the previous section–after a certain interval the arguments of the
sinusoids have been shuffled enough that the error of the analytic approx-
imation is not correlated with the previous error and can be considered a
random variable.

Optimizing the Monte–Carlo Method

We derived:

π(x) ≈ Lin(x) + Avgi[π(x)− π(xi)− Lin(x) + Lin(xi))]

where

Lin(x) = li(x)− log(2)−
∞∑
k=2

π(x1/k) +
∫ ∞
x

dt

t(t2 − 1)log(t)
−

nzeros∑
ρ

li(xρ)

In his source code, Tomás Oliveira e Silva says of the integral term, “this term
is always smaller than 1/(2∗x2 ∗ log(x)), and so can usually be ignored”. We
will take his advice and remove this term from our approximation.
We now have:

π(x) ≈ li(x)− log(2)−
∞∑
k=2

π(x1/k)

k
−

nzeros∑
ρ

li(xρ)

+Avgi[π(x)− π(xi)− (li(x)− log(2)−
∞∑
k=2

π(x1/k)

k
−

nzeros∑
ρ

li(xρ))

+(li(xi)− log(2)−
∞∑
k=2

π(x
1/k
i)

k
−

nzeros∑
ρ

li(xρi))]

= −log(2)−
∞∑
k=2

π(x1/k)

k
+ Avgi[π(x)− π(xi) +

∞∑
k=2

π(x1/k)

k

+(li(xi)−
∞∑
k=2

π(x
1/k
i)

k
−

nzeros∑
ρ

li(xρi))]

= −log(2)−
∞∑
k=2

π(x1/k)

k
+ Avgi[

∞∑
k=1

π(x1/k)− π(x
1/k
i)

k
+ li(xi)−

nzeros∑
ρ

li(xρi)]

= Avgi[li(xi)]−log(2)−
∞∑
k=2

π(x1/k)

k
+Avgi[

∞∑
k=1

π(x1/k)− π(x
1/k
i)

k
]−Avgi[

nzeros∑
ρ

li(xρi)]

40

Avgi[li(xi)] can be approximated very well as 1
b−a

∫ b
a li(x)dx, where [a, b]

is the total sieving interval. This integral can be calculated by integrating
the exponential integral based series for the logarithmic integral.∑∞
k=2

π(x1/k)
k

can be calculated in essentially O(x
1
2) time with sieving, O(x

1
3)

time with the combinatorial method, or O(x
1
4) time with the analytic or

table-based method.

Avgi[
∑∞
k=1

π(x1/k)−π(x
1/k
i)

k
] can be calculated in time essentially equal to O(b−

a +
√
b) with sieving or time essentially equal to O(b − a) with a primality

test. Most likely, we will have b − a >
√
b, producing essentially O(b − a)

time with sieving. For k > 1, it is likely that the sieving interval will be
small enough for a primality test to be the best option for counting primes.
We are left with computing the Avgi[

∑nzeros
ρ li(xρi)] term. Define m to be the

number of Monte–Carlo sample points. We now have:

Avgi[
nzeros∑
ρ

li(xρi)] =
1

m

msamples∑
i

[
nzeros∑
ρ

li(xρi)] =
1

m

n zeros∑
ρ

[
msamples∑

i

li(xρi)]

≈ 1

m

n zeros∑
ρ

[
msamples∑

i

2

√
xi

log xi

0.5 cos (t log xi) + t sin (t log xi)

0.25 + t2

∞∑
k=0

k!

(log x0.5+It
i)k

The previous step approximates the logarithmic integral with the asymptotic
series. The next step is to change

n zeros∑
ρ

m samples∑
i

to
(n zeros)∑

ρ

(r groups of i’s)∑
j

(m/r samples)∑
i

=

(r groups of i’s)∑
j

(n zeros)∑
ρ

(m/r samples)∑
i

where in each group j of i’s we make the approximation of considering

2

√
xi

log xi
[
∞∑
k=0

k!

(log x0.5+It
i)k

]

to be constant. Now we have:

(m/r samples)∑
i

2

√
xj

log xj

0.5 cos (t log xi) + t sin (t log xi)

0.25 + t2

∞∑
k=0

k!

(log x0.5+It
j)k

41

= 2

√
xj

log xj
[
∞∑
k=0

k!

(log x0.5+It
j)k

]

(m/r samples)∑
i

0.5 cos (t log xi) + t sin (t log xi)

0.25 + t2

We choose our xi’s so that they are in a geometric progression and apply the
formulas:

sinϕ+sin (ϕ+ α)+sin (ϕ+ 2α)+· · ·+sin (ϕ+ sα) =
sin

(
(s+1)α

2

)
· sin (ϕ+ sα

2
)

sin α
2

and

cosϕ+cos (ϕ+ α)+cos (ϕ+ 2α)+· · ·+cos (ϕ+ sα) =
sin

(
(s+1)α

2

)
· cos (ϕ+ sα

2
)

sin α
2

where s = m/r. The number of calls to sine and cosine will be no more than
6 ∗ n ∗ r.

The Complexity of the Monte–Carlo Method

For one period of one of the sinusoids to occur, x must change by a factor
of e

2π
t . Because 2π

t
is small, considering the Taylor series for the exponential

function provides e
2π
t ≈ 1+ 2π

t
. This means that the size of the interval needed

for the arguments of the sines in the error of the analytic approximation of x
(i.e. those sinusoids not included in the analytic approximation) to become
shuffled is about 2πx

t
, where t is the height of the first zero not included in the

analytic approximation. The Riemann-von Mangoldt formula says that n is
essentially O(t), so the size of one of the sieving steps, (i.e. the separation
between Monte–Carlo sampling points, at one point anyway) is essentially
O(x

n
). We know t is o(n), so the separation between Monte–Carlo sampling

points is Ω(x
n
). Let’s choose an m small enough that 2

√
xi

log xi
[
∑∞
k=0

k!

(log x0.5+It
i)k

]

changes by less than about 1 and r can be one. We are considering essentially
2
√
xi, which has a derivative of 1√

xi
. The function 2

√
x is concave down, and

will remain constant for an interval of size about
√
xi. Hence we choose m

and n such that x∗m
n

is essentially O(
√
x). Note that we are using the ap-

proximation (e
2π
t)m ≈ 1 + 2π∗m

t
which is valid for t >> m.

Let’s assume that increasing the number of zeros by a factor of 10 decreases
the error by a factor of about 2.3 and that increasing the number of sample
points by a factor of 10 decreases the error by a factor of about 3.16. Let’s
let the number of zeros grow like essentially O(x0.875). Then the separa-
tion between Monte–Carlo sampling points is essentially O(x0.125). We can
use essentially O(x0.375) sampling points without exceeding the

√
x barrier.

42

0.875 ∗ log10(2.3) + .375 ∗ log10(3.16) > 0.5, so we have decreased the error

from essentially
√
x to about 0.5. We used essentially O(x

7
8) terms from the

nontrivial zeros and O(x1/2) time sieving to calculate an approximation to
π(x) accurate to within about 0.5.
Under the more conservative assumption that increasing either the number
of zeros or the number of sample points by a factor of 10 decreases the error
by a factor of about 2.3, we can let the number of zeros grow like essentially
O(x0.942) and the number of sampling points grow like essentially O(x0.442)
for similar results.

Conclusions

The Monte–Carlo method highlights the relationship between order and ran-
domness in the primes. We have given a heuristic argument that the Monte–
Carlo method reduces the time complexity of the explicit formula from es-
sentially O(x1.38) to essentially O(x

7
8), which is o(x). Although much faster

methods of computing π(x) exist, the Monte–Carlo method is interesting in
that it uses direct evaluations of the explicit formula and heuristically uses
o(x) time. The Monte–Carlo method is also interesting in its unique way of
understanding the prime counting function. The Achilles’ heel of the Monte–
Carlo method is the validity of the assumptions on which it is based: that
the mean error approaches 0, and that the error can be considered to be a
random variable. If the interval sieved is too large and x varies too greatly,
the mean error may not approach 0 (see figures 15 and 16, e.g.). For an
interval of size essentially

√
x, it seems reasonable that the variation of x will

have negligible effect on the mean error. If the sampling spacing is not large
enough, the arguments of the sinusoids will not be shuffled enough and the
errors will be too strongly correlated. We hope that this paper will inspire
others to explore new ways of understanding the prime counting function
and that it will lead to more use of tables of the nontrivial zeros. Hopefully
someone will continue this work by doing a more thorough analysis of the
Monte–Carlo method.

Appendix A–Calculating the Periodic Terms

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

//This is some rough code to calculate li(x^(0.5+it))+li(x^(0.5-it))

//Authors:

//Tomas Oliveira e Silva: Original Version January 2010

43

//Kevin Stueve: Rewrote and optimized for speed in C March 2010

//Leif Leonhardy: Moved zeros to separate file March 2010

const double zeros[]={

#include "zeros6.c" // the first 1000000

};

double li(double x, double t);

int main(int argc,char **argv){

//printf("zero%f",zeros[50000]);

double x=atof(argv[1]);

long int num = atol(argv[2]);

//printf("%f\n",x);

//printf("%ld\n",num);

double result=0;

long int i=0;

for (i=0;i<num;i++){

//printf("%f\n",zeros[i]);

result+=li(x,zeros[i]);

}

printf("%f",result);

return 0;

}

double li(double x, double t) {

double logx = log(x);

double u_real = 0.5 * logx;

double u_imag = t * logx;

double u_norm = u_real * u_real + u_imag * u_imag;

double so_real_num = 2 * sqrt(x) * cos(t * logx);

double so_imag_num = 2 * sqrt(x) * sin(t * logx);

double so_real = (so_real_num * u_real + so_imag_num * u_imag) / u_norm;

double so_imag = (so_imag_num * u_real - so_real_num * u_imag) / u_norm;

double tol=pow(10,-9)/(sqrt(so_real * so_real + so_imag * so_imag));

double tol_squared=tol*tol;

double s1_real = 1;

double s1_imag = 0;

44

double s2_real = 1;

double s2_imag = 0;

double s2_real_temp;

double s2_imag_temp;

int k = 1;

double norm,lastnorm;

for(;;) {

if (k>100) {

printf("error%f\n",t);

return;

//break;

}

s2_real_temp = k * (s2_real * u_real + s2_imag * u_imag) / u_norm;

s2_imag_temp = k * (s2_imag * u_real - s2_real * u_imag) / u_norm;

s2_real = s2_real_temp;

s2_imag = s2_imag_temp;

s1_real += s2_real;

s1_imag += s2_imag;

norm=s2_real * s2_real + s2_imag * s2_imag;

if (norm < tol_squared) {

break;

}

k++;

}

return so_real * s1_real - so_imag * s1_imag;

}

Apendix B–Fredrik Johansson’s Comparison of the Ex-
act and Asymptotic Li Series

from math import exp, log

45

gamma = 0.57721566490153287

eps = 1e-17

asymp_cutoff = 50

li2 = 1.04516378011749278

def ei(x, _xexp=None):

if abs(x) < asymp_cutoff:

s = gamma + log(abs(x))

t = 1.0

k = 1

while abs(t) > eps:

t *= x

t /= k

s += t / k

k += 1

else:

s = t = 1.0

k = 1

r = 1. / x

while abs(t) > eps:

t *= k

t *= r

s += t

k += 1

if _xexp is None:

_xexp = exp(x)

s = s * r * _xexp

return s

def li(x):

return ei(log(x), x)

"Offset" logarithmic integral

def Li2(x):

return ei(log(x), x) - li2

def li_approx(y):

x = log(y)

s = t = y

r = 1. / x

k = 1

46

tprev = t

while t <= tprev:

tprev = t

t *= k

t *= r

s += t

k += 1

return s*r

li2 = 1.04516378011749278

def Li_approx(y):

return li_approx(y)-li2

for n in range(1,12):

y = 10**n

print "%14.3f %14.3f" % (li_approx(y)-li(2), li(y)-li(2))

Appendix C–Linear Regression Code

#######################

#Linear Regression Code

#######################

import numpy

Polynomial Regression

#From

http://stackoverflow.com/questions/893657/

how-do-i-calculate-r-squared-using-python-and-numpy

def polyfit(data, degree):

results = {}

x = list(point[0] for point in data)

y = list(point[1] for point in data)

coeffs = numpy.polyfit(x, y, degree)

Polynomial Coefficients

results[’polynomial’] = coeffs.tolist()

r-squared

p = numpy.poly1d(coeffs)

fit values, and mean

yhat = [p(z) for z in x]

ybar = sum(y)/len(y)

ssreg = sum([(yihat - ybar)**2 for yihat in yhat])

47

sstot = sum([(yi - ybar)**2 for yi in y])

results[’determination’] = ssreg / sstot

return results

Bibliography

Terence Tao, UCLA Deans Seminar, University of Sydney, 8 February 2008

http://www.ieeta.pt/~tos/primes.html#e

The Prime Counting Function and Related Subjects

Patrick Demichel (2005)

http://web.archive.org/web/20060908033007/http://demichel.net/patrick/

li_crossover_pi.pdf

Meta Math! The Quest for Omega

Gregory Chaitin 2005

Vintage

http://wstein.org/rh/rh/code/code.sage

http://www.sagemath.org/doc/reference/sage

/databases/odlyzko.html

http://en.wikipedia.org/wiki/List_of_trigonometric_identities

#Other_sums_of_trigonometric_functions

http://mathworld.wolfram.com/RiemannPrimeCountingFunction.html

http://en.wikipedia.org/wiki/Explicit_formula#Riemann.27s_explicit_for

mula

http://primes.utm.edu/notes/faq/one.html

Don Zagier The First 50 Million Prime Numbers 1975

http://en.wikipedia.org/wiki/Logarithmic_integral_function

http://trac.sagemath.org/sage_trac/ticket/8135

48

http://mathworld.wolfram.com/Riemann-vonMangoldtFormula.html

http://listserv.nodak.edu/cgi-bin/wa.exe

?A2=ind0811&L=NMBRTHRY&P=R401&I=-3

The Nth Prime Page, A prime page by Andrew Booker

Copyright 1999-2009 Chris Caldwell

http://primes.utm.edu/nthprime/index.php

The Fluctuations of the Prime-Counting Function

Compiled by Andrey V. Kulsha

Data from: Xavier Gourdon, Thomas R. Nicely,

Anotoly F. Selvich, Tomas Oliveira e Silva 2010-03-03

http://www.primefan.ru/stuff/primes/table.html

Computing pi(x): An Analytic Method, Lagarias, Odlyzko

1987, http://www.dtc.umn.edu/~odlyzko/doc/arch/analytic.pi.of.x.pdf

Computing pi(x): The Meissel-Lehmer Method

Jeffrey Lagarias, Victor Miller, Andrew Odlyzko 1985

http://www.dtc.umn.edu/~odlyzko/doc/arch/meissel.lehmer.pdf

Computing pi(x): The Meissel, Lehmer, Lagarias, Miller, Odlyzko Method

Deleglise, Rivat 1996

http://cr.yp.to/bib/1996/deleglise.pdf

Computation of pi(x) : Improvements to the Meissel, Lehmer, Lagarias,

Miller, Odlyzko, Deleglise and Rivat method

Xavier Gourdon 2001

http://numbers.computation.free.fr/Constants/Primes/Pix/piNalgorithm.ps

Computing pi(x): The combinatorial method

Tomas Oliveira e Silva 2006

http://www.ieeta.pt/~tos/bib/5.4.pdf

What is Riemann’s Hypothesis? (Draft)

Barry Mazur and William Stein 2009

http://wstein.org/rh/

Mathematical Mysteries, the Beauty and Magic of Numbers

Calvin C. Clawson 1996

49

Perseus Books

http://en.wikipedia.org/wiki/Standard_error_%28statistics%29

http://nt.sagenb.org/home/pub/2/

http://en.wikipedia.org/wiki/M%C3%B6bius_mu_function

http://en.wikipedia.org/wiki/Riemann_hypothesis

http://en.wikipedia.org/wiki/Monte_Carlo_method

50

