

Weak Curves In Elliptic Curve Cryptography

Peter Novotney

March 2010

Abstract

 Certain choices of elliptic curves and/or underlying fields reduce the security of an elliptical curve

cryptosystem by reducing the difficulty of the ECDLP for that curve. In this paper I describe some properties of an

elliptical curve that reduce the security in this manner, as well as a discussion of the attacks that cause these

weaknesses. Specifically the Pohlig-Hellman attack and Smart's attack against curves with a Trace of Frobenius of 1 .

Finally one of the recommended NIST curves is analyzed to see how resistant is would be to these attacks.

1 Elliptic Curves

First a brief refresh on the key points of elliptic curves, for more info see [Han04] [Sil86] [Ste08] . In its

more general form, an Elliptic Curve is a curve defined by an equation of the form

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥 + 𝑎6

over some field F. In this case 𝐸 𝐹 defines a set of points that satisfy the elliptic equation in the field F.

In notation 𝐸 𝐹 = { 𝑥, 𝑦 ∈ 𝐹2 ∶ 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥 + 𝑎6} ∪ 𝒪 .

However, if the characteristic of the field is > 3 [Han04] then we can simplify the curve to

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

and the set 𝐸 𝐹 becomes 𝐸 𝐹 = { 𝑥, 𝑦 ∈ 𝐹2 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏} ∪ {𝒪} .

1.1 Group Operation

We can create a group operation + over the set 𝐸 𝐹 defined as (Taken from [Ste08])

 Given 𝑃1 , 𝑃2 ∈ 𝐸 𝐹𝑝 we compute 𝑅 = 𝑃1 + 𝑃2 as:

 1. If 𝑃1 = 𝒪 then 𝑅 = 𝑃2 if 𝑃2 = 𝒪 then 𝑅 = 𝑃1and terminate. Otherwise 𝑥𝑖 , 𝑦𝑖 = 𝑃𝑖

 2. If 𝑥1 = 𝑥2 and 𝑦1 = −𝑦2then 𝑅 = 𝒪 and terminate.

 3. Set

𝜆 =

3𝑥1

2 + 𝑎

2𝑦1

, 𝑖𝑓𝑃1 = 𝑃2

𝑦1 − 𝑦2

𝑥1 − 𝑥2

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 4. Then𝑅 = (𝜆2 − 𝑥1 − 𝑥2 , −𝜆𝑥3 − 𝑣), where 𝑣 = 𝑦1 − 𝜆𝑥1𝑎𝑛𝑑 𝑥3 = 𝜆2 − 𝑥1 − 𝑥2

The order or this group is represented by #𝐸 𝐹𝑝 and it is an important property of the curve used many

times in the attacks described in this paper.

1.2 Choice of Field

When creating a cryptosystem based on elliptic curves one must choose which field the curve will be

taken over. The popular choices [NIST] are curves over prime fields

𝐸 𝐹𝑝 = { 𝑥, 𝑦 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝐹𝑝} ∪ {𝒪}

or curves over binary fields

𝐸 𝐹2𝑚 = { 𝑥, 𝑦 ∶ 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝐹2𝑚 } ∪ {𝒪}

In this paper we will exclusively consider attack against curves over prime fields, but multiple attacks

against curves over binary fields exist as well.

1.3 The Elliptic Curve Discrete Logarithm Problem

The security of Elliptic Curve Cryptosystems relies on the difficulty of the Elliptic Curve Discrete Logarithm

Problem (ECDLP). The ECDLP is as follows:

 For two points in an elliptic curve 𝑄, 𝑃 ∈ 𝐸(𝐹𝑝) such that 𝑄 = 𝑘𝑃, compute 𝑘.

In some sources this is written as 𝑘 = log𝑃 𝑄. The fastest algorithm to compute 𝑘 currently is a

combination of the Pohlig-Hellman attack described below, and the Pollard Rho Algorithm, which I do not

describe here, but a detailed description can be found in [Han04].

2 Attacks on Weak Curves

There are multiple classes of elliptic curves or underlying fields that reduce the work needed to solve the

ECDLP for a curve in that class. Here I cover two such possibilities of weak curves. One where 𝐸 𝐹𝑝 does

not have sufficiently large prime subgroups and is subject to the Pohlig-Hellman attack, and another

where #𝐸 𝐹𝑝 = 𝑝 allowing an attack found by Smart in [Sma97].

2.1 Pohlig-Hellman Attack

The Pohlig-Hellman attack was first described in [Poh77], however here I will be using a description that

follows from [Han04], as it seems simpler to understand. The Pohlig-Hellman attack simplifies the

problem of solving the ECDLP in 𝐸 𝐹𝑝 to solving the ECDLP in the prime subgroups of 𝑃 , the subgroup

generate by P.

First let 𝑛 be the order of the subgroup generated by P, so 𝑛 = # 𝑃 . Now take the prime factorization of

𝑛 = p1
e1 ∗ p2

e2 ∗ …∗ pr
er . We want to find 𝑘𝑖 ≡ 𝑘 𝑚𝑜𝑑 𝑝𝑖

𝑒𝑖 for each prime in the factorization and we

do this by representing 𝑘𝑖as a base 𝑝𝑖number such that 𝑘𝑖 = 𝑧0 + 𝑧1𝑝𝑖 + 𝑧2𝑝𝑖
2 + … + 𝑧𝑒−1𝑝𝑖

𝑒−1 and then

compute each 𝑧𝑗 in sequence.

To do this let 𝑃0 =
𝑛

𝑝𝑖
𝑃 and 𝑄0 =

𝑛

𝑝𝑖
𝑄. 𝑃0has order 𝑝𝑖 since 𝑝𝑖𝑃0 =

𝑝𝑖𝑛

𝑝𝑖
𝑃 = 𝑛𝑃. By massaging the

equation a bit we get

𝑄0 =
𝑛

𝑝𝑖

𝑄 =
𝑛

𝑝𝑖

 𝑙𝑃 = 𝑙
𝑛

𝑝𝑖

𝑃 = 𝑙𝑃0

and since the order of 𝑃0 is 𝑝𝑖 and 𝑧0 is the first digit of a base 𝑝𝑖 number we have 𝑙𝑃0 = 𝑧0𝑃0 = 𝑄0.

Thus finding 𝑧0 requires computing the ECDLP in 𝑃0 . By expanding this same argument (see [Han04]) we

are able to get each 𝑧𝑗 by solving 𝑄𝑗 = 𝑧𝑗𝑃0 in 𝑃0 where

𝑄𝑗 =
𝑛

𝑝𝑖
𝑗 +1

 𝑄 − 𝑧0𝑃 − 𝑧1𝑝𝑖𝑃 − 𝑧2𝑝𝑖
2𝑃 − ⋯− 𝑧𝑗−1𝑝𝑖

𝑗−1
𝑃

This leaves us with a system of equations

𝑘 ≡ 𝑘1 𝑚𝑜𝑑 𝑝1
𝑒1

𝑘 ≡ 𝑘2 𝑚𝑜𝑑 𝑝2
𝑒2

…

𝑘 ≡ 𝑘𝑟 𝑚𝑜𝑑 𝑝𝑟
𝑟

We know we can solve this system via the Chinese Remainder Theorem since all of the prime factors are

certainly co-prime to each other, and thus we retrieve 𝑘, the solution to the discrete logarithm problem.

The following SAGE code [sage] computes the discrete logarithm of two points P,Q as described above

(The discrete_log function in SAGE already uses Pohlig-Hellman, but this code is for illustrative purposes).

By choosing two large Elliptic groups, one with an order that has large prime factors, and another which

doesn't, we can compare the performance of Pohlig-Hellman under these situations.

sage: def PolligHellman(P,Q):
sage: zList = list()
sage: conjList = list()
sage: rootList = list()
sage: n = P.order()
sage: factorList = n.factor()
sage: for facTuple in factorList:
sage: P0 = (ZZ(n/facTuple[0]))*P
sage: conjList.append(0)
sage: rootList.append(facTuple[0]^facTuple[1])
sage: for i in range(facTuple[1]):
sage: Qpart = Q
sage: for j in range(1,i+1):
sage: Qpart = Qpart - (zList[j-1]*(facTuple[0]^(j-1))*P)
sage: Qi = (ZZ(n/(facTuple[0]^(i+1))))*Qpart
sage: zList.insert(i,discrete_log(Qi,P0,operation='+'))
sage: conjList[-1] = conjList[-1] + zList[i]*(facTuple[0]^i)
sage: return crt(conjList,rootList)

sage: E = EllipticCurve(GF(7919), [234,75])
sage: P = E.gens()[0]
sage: Q = 2341*P
sage: PolligHellman(P,Q)

2341

sage: #Group Order Compare SLOW
sage: m = 21345332
sage: p = 4516284508517
sage: E = EllipticCurve(GF(p), [7,1])
sage: Q = E.gens()[0]
sage: mQ = m*Q;
sage: print E.order().factor()
sage: time mRec = PolligHellman(Q,mQ)
sage: print mRec
11 * 13 * 31582419389
Time: CPU 49.14 s, Wall: 49.14 s
21345332

sage: #Group Order Compare FAST
sage: m = 21345332
sage: p = 4516284508517
sage: E = EllipticCurve(GF(p), [7,1])
sage: Q = E.gens()[0]
sage: mQ = m*Q;
sage: print E.order().factor()
sage: time mRec = PolligHellman(Q,mQ)
sage: print mRec
2^3 * 19 * 23 * 67 * 2089 * 18913
Time: CPU 0.16 s, Wall: 0.16 s
21345332

2.2 Smart's Attack where #E(Fp) = p

Smart in [Sma97] describes a linear time method of computing the ECDLP in curves over a field 𝐹𝑝 such

that #𝐸 𝐹𝑝 = 𝑝, or in other words such that the trace of Frobenius is one, 𝑡 = 𝑝 + 1 + #𝐸(𝐹𝑝) = 1.

However describing this attack first requires some additional background.

2.2.1 Lifts and Hensel's Lemma

Suppose we have a polynomial 𝑓 𝑋 ∈ ℤ[𝑋] and we know a 𝑥 such that 𝑓 𝑥 ≡ 0 (𝑚𝑜𝑑 𝑝) and we want

to find an 𝑥′ such that 𝑓 𝑥′ ≡ 0 (𝑚𝑜𝑑 𝑝2) and 𝑥 ′ ≡ 𝑥 (𝑚𝑜𝑑 𝑝). We can achieve this by using what's

known as Hensel's Lemma, which given a root of 𝑓modulo 𝑝𝑠computes a root of 𝑓modulo 𝑝𝑠+1. Hensel's

Lemma is as follows (see [Bak10][Theorem 1.33] for a proof):

 For 𝑓 𝑋 ∈ ℤ 𝑋 let 𝑥 be a root of 𝑓modulo 𝑝𝑠and let 𝑓 ′ 𝑥 be invertible modulo 𝑝 and let

 that inverse be 𝑢 such that 𝑢𝑓 ′ 𝑥 ≡ 1 (𝑚𝑜𝑑 𝑝). Let 𝑥 ′be

𝑥 ′ = 𝑥 − 𝑢𝑓 ′(𝑥)

 then 𝑥 ′ ≡ 𝑥 (𝑚𝑜𝑑 𝑝𝑠)and 𝑓 𝑥′ ≡ 0 (𝑚𝑜𝑑 𝑝𝑠+1).

Here 𝑥 ′ is referred to as a lift of 𝑥modulo 𝑝𝑠+1. We will be using this theorem to lift element from 𝐹𝑝 to

the field of p-adic numbers 𝑄𝑝 described next.

2.2.2 P-adic Numbers

A p-adic number can be represented by an infinite series with the form

𝑐−𝑛𝑝−𝑛 + … + 𝑐0 + 𝑐1𝑝 + ⋯ + 𝑐𝑚𝑝𝑚 + … [Lep04]

The field of p-adic numbers are represented by 𝑄𝑝 , and the number that have no negative powers of 𝑝 (i.e

𝑐𝑖 = 0 𝑓𝑜𝑟 𝑖 < 0) are known as the p-adic integers and are represented as ℤ𝑝 . We can define elliptic

curves over the field of p-adic numbers and we use the lifts described above to lift our points of interest

into the elliptic curve over 𝑄𝑝 . This allows us to reduce the ECDLP to the group 𝑝ℤ𝑝where it is easily

computable as we'll see in 2.2.4.

2.2.3 Curve Reduction Modulo P

Another important component of this attack is the reduction of an elliptic curve modulo p. This basically

amounts to taking the coefficients and points of a curve and taking its congruency module some prime p.

Let 𝐸(𝑄𝑝) be an elliptic curve over the p-adic field, we create a curve over 𝐹𝑝 by reducing the coefficients

of the curve 𝐸 𝑄𝑝 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 modulo p, such that 𝐸 𝐹𝑝 ∶ 𝑦2 = 𝑥3 + 𝑎 𝑥 + 𝑏 . To be

complete we should check ensure that this new curve isn't singular by checking that the discriminate is

non-zero, but for our purposes here I'm just going assume it is non-singular.

Now we follow a similar process to map a point 𝑃 = (𝑥, 𝑦) ∈ 𝐸 𝑄𝑝 to another point 𝑃 = (𝑥 , 𝑦) ∈ 𝐸 𝐹𝑝

where 𝑥 = 𝑥 (𝑚𝑜𝑑 𝑝) and 𝑦 = 𝑦 (𝑚𝑜𝑑 𝑝).

This mapping is a group homomorphism from 𝐸 𝑄𝑝 to 𝐸 𝐹𝑝 [Sil86], and let 𝐸1 𝑄𝑝 be defined as in

[Sil86] as the kernel of this homomorphism, so 𝐸1 𝑄𝑝 contains all the points in 𝐸 𝑄𝑝 that reduce to the

point at infinity in 𝐸 𝐹𝑝 . Chapter VII in [Sil86] contains further discussion of the Reduction Modulo P.

2.2.3 P-adic Elliptic Logarithm

The P-adic Elliptic Logarithm 𝜓𝑝 provides a isomorphism from 𝐸1 𝑄𝑝 to 𝑝ℤ𝑝 . For a full discussion of the

derivation of this isomorphism see Chapters IV and VII in [Sil86]. The derivation is rather long, so for our

purposes I will simply show how to compute 𝜓𝑝 by the method described in [Lep04].

For a point 𝑆 ∈ 𝐸1 𝑄𝑝 we compute

𝜓𝑝 𝑆 = −
𝑥(𝑆)

𝑦(𝑆)

By reducing the problem of finding 𝑘 where 𝑄 = 𝑘𝑃to 𝑝ℤ𝑝we can directly compute 𝑘 as we see in the

description of the attack itself.

2.2.4 The Attack

We will now go over the attack as presented in [Sma97] using the ideas developed above. At the end of

this section there is SAGE code [sage] that runs this attack.

First recall that we are trying to find 𝑘 such that 𝑄 = 𝑘𝑃 where 𝑄, 𝑃 ∈ 𝐸(𝐹𝑝) and #𝐸 𝐹𝑝 = 𝑝. Our first

step is to lift these points to 𝐸 𝑄𝑝 to get two new points 𝑃′ , 𝑄′ . We do this by setting the x component

of 𝑃′ equal to the x component of 𝑃. We then use Hensel's Lemma described above to compute y in 𝑄𝑝

by using the curve equation with x fixed. We know that 𝑄 = 𝑘𝑃 in 𝐸(𝐹𝑝) so thus the value 𝑄′ − 𝑘𝑃′ in

𝐸 𝑄𝑝 goes to the point at infinity by the Reduction Modulo P map and is thus in the kernel of that

homomorphism.

𝑄′ − 𝑘𝑃′ ∈ 𝐸1 𝑄𝑝

Now we rely on the fact that the order of 𝐸(𝐹𝑝) is 𝑝, which ensures that multiplying any element in

𝐸 𝑄𝑝 by 𝑝 maps the element into 𝐸1 𝑄𝑝 since for any point 𝑅 ∈ 𝐸 𝑄𝑝 the point 𝑝𝑅 will map via

Reduction Modulo P to 𝒪 in 𝐸(𝐹𝑝). So multiply through by 𝑝 and we get

𝑝𝑄′ − 𝑘(𝑝𝑃′) ∈ 𝐸2 𝑄𝑝

with 𝑝𝑄′ ∈ 𝐸1 𝑄𝑝 and 𝑝𝑃′ ∈ 𝐸1 𝑄𝑝 . We can now apply the P-Adic Elliptic Log to get

𝜓𝑝 𝑝𝑄′ − 𝑘𝜓𝑝 𝑝𝑃′ ∈ 𝑝ℤ𝑝

and thus

𝑘 =
𝜓𝑝 𝑝𝑄′

𝜓𝑝 𝑝𝑃′

and then reduce 𝑘 modulo 𝑝 to return to 𝐹𝑝 solving the ECDLP.

The SAGE code for the Hensel Lift on a point P is:

and the code for the complete attack is:

sage: def HenselLift(P,p,prec):
sage: E = P.curve()
sage: Eq = E.change_ring(QQ)
sage: Ep = Eq.change_ring(Qp(p,prec))
sage: x_P,y_P = P.xy()
sage: x_lift = ZZ(x_P)
sage: y_lift = ZZ(y_P)
sage: x, y, a1, a2, a3, a4, a6 = var('x,y,a1,a2,a3,a4,a6')
sage: f(a1,a2,a3,a4,a6,x,y) = y^2 + a1*x*y + a3*y - x^3 - a2*x^2 - a4*x - a6
sage: g(y) = f(ZZ(Eq.a1()),ZZ(Eq.a2()),ZZ(Eq.a3()),ZZ(Eq.a4()),ZZ(Eq.a6()),ZZ(x_P),y)
sage: gDiff = g.diff()
sage: for i in range(1,prec):
sage: uInv = ZZ(gDiff(y=y_lift))
sage: u = uInv.inverse_mod(p^i)
sage: y_lift = y_lift - u*g(y_lift)
sage: y_lift = ZZ(Mod(y_lift,p^(i+1)))
sage: y_lift = y_lift+O(p^prec)
sage: return Ep([x_lift,y_lift])

sage: def SmartAttack(P,Q,p,prec):
sage: E = P.curve()
sage: Eqq = E.change_ring(QQ)
sage: Eqp = Eqq.change_ring(Qp(p,prec))
sage:
sage: P_Qp = HenselLift(P,p,prec)
sage: Q_Qp = HenselLift(Q,p,prec)
sage:
sage: p_times_P = p*P_Qp
sage: p_times_Q=p*Q_Qp
sage:
sage: x_P,y_P = p_times_P.xy()
sage: x_Q,y_Q = p_times_Q.xy()
sage:
sage: phi_P = -(x_P/y_P)
sage: phi_Q = -(x_Q/y_Q)

sage: k = phi_Q/phi_P
sage: k = Mod(k,p)
sage: return k
sage:
sage: E = EllipticCurve(GF(43), [0,-4,0,-128,-432])
sage: print E.order()
sage: P=E([0,16])
sage: Q=39*P
sage: SmartAttack(P,Q,43,8)

43 (Order of E)
39 (k)

3 NIST Recommended Curve

The US government via the National Institute of Standards and Technology recommends elliptic curves for

use in its own cryptographic systems [NIST]. Let's check if one of those curves is resistant to the attack

described above.

The curves over prime fields in the recommendations are all of the form 𝑦2 = 𝑥3 − 3𝑥 + 𝑏 where b is

some large integer. Taking the defined curve for the 192-bit case we have

𝑝 = 6277101735386680763835789423207666416083908700390324961279

𝑏 = 2455155546008943817740293915197451784769108058161191238065

In SAGE we have:

The order of the group does not match 𝑝 so we cannot apply Smart's Attack, and the order is itself prime

thus preventing the Pohlig-Hellman attack from being efficient. This shouldn't be too surprising that NIST

chose a curve and field preventing some of the most well know attacks poorly chosen curves.

4 Conclusion

In this paper we have covered two attacks against improperly chosen elliptic curves and their underlying

fields, but this by no means an extensive list. There are multiple other attacks against curve over prime

fields as well as attacks against curves over binary fields of the form 𝐸 𝐹2𝑚 , which we didn't touch on at

in this paper. Suffice to say, anyone implementing an elliptic curve cryptosystem needs to be aware of

these potentially harmful curve choices and correctly mitigate them in their system.

sage: E = EllipticCurve(GF(6277101735386680763835789423207666416083908700390324961279), \

[-3,2455155546008943817740293915197451784769108058161191238065])
sage: E.order()
6277101735386680763835789423176059013767194773182842284081

sage: E.order().factor()
6277101735386680763835789423176059013767194773182842284081

5 References

[Bak10] A. Baker, An Introduction to p-adic Numbers and p-adic Analysis, October 2010.
 http://www.maths.gla.ac.uk/~ajb/dvi-ps/padicnotes.pdf

[Blu] Antonia W. Bluher, A Leisurely Introduction to Formal Groups and Elliptic Curves,
 http://www.math.uiuc.edu/Algebraic-Number-Theory/0076/FmGp.ps.gz

[Han04] D. Hankerson, S. Vanstone, A. Menezes, Guide to elliptic curve cryptography, Springer-Verlag,

 2004.

[Lep04] F. Leprevost, J. Monnerat, S. Varrette, S. Vaudenay, Generating anomalous elliptic curves, 2004.
 http://lasecwww.epfl.ch/pub/lasec/doc/LMVV05.pdf

[Poh77] S. Pohlig, M. Hellman, An improved algorithm for computing logarithms over GF(p) and its

 cryptographic significance, 1977.

 http://www.ee.stanford.edu/~hellman/publications/28.pdf

[NIST] National Institute of Standards and Technology, Recommended Elliptic Curves for Federal

 Government Use, July 1999.

 http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.doc

[Sma97] N. P. Smart, The discrete logarithm problem on elliptic curves of trace one, October 1997.
 http://www.hpl.hp.com/techreports/97/HPL-97-128.html

[Sil86] J. H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, 1986.

[Sage] William A. Stein et al., Sage Mathematics Software (Version 4.3).The Sage Development Team,

 2009. http://www.sagemath.org.

[Ste08] William A. Stein, Elementry Number Theory: Primes, Congruences, and Secrets. Springer-Verlag,

 2008.

