
Chapter 9

Computing Newforms

In this chapter we pull together results and algorithms from Chapter 3, 4, 7, and
8 and explain how to compute cusp forms (especially eigenforms) using modular
symbols.

We first discuss in Section 9.1 how to decompose Mk(Γ1(N)) as a direct
sum of subspaces corresponding to Dirichlet characters. Next in Section 9.2
we state the main theorems of Atkin-Lehner-Li theory, which gives a beautiful
decomposition of Sk(Γ1(N)) into subspaces on which the Hecke operators acts
diagonalizable with “multiplicity one”. In Section 9.3 we revisit the connection
between cusp forms and modular symbols, then describe two algorithms for
computing modular forms. One algorithm finds a basis of q-expansions, and the
other computes eigenvalues of newforms.

9.1 Decomposing Modular Forms Using Dirichlet

Characters

The group (Z/NZ)∗ acts onMk(Γ1(N)) through the diamond-bracket operators 〈d〉,
as follows. For [d] ∈ (Z/NZ)∗, define

f |〈d〉 = f |[
(

a b
c d

)

]k,

where
(

a b
c d

)

∈ SL2(Z) is congruent to
(

d−1 0
0 d

)

(mod N). Note that the map

SL2(Z) → SL2(Z/NZ) is surjective (see Exercise 5.2), so the matrix
(

a b
c d

)

exists.
To prove that 〈d〉 preserves Mk(Γ1(N)), we prove the more general fact that
Γ1(N) is normal in

Γ0(N) =

{(

a b
c d

)

∈ SL2(Z) :

(

a b
c d

)

≡
(

∗ ∗
0 ∗

)

(mod N)

}

.

This will imply that 〈d〉 preserves Mk(Γ1(N)) since
(

a b
c d′

)

∈ Γ0(N).

Lemma 9.1.1. The group Γ1(N) is a normal subgroup of Γ0(N), and the
quotient Γ0(N)/Γ1(N) is isomorphic to (Z/NZ)∗.
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Proof. See Exercise 9.1.

The diamond bracket action is simply the action of Γ0(N)/Γ1(N) ∼= (Z/NZ)∗

on Mk(Γ1(N)). Since Mk(Γ1(N)) is a finite dimensional vector space over C,
the 〈d〉 action breaks Mk(Γ1(N)) up as a direct sum of factors corresponding to
the Dirichlet characters D(N,C) of modulus N .

Proposition 9.1.2. We have

Mk(Γ1(N)) =
⊕

ε∈D(N,C)

Mk(N, ε),

where

Mk(N, ε) =
{

f ∈ Mk(Γ1(N)) : f |〈d〉 = ε(d)f all d ∈ (Z/NZ)∗
}

.

Proof. The linear transformations 〈d〉, for the d ∈ (Z/NZ)∗, all commute, since
〈d〉 acts through the abelian group Γ0(N)/Γ1(N). Also, if e is the exponent of
(Z/NZ)∗, then 〈d〉e = 〈de〉 = 〈1〉 = 1, so the matrix of 〈d〉 is diagonalizable. It is
a standard fact from linear algebra that any commuting family of diagonalizable
linear transformations is simultaneously diagonalizable (see Exercise 5.1), so
there is a basis f1, . . . , fn forMk(Γ1(N)) so that all 〈d〉 act by diagonal matrices.
The eigenvalues of the action of (Z/NZ)∗ on a fixed fi defines a Dirichlet
character, i.e., each fi has the property that fi|〈d〉 = εi(d), for all d ∈ (Z/NZ)∗

and some Dirichlet character εi. The fi for a given ε then span Mk(N, ε), and
taken together the Mk(N, ε) must span Mk(Γ1(N)).

Definition 9.1.3 (Character of Modular Form). If f ∈Mk(N, ε), we say that f
has character ε.

The spaces Mk(N, ε) are a direct sum of subspaces Sk(N, ε) and Ek(N, ε),
where Sk(N, ε) is the subspace of cusp forms, i.e., forms that vanish at all cusps
(elements of Q∪ {∞}), and Ek(N, ε) is the subspace of Eisenstein series, which
is the unique subspace of Mk(N, ε) that is invariant under all Hecke operators
and is such that Mk(N, ε) = Sk(N, ε) ⊕ Ek(N, ε). The space Ek(N, ε) can also
be defined as the space spanned by all Eisenstein series of weight k and level N ,
as defined in Chapter 5. The space Ek(N, ε) can also be defined using the
Petersson inner product (see, e.g., [Lan95]).

The diamond bracket operators preserve the subspace of cusp forms, so the
isomorphism of Proposition 9.1.2 restricts to an isomorphism of the corresponding
cuspidal subspaces. We illustrate how to use SAGE to make a table of dimension
of Mk(Γ1(N)) and Mk(N, ε) for N = 13.
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sage: G = DirichletGroup(13)

sage: G

Group of Dirichlet characters of modulus 13 over Cyclotomic Field

of order 12 and degree 4

sage: dimension_modular_forms(Gamma1(13),2)

13

sage: [dimension_modular_forms(e,2) for e in G]

[1, 0, 3, 0, 2, 0, 2, 0, 2, 0, 3, 0]

Next we do the same for N = 100.

sage: G = DirichletGroup(100)

sage: G

Group of Dirichlet characters of modulus 100 over Cyclotomic Field

of order 20 and degree 8

sage: dimension_modular_forms(Gamma1(13),2)

370

sage: [dimension_modular_forms(e,2) for e in G]

[24, 0, 0, 17, 18, 0, 0, 17, 18, 0, 0, 21, 18, 0, 0, 17, 18,

0, 0, 17, 24, 0, 0, 17, 18, 0, 0, 17, 18, 0, 0, 21, 18, 0,

0, 17, 18, 0, 0, 17]

9.2 Atkin-Lehner-Li Theory

Let
αd : Sk(Γ1(M)) → Sk(Γ1(N))

be the degeneracy map given by f(q) 7→ f(qd). The new subspace of Sk(Γ1(M)),
which we denote by Sk(Γ1(M))new, is the largest T-stable complement of the
image of all maps αd from level properly dividing M .

Let T′ be the subring of T generated by the Tn with gcd(n,N) = 1.

Theorem 9.2.1 (Atkin, Lehner, Li). We have a decomposition

Sk(Γ1(N)) =
⊕

M|N

⊕

d|N/M

αd(Sk(Γ1(M))new). (9.2.1)

Moreover, each space Sk(Γ1(M))new is a direct sum of distinct (non-isomorphic)
simple T′

C-modules.

Proof. See [Li75].

The analogue of Theorem ?? with Γ1 replaced by Γ0 is also true (this is
what was proved in [AL70]). The analogue for Sk(N, ε) is also valid, as long as
we omit the spaces Sk(Γ1(M), ε) for which M ∤ cond(ε).

Example 9.2.2. If N is prime and k ≤ 11, then Sk(Γ1(N))new = Sk(Γ1(N)),
since Sk(Γ1(1)) = 0.
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One can prove (using the Petersson inner product) that the Hecke operators
Tn on Sk(Γ1(N)), with (n,N) = 1, are diagonalizable. Another result of Atkin-
Lehner-Li theory is that the ring of endomorphism of Sk(Γ1(N))new generated
by all Hecke operators equals the ring generated by the Hecke operators Tn with
(n,N) = 1. This statement need not be true if we do not restrict to the new
subspace, as the following example shows.

Example 9.2.3. We have

S2(Γ0(22)) = S2(Γ0(11)) ⊕ α2(S2(Γ0(11))),

where each of the spaces S2(Γ0(11)) has dimension 1. Thus S2(Γ0(22))new = 0.
The Hecke operator T2 on S2(Γ0(22)) has characteristic polynomial x2 +2x+2,
which is irreducible. Since α2 commutes with all Hecke operators Tn, with
gcd(n, 2) = 1, the subring T′ of the Hecke algebra generated by operators Tn

with n odd is isomorphic to Z (the 2×2 scalar matrices). Thus on the full space
S2(Γ0(22)), we do not have T′ = T. However, on the new subspace we do have
this equality, since the new subspace has dimension 0.

Example 9.2.4. This example is similar to Example 9.2.3, except that there
are newforms. We have

S2(Γ0(55)) = S2(Γ0(11)) ⊕ α5(S2(Γ0(11))) ⊕ S2(Γ0(55))new,

where S2(Γ0(11)) has dimension 1 and S2(Γ0(55))new has dimension 3. The
Hecke operator T5 on S2(Γ0(55))new acts via the matrix





−2 2 −1
−1 1 −1

1 −2 0





with respect to some basis.[[Todo: which?]] This matrix has eigenvalues 1
and −1. Atkin-Lehner theory asserts that T5 must be a linear combination of
Hecke operators Tn, with gcd(n, 55) = 1. Upon computing the matrix for T2,
we find by simple linear algebra that T5 = 2T2 − T4.

Before moving on, we pause to say something about how the Atkin-Lehner-
Li theorems are proved. A key result is to prove that if f, g ∈ Sk(Γ1(N))new and
an(f) = an(g) for all n with gcd(n,N) = 1, then f = g. First, replace f and g
by their difference h = f − g, and observe that an(h) = 0 for gcd(n,N) = 1.
Note that such an h “looks like” it is in the image of the maps αd, for d | N .
In fact it is—one shows that h is in the old subspace Sk(Γ1(N))old (this is the
“crucial” Theorem 2 of [Li75]). But h is also new, since it is the difference of two
newforms, so h = 0, hence f = g. The details involve introducing many maps
between spaces of modular forms, and computing what they do to q-expansions.

Definition 9.2.5 (Newform). A newform is a T-eigenform f ∈ Sk(Γ1(N))new

that is normalized so that the coefficient of q is 1.
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We now motivate this definition by explaining why any T-eigenform can
be normalized so that the coefficient of q is 1, and how such an eigenform
has the convenient properties that its Fourier coefficients are exactly the Hecke
eigenvalues.

Proposition 9.2.6. If f =
∑∞

n=0 anq
n ∈ Mk(N, ε) is an eigenvector for all

Hecke operators Tn normalized so that a1 = 1, then Tn(f) = anf .

Proof. The Hecke algebra TQ on Sk(Γ1(N)) contains the diamond bracket operators
〈d〉, since Tp2 = T 2

p −〈p〉pk−1, so any T-eigenform lies in a subspace Sk(Γ1(N), ε)
for some Dirichlet character ε. The Hecke operators Tp, for p prime, act on
Sk(Γ1(N), ε) by

Tp

(

∞
∑

n=0

anq
n

)

=

∞
∑

n=0

(

anpq
n + ε(p)pk−1anq

np
)

,

and there is a similar formula for Tm with m composite. If f =
∑∞

n=0 anq
n is

an eigenform for all Tp, with eigenvalues λp, then by the above formula

λpf = λpa1q + λpa2q
2 + · · · = Tp(f) = apq + higher terms. (9.2.2)

Equating coefficients of q we see that if a1 = 0, then ap = 0 for all p, hence
an = 0 for all n, because of the multiplicativity of Fourier coefficients and the
recurrence

apr = apr−1ap − ε(p)pk−1apr−2 .

This would mean that f = 0, a contradiction. Thus a1 6= 0, and it makes sense
to normalize f so that a1 = 1. With this normalization, (9.2.2) implies that
λp = ap, as desired.

Remark 9.2.7. In fact, 〈d〉 ∈ Z[. . . , Tn, . . .]. See Exercise 9.2.

9.3 Computing Cuspforms

Let Sk(N, ε; C) be cuspidal modular symbols, as in Chapter 8, and let Sk(N, ε; C)+

denote the +1 quotient as in (8.5.7). It follows from Theorem 8.5.6, and
compatibility of the degeneracy maps, that the T-modules Sk(N, ε)new and
Sk(N, ε,C)+new are dual as T-modules. Thus finding the systems of T-eigenvalues
on cuspforms is the same as finding the systems of T-eigenvalues on cuspidal
modular symbols.

Our strategy to compute Sk(N, ε) is to first compute spaces Sk(N, ε)new

using the Atkin-Lehner-Li decomposition (9.2.1). To compute Sk(N, ε)new to a
given precision, we compute the systems of eigenvalues of the Hecke operators
Tp on V = Sk(N, ε,C)+new. Using Proposition 9.2.6, we then recover a basis of q-
expansions for newforms. Note that we only need to compute Hecke eigenvalues
Tp, for p prime, not the Tn for n composite, since the an can be quickly recovered
in terms of the ap using multiplicativity and the recurrence.
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The some problems, e.g., construction of models for modular curves, where
just having a basis is enough, and knowing the newforms is not so important.
For other problems, e.g., enumeration of modular abelian varieties or motives,
one is really interested in the newforms, not just any basis for Sk(N, ε). We
next discuss algorithms aimed at each of these problems.

9.3.1 A Basis of q-Expansions

Merel’s paper [Mer94] culminates with the following algorithm to compute
Sk(Γ1(N), ε) without finding any eigenspaces:

Algorithm 9.3.1 (Merel’s Algorithm for Computing a Basis). 1. [Compute
Modular Symbols] Using Algorithm 8.8.1, compute a presentation for V =
Sk(Γ1(N), ε)+ ⊗ Q(ε), viewed as a K = Q(ε) vector space, along with an
action of Hecke operators Tn.

2. [Basis for Linear Dual] Write down a basis for V ∗ = Hom(V,Q(ε)). E.g.,
if we identify V with Kn viewed as column vectors, then V ∗ is the space
of row vectors of length n, and the pairing is the row × column product.

3. [Find Generator] Find x ∈ V such that Tx = V by choosing random x
until we find one that generates. The set of x that fail to generate lie in a
union of a finite number of proper subspace.

4. [Compute Basis] The set of power series

fi =
m
∑

n=1

ψi(Tn(x))qn +O(qm+1)

form a basis for Sk(Γ1(N), ε) to precision m.

In practice my experience is that my implementations of Algorithm 9.3.1
are significantly slower than the eigenspace algorithm that we will describe in
the rest of this chapter. The theoretical complexity of Algorithm 9.3.1 may
be better, because it is not necessary to factor any polynomials. Polynomial
factorization is difficult from the analysis-of-complexity point of view, though
usually fairly fast in practice. The eigenvalue algorithm only requires computing
a few images Tp(x) for p prime and x a Manin symbol on which Tp can easily
be computed. The Merel algorithm involves computing Tn(x) for all n, and a
fairly easy x, which is potentially more work.

Remark 9.3.2. By “easy x”, I mean that computing Tn(x) is easier on x than
on a completely random element of Sk(Γ1(N), ε)+, e.g., x could be a Manin
symbol.
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9.3.2 Newforms: Systems of Eigenvalues

In this section we describe an algorithm for computing the system of Hecke
eigenvalues associated to a simple subspace of a space of modular symbols.
This algorithm is better than doing linear algebra directly over the number field
generated by the eigenvalues. It only involves linear algebra over the base field,
and also yields a compact representation for the answer, which is better than
writing the eigenvalues in terms of a power basis for a number field.

Fix N and a Dirichlet character ε modulo N and set

V = Sk(N, ε)+new.

Algorithm 9.3.3 (System of Eigenvalues). Given a T-simple subspace W ⊂ V
of modular symbols, this algoritm outputs maps ψ and e, where ψ : TK → W
is a K-linear map and e : W ∼= L is an isomorphism of W with a number field
L, such that an = e(ψ(Tn)) is the eigenvalue of the nth Hecke operator acting
on a fixed T-eigenvector in W ⊗ Q. (Thus f =

∑∞
n=1 i(ψ(Tn))qn is a cuspidal

modular eigenform.)

1. [Compute Projection] Let ϕ : V → W ′ be any surjective linear map such
that ker(ϕ) equals the kernel of the T-invariant projection onto W . For
example, compute ϕ by finding a simple submodule of V ∗ = Hom(V,K)
that is isomorphic to W , e.g., by applying Algorithm 7.5.9 to V ∗ with T
replaced by the transpose of T .

2. [Choose v] Choose a nonzero element v ∈ V such that π(v) 6= 0 and
computation of Tn(v) is “easy”, e.g., choose v to be a Manin symbol.

3. [Map From Hecke Ring] Let ψ be the map T →W ′, given by ψ(t) = π(tv).
Note that computation of ψ is relatively easy, because v was chosen so that
tv is relatively easy to compute. In particular, if t = Tp, we do not need
to compute the full matrix of Tp on V ; instead we just compute Tp(v).

4. [Find Generator] Find a random T ∈ T such that the iterates

ψ(T 0), ψ(T ), ψ(T 2), . . . , ψ(T d−1)

are a basis for W ′, where W has dimension d.

5. [Characteristic Polynomial] Compute the characteristic polynomial f of
T |W , and let L = K[x]/(f). Because of how we chose T in Step 4, the
minimal and characteristic polynomials of T |W are equal, and both are
irreducible, so L is an extension of K of degree d = dim(W ).

6. [Field Structure] In this step we endow W ′ with a field structure. Let
e : W ′ → L be the unique K-linear isomorphism such that

e(ψ(T i)) ≡ xi (mod f)

for i = 0, 1, 2, ...,deg(f) − 1. The map e is uniquely determined since the
ψ(T i) are a basis for W ′. To compute e, we compute the change of basis

156 CHAPTER 9. COMPUTING NEWFORMS

matrix from the standard basis for W ′ to the basis {ψ(T i)}. This change
of basis matrix is the inverse of the matrix whose rows are the ψ(T i) for
i = 0, ...,deg(f) − 1.

7. [Hecke Eigenvalues] Finally for each integer n ≥ 1, we have

an = e(ψ(Tn)) = e(π(Tn(v))),

where an is the eigenvalue of Tn. Output the maps ψ and e and terminate.

One reason we separate ψ and e is that when dim(W ) is large, the values
ψ(Tn) tend to take too much space to store and are easier to compute, whereas
each one of the values e(ψ(n)) are huge.1 The function e typically involves large
numbers if dim(W ) is large, since e is got from the iterates of a single vector. For
many applications, e.g., databases, it is better to store a matrix that defines e
and the images under ψ of many Tn.

Example 9.3.4. The space S2(Γ0(23)) of cusp forms has dimension 2, and is
spanned by two Gal(Q/Q)-conjugate newforms, one of which is

f =
∑

q + aq2 + (−2a− 1)q3 + (−a− 1)q4 + 2aq5 + · · · ,

where a = (−1 +
√

5)/2. We will use Algorithm 9.3.3 to compute a few of these
coefficients.

The space M2(Γ0(23))+ of modular symbols has dimension 3. It has as basis
the following basis of Manin symbols:

[(0, 0)], [(1, 0)], [(0, 1)],

where we use square brackets to differentiate Manin symbols from vectors. The
Hecke operator

T2 =





3 0 0
0 0 2
−1 1/2 −1





has characteristic polynomial (x−3)(x2+x−1). The kernel of T2−3 corresponds
to the span of the Eisenstein series of level 23 and weight 2, and the kernel V
of T 2

2 + T2 − 1 corresponds to S2(Γ0(23)). (We could also have computed V
as the kernel of the boundary map M2(Γ0(23))+ → B2(Γ0(23))+.) Each of the
following steps corresponds to the same step of Algorithm 9.3.3.

1. [Compute Projection] Using the Algorithm ??, we compute projection
onto V . The matrix whose first two columns are the echelon basis for V
and whose last column is the echelon basis for the Eisenstein subspace is





0 0 1
1 0 −2/11
0 1 −3/11





1John Cremona initially suggested to me the idea of separating these two maps.
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and

B−1 =





2/11 1 0
3/11 0 1

1 0 0



 ,

so projection onto V is given by the first two rows:

π =

(

2/11 1 0
3/11 0 1

)

.

2. [Choose v] Let v = (0, 1, 0)t. Notice that π(v) = (1, 0)t 6= 0, and v =
[(1, 0)] is a sum of only one Manin symbol.

3. [Map From Hecke Ring] This step is purely conceptual, since no actual
work needs to be done. We illustrate it by computing ψ(T1) and ψ(T2).
We have

ψ(T1) = π(v) = (1, 0)t,

and

ψ(T2) = π(T2(v)) = π((0, 0, 1/2)t) = (0, 1/2)t.

4. [Find Generator] We have

ψ(T 0
2 ) = ψ(T1) = (1, 0)t,

which is clearly independent from ψ(T2) = (0, 1/2)t. Thus we find that
the image of the powers of T = T2 generate V .

5. [Characteristic Polynomial] It is easy to compute the characteristic polynomial
of a 2×2 matrix. The matrix of T2|V is

(

0 2
1/2 −1

)

, which has characteristic

polynomial f = x2 + x − 1. Of course, we already knew this because we
computed V as the kernel of T 2

2 + T2 − 1.

6. [Field Structure] We have

ψ(T 0
2 ) = π(v) = (1, 0)t and ψ(T2) = (0, 1/2).

The matrix with rows the ψ(T i
2) is

(

1 0
0 1/2

)

, which has inverse e = ( 1 0
0 2 ).

The matrix e defines an isomorphism between V and the field

L = Q[x]/(f) = Q((−1 +
√

5)/2).

For example, e((1, 0)) = 1 and e((0, 1)) = 2x, where x = (−1 +
√

5)/2.
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7. [Hecke Eigenvalues] We have an = e(Ψ(Tn)). For example,

a1 = e(Ψ(T1)) = e((1, 0)) = 1

a2 = e(Ψ(T2)) = e((0, 1/2)) = x

a3 = e(Ψ(T3)) = e(π(T3(v))) = e(π((0,−1,−1)t)) = e((−1,−1)t) = −1 − 2x

a4 = e(Ψ(T4)) = e(π((0,−1,−1/2)t)) = e((−1,−1/2)t) = −1 − x

a5 = e(Ψ(T5)) = e(π((0, 0, 1)t)) = e((0, 1)t) = 2x

a23 = e(Ψ(T23)) = e(π((0, 1, 0)t)) = e((1, 0)t) = 1

a97 = e(Ψ(T23)) = e(π((0, 14, 3)t)) = e((14, 3)t) = 14 + 6x

It is difficult to appreciate this algorithm without seeing how big the coefficients
of the power series expansion of a newform typically are, when the newform is
defined over a large field. For such examples, please browse [Ste04].

9.4 Exercises

9.1 Prove that the group Γ1(N) is a normal subgroup of Γ0(N), and the
quotient Γ0(N)/Γ1(N) is isomorphic to (Z/NZ)∗.

9.2 Prove that the operators 〈d〉 are elements of Z[. . . , Tn, . . .]. [Hint: Use
Dirichlet’s theorem on primes in arithmetic progression.]


