
Chapter 8

Modular Symbols of

Arbitrary Weight and Level

In this chapter we explain how to generalize the notion of modular symbols
given in Chapter 3 to higher weight and more general level.

Modular symbols are a formalism that make it fairly easy and elementary to
compute with homology or cohomology related to certain Kuga-Sato varieties
(these are E ×X · · · ×X E , where X is a modular curve and E is the univeral
elliptic curve over it). It is not necessary to know anything about these Kuga-
Sato varieties in order to compute with modular symbols.

This chapter is about spaces of modular symbols and how to compute with
them. It is by far the most important chapter in this book. The algorithms
that build on the theory in this chapter are central to all the computations we
will do later in the book.

This chapter follows Löıc Merel’s paper [Mer94]. First we define modular
symbols of weight k ≥ 2. Then we define the corresponding Manin symbols,
and state a theorem of Merel-Shokurov, which gives all relations between Manin
symbols. (The proof of the Merel-Shokurov theorem is beyond the scope of this
book.) Next we describe how the Hecke operators act on both modular and
Manin symbols, and how to compute trace and inclusion maps between spaces
of modular symbols of different levels. We close the chapter with a discussion
of computations with modular symbols over finite fields.

Not only are modular symbols useful for computation, but they have been
used to prove theoretical results about modular forms. For example, certain
technical calculations with modular symbols are used in Loic Merel’s proof of the
uniform boundedness conjecture for torsion points on elliptic curves over number
fields; modular symbols arise, e.g., in order to understand linear independence
of Hecke operators. Another example is Grigor Grigorov’s in-progress Ph.D.
thesis, which distills hypotheses about Kato’s Euler system in K2 of modular
curves to a simple formula involving modular symbols (when the hypotheses are
satisfied, one obtains a lower bound on the Shafarevich-Tate group of an elliptic
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116CHAPTER 8. MODULAR SYMBOLS OF ARBITRARY WEIGHT AND LEVEL

curve).

8.1 Modular Symbols

We recall from Chapter 3 the free abelian group M of modular symbols. We
view these as elements of the relative homology of the extended upper half plane
h∗ = h ∪ P1(Q) relative to the cusps. The group M is the free abelian group on
symbols {α, β} with

α, β ∈ P1(Q) = Q ∪ {∞}

subject to the relations

{α, β} + {β, γ} + {γ, α} = 0,

for all α, β, γ ∈ P1(Q). More precisely, M = (F/R)/(F/R)tor, where F is the
free abelian group on all pairs (α, β) and R is the subgroup generated by all
elements of the form (α, β) + (β, γ) + (γ, α). Note that M is a huge free abelian
group of countable rank.

Now fix an integer k ≥ 2. Let Zk−2[X, Y ] be the abelian group of homogeneous
polynomials of degree k − 2 in two variables X, Y (so Zk−2[X, Y ] is isomorphic
to Symk−2(Z) as a group, but certain natural actions are different). Set

Mk = Zk−2[X, Y ] ⊗Z M,

which is a torsion-free abelian group whose elements are sums of expressions of
the form X iY k−2−i ⊗ {α, β}. For example,

X3 ⊗ {0, 1/2}− 17XY 2 ⊗ {∞, 1/7} ∈ M5.

Fix a finite index subgroup G of SL2(Z). Define a left action of G on
Zk−2[X, Y ] as follows. If g =

(

a b
c d

)

∈ G and P (X, Y ) ∈ Zk−2[X, Y ], let

(gP )(X, Y ) = P (dX − bY,−cX + aY ).

Note that if we think of z = (X, Y ) as a column vector, then

(gP )(z) = P (g−1z),

since g−1 =
(

d −b
−c a

)

. The reason for the inverse is so that this is a left action
instead of a right action, e.g., if g, h ∈ G, then

((gh)P )(z) = P ((gh)−1z) = P (h−1g−1z) = (hP )(g−1z) = (g(hP ))(z).

Let G act on the left on M by

g{α, β} = {g(α), g(β)}.

Here G acts via linear fractional transformations, so if g =
(

a b
c d

)

, then

g(α) =
aα + b

cα + d
.
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For example, useful special cases to remember are that if g =
(

a b
c d

)

then

g(0) =
b

d
and g(∞) =

a

c
.

We now combine these two actions to obtain a left action of G on Mk−2,
which is given by

g(P ⊗ {α, β}) = (gP ) ⊗ {g(α), g(β)}.

For example,

(

1 2
−2 −3

)

.(X3 ⊗ {0, 1/2}) = (−3X − 2Y )3 ⊗

{

−
2

3
,−

5

8

}

= (−27X3 − 54X2Y − 36XY 2 − 8Y 3) ⊗

{

−
2

3
,−

5

8

}

.

We will often write P (X, Y ){α, β} for P (X, Y ) ⊗ {α, β}.

Definition 8.1.1 (Modular Symbols). Let k ≥ 2 be an integer and let G be a
finite index subgroup of SL2(Z). The space Mk(G) of weight k modular symbols
for G is the quotient of Mk by all relations gx−x for x ∈ Mk and by any torsion.

Note that Mk is a torsion free abelian group, and it is a nontrivial fact that
Mk has finite rank. We denote modular symbols for G in exactly the same way
we denote elements of Mk, but with surrounding text that hopefully makes the
group G clear.

The space of modular symbols over a ring R is

Mk(G, R) = Mk(G) ⊗Z R.

8.2 Manin Symbols

Let G be a finite index subgroup of SL2(Z) and k ≥ 2 an integer. Just as in
Chapter 3 it is possible to compute Mk(G) using a computer, despite that, as
defined above, Mk(G) is the quotient of one infinitely generated abelian group
by another one. This section is about Manin symbols, which are a distinguished
subset of Mk(G) that lead to a finite presentation for Mk(G). Formulas written
in terms of Manin symbols are frequently much easier to compute using a
computer than formulas in terms of modular symbols, and we will give several
such formulas later in this chapter.

Suppose P ∈ Zk−2[X, Y ] and g ∈ SL2(Z). Then the Manin symbol associated
to this pair of elements is

[P, g] = g(P{0,∞}) ∈ Mk(G).

Notice that if Gg = Gh, then [P, g] = [P, h], since the symbol g(P{0,∞}) is
invariant by the action of G on the left (by definition, since it is a modular
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symbols for G). Thus for a right coset Gg it makes sense to write [P, Gg] for the
symbol [P, h] for any h ∈ Gg. Since G has finite index in SL2(Z), the abelian
group generated by Manin symbols is of finite rank, generated by

{

[Xk−2−iY i, Ggj ] : i = 0, . . . , k − 2, and j = 0, . . . , r
}

,

where g0, . . . , gr run through representatives for the right cosets G\ SL2(Z).
We next show that every modular symbols can be written as a Z-linear

combination of Manin symbols, so they generate Mk(G).

Proposition 8.2.1. The Manin symbols generate Mk(G).

Proof. The proof if very similar to that of Proposition 3.3.2 except we introduce
an extra twist to deal with the polynomial part. Suppose that we are given a
modular symbol P{α, β} and wish to represent it as a sum of Manin symbols.
Because

P{a/b, c/d} = P{a/b, 0}+ P{0, c/d},

it suffices to write P{0, a/b} in terms of Manin symbols. Let

0 =
p−2

q−2

=
0

1
,

p−1

q−1

=
1

0
,

p0

1
=

p0

q0

,
p1

q1

,
p2

q2

, . . . ,
pr

qr

=
a

b

denote the continued fraction convergents of the rational number a/b. Then

pjqj−1 − pj−1qj = (−1)j−1 for − 1 ≤ j ≤ r.

If we let gj =

(

(−1)j−1pj pj−1

(−1)j−1qj qj−1

)

, then gj ∈ SL2(Z) and

P{0, a/b} = P

r
∑

j=−1

{

pj−1

qj−1

,
pj

qj

}

=
r

∑

j=−1

gj((g
−1

j P ){0,∞})

=
r

∑

j=−1

[g−1

j P, gj ].

Since gj ∈ SL2(Z) and P has integer coefficients, the polynomial g−1

j P also has
integer coefficients, so we introduce no denominators.

Now that we know the Manin symbols generate Mk(G), we next consider
the relations between Manin symbols. Fortunately, the answer is fairly simple
(though the proof is not). Let

σ =

(

0 −1
1 0

)

, τ =

(

0 −1
1 −1

)

, J =

(

−1 0
0 −1

)

.
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Define a right action of SL2(Z) on Manin symbols as follows. If h ∈ SL2(Z), let

[P, g]h = [h−1P, gh].

This is a right action because P 7→ h−1P is a right action, and right multiplication
g 7→ gh is also a right action.

Theorem 8.2.2. If x is a Manin symbol, then

x + xσ = 0 (8.2.1)

x + xτ + xτ2 = 0 (8.2.2)

x − xJ = 0. (8.2.3)

Moreover, these are all the relations between Manin symbols, in the sense that
the space Mk(G) of modular symbols is isomorphic to the quotient of the free
abelian group on the finitely many symbols [X iY k−2−i, Gg] (for i = 0, . . . , k−2,
and Gg ∈ G\ SL2(Z)) by the above relations and any torsion.

Proof. First we prove that the Manin symbols satisfy the above relations following
Merel’s proof (see [Mer94, §1.2]). Note that

σ(0) = σ2(∞) = ∞ and τ(1) = τ2(0) = ∞.

Write x = [P, g], we have

[P, g] + [P, g].σ = [P, g] + [σ−1.P, gσ]

= g(P{0,∞}) + gσ.(σ−1.P{0,∞})

= (gP ){g(0), g(∞)} + (gσ).(σ−1.P ){gσ(0), gσ(∞)}

= (gP ){g(0), g(∞)} + (gP ){g(∞), g(0)}

= (gP )({g(0), g(∞)} + {g(∞), g(0)})

= 0.

Also,

[P, g] + [P, g].τ + [P, g].τ2 = [P, g] + [τ−1.P, gτ ] + [τ−2.P, gτ2]

= g(P{0,∞}) + gτ.(τ−1.P{0,∞}) + gτ2.(τ−2.P{0,∞})

= (gP ){g(0), g(∞)} + (gP ){gτ(0), gτ(∞)}) + (gP ){gτ2(0), τ2(∞)})

= (gP ){g(0), g(∞)} + (gP ){g(1), g(0)}) + (gP ){g(∞), g(1)})

= (gP )({g(0), g(∞)} + {g(∞), g(1)} + {g(1), g(0)})

= 0

Finally,

[P, g] + [P, g].J = g(P{0,∞})− gJ.(J−1P{gJ(0), gJ(∞)}

= (gP ){g(0), g(∞)} − (gP ){g(0), g(∞)}

= 0,
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where we use that J acts trivially via linear fractional transformations. This
proves that the listed relations are all satisifed.

That the listed relations are all relations is more difficult to prove, and we
will only very briefly sketch a proof here. One approach is to show (as in [Mer94,
§1.3]) that the quotient of Manin symbols by the above relations and torsion is
isomorphic to a space of Šokurov symbols, which is in turn isomorphic to Mk(G).
Merel cites [Šok80] for most of this proof. Alternatively, Merel proves (see
[Mer94, Prop. 9]) that the quotient of the free complex-vector space on Manin
symbols by the enumerated relations is non-canonically isomorphic (over C) to
an Eichler-Shimura cohomology group. It is a result of Eichler and Shimura (see
[Shi94, Ch. 8]–Shimura’s book) that their cohomology group is isomorphic to
the space Mk(G) of modular forms. One can show[[Todo: Maybe I should
show this, since Merel doesn’t. The argument would go via breaking
up into cuspidal and Eisenstein pieces and having an exact pairing
between cuspidal Manin symbols and cusp forms, and noting (using
Calculus) that in the relations that define Mk(G) we quotient out only
by things that integrate to 0 with cusp forms; anything nonzero in the
kernel of the map from cuspidal Manin symbols to cuspidal modular
symbols would simultaneously have to pair to 0 and 6= 0 with some
cusp form, a contradiction.]] that Mk(G, R) is (non-canonically) isomorphic
as a T-module to Mk(G), so has the same dimension. Thus the quotient of the
free abelian group on the Manin symbols by the listed relations (and torsion)
has the same dimension as that of Mk(G), which proves that the listed relations
generate all relations. (Here we use that if A is a finitely generated free abelian
group then rankA = dimC(A ⊗Z C).)

If G is a finite-index subgroup and we have an algorithm to enumerate
the right cosets G\ SL2(Z), and to decide which coset an arbitrary element
of SL2(Z) belongs to, then Theorem 8.2.2 and the algorithms of Chapter 7 yield
an algorithm to compute Mk(G, Q). Note that if J ∈ G, then the relation
x− xJ = 0 is automatic. Also note that the matrices σ and τ do not commute,
so one can not first quotient out by the two-term σ relations, then quotient out
only the remaining free generators by the τ relations, and get the right answer
in general.

8.2.1 Coset Representatives and Manin Symbols

Proposition 8.2.3. The right cosets Γ1(N)\ SL2(Z) are in bijection with pairs
(c, d) where c, d ∈ Z/NZ and gcd(c, d, N) = 1. The coset containing a matrix
(

a b
c d

)

corresponds (c, d).

Proof. This proof is copied from [Cre92, pg. 203], except in that paper Cremona
works with the analogue of Γ1(N) in PSL2(Z), so his result is slightly different.
Suppose γi =

(

ai bi

ci di

)

∈ SL2(Z), for i = 1, 2. We have

γ1γ
−1

2
=

(

a1 b1

c1 d1

) (

d2 −b2

−c2 a2

)

=

(

a1d2 − b1c2 ∗
c1d2 − d1c2 a2d1 − b2c1

)

,
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which is in Γ1(N) if and only if

c1d2 − d1c2 ≡ 0 (mod N) (8.2.4)

and
a2d1 − b2c1 ≡ a1d2 − b1c2 ≡ 1 (mod N). (8.2.5)

Since the γi have determinant 1, if (c1, d1) = (c2, d2) (mod N), then the congruences
(8.2.4–8.2.5) hold. Conversely, if (8.2.4–8.2.5) hold, then

c2 ≡ a2d1c2 − b2c1c2

≡ a2d2c1 − b2c2c1 since d1c2 ≡ d2c1 (mod N)

≡ c1 since a2d2 − b2c2 = 1,

and likewise

d2 ≡ a2d1d2 − b2c1d2 ≡ a2d1d2 − b2d1c2 ≡ d1 (mod N).

Thus we may view weight k Manin symbols for Γ1(N) as triples of integers
(i, c, d), where 0 ≤ i ≤ k − 2 and c, d ∈ Z/NZ with gcd(c, d, N) = 1. Here
(i, c, d) corresponds to the Manin symbol [X iY k−2−i,

(

a b
c′ d′

)

], where c′ and d′

lift c, d. The relations of Theorem 8.2.2 become

(i, c, d) + (−1)i(k − 2 − i, d,−c) = 0,

(i, c, d) + (−1)k−2

k−2−i
∑

j=0

(−1)j

(

k − 2 − i

j

)

(j, d,−c − d)

+ (−1)k−2−i

i
∑

j=0

(−1)j

(

i

j

)

(k − 2 − i + j, −c − d, c) = 0,

(i, c, d) − (−1)k−2(i, −c,−d) = 0.

There is a similar description of cosets for Γ0(N):

Proposition 8.2.4. The right cosets Γ0(N)\ SL2(Z) are in bijection with the
elements of P1(Z/NZ). The coset containing a matrix

(

a b
c d

)

corresponds to the
point (c : d) ∈ P1(Z/NZ).

For a proof, see [Cre97a, §2.2] (see also Exercise 3.3).

8.2.2 Modular Symbols With Character

Suppose now that G = Γ1(N) ⊂ SL2(Z). Define an action of diamond bracket
operators 〈d〉, with gcd(d, N) = 1 on Manin symbols as follows:

〈n〉([P, (c, d)]) = [P, (nc, nd)] .
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Let
ε : (Z/NZ)∗ → Q(ζ)∗

be a Dirichlet character, where ζ is an nth root of unity and n is the order of ε.
Let Mk(Γ1(N), ε) be the quotient of Mk(Γ1(N), Z[ζ]) by the relations (given in
terms of Manin symbols)

〈d〉x − ε(d)x = 0,

for all x ∈ Mk(Γ1(N), Z[ζ]), and by any torsion. Thus Mk(Γ1(N), ε) is a torsion
free Z[ε]-module.

1) Return all graded homework

2) Clarify current homework assignment:

* All problems from dimension formulas chapter

and one linear algebra problem:

Exercise 7.1 (not easy).

Should have more linalg exercises but too late.

* Working together on homework is OK (I should

have mentioned this earlier...)

3) Current plan for rest of quarter:

[] (may 15) Higher Weight Modular Symbols 1: basic definitions;

how to compute:

Sections 8.1 -- 8.2

[] (may 17) Higher Weight Modular Symbols 2: Hecke operators on them

Sections 8.3

[] (may 19) Higher Weight Modular Symbols 3: using to compute modular forms

Sections 8.4 -- 8.6

[] (may 22) Newforms 1: Atkin-Lehner-Li theory

Sections 9.1 -- 9.3

[] (may 24) Newforms 2: Computing (and storing!) systems of eigenvalues

Section 9.4

[] (may 26) Special Values of L-functions using modular symbols

Sections 10.1-10.4

[] (may 29 -- memorial day holiday)

[] (may 31) Enumeration of all elliptic curves of given conductor

(Cremona’s program):

Sections 10.6-10.7

[] (june 2) Sturm’s bound: Congruences between modular forms and gen.

Hecke algebras

Chapter 11


