
Chapter 4

Dirichlet Characters

In this chapter we develop a systematic theory for computing with Dirichlet
characters, which are extremely important to computations with modular forms
for (at least) two reasons:

1. To compute the Eisenstein subspace Ek(Γ1(N)) of Mk(Γ1(N)) we explicitly
write down Eisenstein series attached to pairs of Dirichlet characters (see
Chapter 5).

2. To compute Sk(Γ1(N)), we instead compute a decomposition

Mk(Γ1(N)) =
⊕

Mk(Γ1(N), ε)

then compute each factor. Here the sum is over all Dirichlet characters ε
modulo N .

Of course Dirichlet characters are also extremely important in much of
number theory. For example, they are the one-dimensional characters of Gal(Q/Q),
so are important in studying Galois representations and class field theory for Q.

Example 4.0.1. Expanding on the second enumerated point above, the spaces
Mk(Γ1(N), ε) are frequently much easier to compute with than the full Mk(Γ1(N)).
As we will see, if ε = 1 is the trivial character, then Mk(Γ1(N), 1) = Mk(Γ0(N)),
which has much smaller dimension than Mk(Γ1(N)). For example, M2(Γ1(100))
has dimension 370, whereas M2(Γ1(100), 1) has dimension only 24, and M2(Γ1(389))
has dimension 6499, whereas M2(Γ1(389), 1) has dimension only 33.

sage: dimension_modular_forms(Gamma1(100),2)

370

sage: dimension_modular_forms(Gamma0(100),2)

24

sage: dimension_modular_forms(Gamma1(389),2)

6499

sage: dimension_modular_forms(Gamma0(389),2)

33

63

64 CHAPTER 4. DIRICHLET CHARACTERS

4.1 The Definition

Fix an integral domain R and a root ζ of unity in R.

Definition 4.1.1 (Dirichlet Character). A Dirichlet character modulo N over R
is a map ε : Z → R such that there is a homomorphism f : (Z/NZ)∗ → 〈ζ〉 for
which

ε(a) =

{

0 if gcd(a, N) > 1,

f (a mod N) if gcd(a, N) = 1.

We denote the group of such Dirichlet characters by D(N, R). Note that
elements of D(N, R) are in bijection with homomorphisms (Z/NZ)∗ → 〈ζ〉.

One familiar example of a Dirichlet character is the Legendre symbol
(

a
p

)

that appears in quadratic reciprocity theory. It is a Dirichlet character modulo p
that takes the value 1 on integers that are congruent to a nonzero square
modulo p, the value −1 on integers that are congruent to a nonzero non-square
modulo p, and 0 on integers divisible by p.

4.2 Dirichlet Characters in SAGE

To create a Dirichlet character in SAGE you first create the group D(N, R)
of Dirichlet characters, then construct elements of that group. First we make
D(11, Q):

sage: G = DirichletGroup(11, RationalField()); G

Group of Dirichlet characters of modulus 11 over Rational Field

A Dirichlet character prints as a matrix that gives the values of the character
on canonical generators of (Z/NZ)∗ (as discussed below).

sage: list(G)

[[1], [-1]]

sage: eps = G.0 # 0th generator for Dirichlet group

sage: eps

[-1]

The character ε takes the value −1 on the unit generator.

sage: G.unit_gens()

[2]

sage: eps(2)

-1

sage: eps(3)

1

It is 0 on any integer not coprime to 11:

4.2. DIRICHLET CHARACTERS IN SAGE 65

sage: [eps(11*n) for n in range(10)] # values on 0,11,22,33, ...

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

We can also create groups of Dirichlet characters taking values in other rings
or fields. For example, we create the cyclotomic field Q(ζ4).

sage: R = CyclotomicField(4)

sage: CyclotomicField(4)

Cyclotomic Field of order 4 and degree 2

Then we define G = D(15, Q(ζ4).

sage: G = DirichletGroup(15, R)

sage: G

Group of Dirichlet characters of modulus 15 over Cyclotomic Field

of order 4 and degree 2

And we list each of its elements.

sage: list(G)

[[1, 1], [-1, 1], [1, zeta_4], [-1, zeta_4], [1, -1], [-1, -1],

[1, -zeta_4], [-1, -zeta_4]]

Now lets evaluate the second generator of G on various integers:

sage: e = G.1

sage: e(4)

-1

sage: e(-1)

-1

sage: e(5)

0

Finally we list all the values of e.

sage: [e(n) for n in range(15)]

[0, 1, zeta_4, 0, -1, 0, 0, zeta_4, -zeta_4,

0, 0, 1, 0, -zeta_4, -1]

We can also compute with groups of Dirichlet characters with values in a
finite field.

sage: G = DirichletGroup(15, GF(5)); G

Group of Dirichlet characters of modulus 15 over Finite Field of size 5

We list all the elements of G, again represented by matrices that give the images

66 CHAPTER 4. DIRICHLET CHARACTERS

of each unit generator, as an element of F5.

sage: list(G)

[[1, 1], [4, 1], [1, 2], [4, 2], [1, 4], [4, 4], [1, 3], [4, 3]]

We evaluate the second generator of G on several integers.

sage: e = G.1

sage: e(-1)

4

sage: e(2)

2

sage: e(5)

0

sage: print [e(n) for n in range(15)]

[0, 1, 2, 0, 4, 0, 0, 2, 3, 0, 0, 1, 0, 3, 4]

4.3 Representing Dirichlet Characters

Lemma 4.3.1. The groups (Z/NZ)∗ and D(N, C) are non-canonically isomorphic.

Proof. This follows from the more general fact that for any finite abelian group G,
we have that G ≈ Hom(G, C∗). To deduce this latter non-canonical isomorphism,
first reduce to the case when G is cyclic of order n, in which case the statement
follows because C∗ contains the nth root of unity e2πi/n, so Hom(G, C∗) is also
cyclic of order n.

Corollary 4.3.2. We have #D(N, R) | ϕ(N), with equality if and only if the
order of our choice of ζ ∈ R is a multiple of the exponent of the group (Z/NZ)∗.

Proof. This is because #(Z/NZ)∗ = ϕ(N).

Example 4.3.3. The group D(5, C) has elements {[1], [i], [−1], [−i]}, so is cyclic
of order ϕ(5) = 4. In contrast, the group D(5, Q) has only the two elements
[1] and [−1] and order 2. In SAGE the command DirichletGroup(N) with
no second argument create the group of Dirichlet characters with values in the
cyclotomic field Q(ζn), where n is the exponent of the group (Z/NZ)∗. Every
element in D(N, C) takes values in Q(ζn), so D(N, Q(ζn)) ∼= D(N, C).

sage: list(DirichletGroup(5))

[[1], [zeta_4], [-1], [-zeta_4]]

sage: list(DirichletGroup(5, Q))

[[1], [-1]]

Fix a positive integer N , and write N =
∏n

i=0 pei

i where p0 < p1 < · · · < pn

are the prime divisors of N . By Exercise 4.1, each factor (Z/pei

i Z)∗ is a cyclic

4.3. REPRESENTING DIRICHLET CHARACTERS 67

group Ci = 〈gi〉, except if p0 = 2 and e0 ≥ 3, in which case (Z/pe0

0 Z)∗ is a
product of the cyclic subgroup C0 = 〈−1〉 of order 2 with the cyclic subgroup
C1 = 〈5〉. In all cases we have

(Z/NZ)∗ ∼=
∏

0≤i≤n

Ci =
∏

0≤i≤n

〈gi〉.

For i such that pi > 2, choose the generator gi of Ci to be the element of
{2, 3, . . . , pei

i − 1} that is smallest and generates. Finally, use the Chinese
Remainder Theorem (see [Coh93, §1.3.3])) to lift each gi to an element in
(Z/NZ)∗, also denoted gi, that is 1 modulo each p

ej

j for j 6= i.

Algorithm 4.3.4 (Minimal generator for (Z/prZ)∗). Given an odd prime power pr,
this algorithm computes the minimal generator for (Z/prZ)∗.

1. [Factor Group Order] Factor n = φ(pr) = pr−1 ·2 · ((p−1)/2) as a product
∏

pei

i of primes. This is equivalent in difficulty to factoring (p − 1)/2.
(See, e.g., [Coh93, Ch.8, Ch. 10] for an excellent discussion of factorization
algorithms, though of course much progress has been made since then.)

2. [Initialize] Set g = 2.

3. [Generator?] Using the binary powering algorithm (see [Coh93, §1.2]),
compute gn/pi (mod pr), for each prime divisor pi of n. If any of these
powers are 1, then g is not a generator, so set g = g + 1 and go to Step 2.
If no powers are 1, output g and terminate.

See Exercise 4.2 for a proof that this algorithm is correct.

Example 4.3.5. A minimal generator for (Z/49Z)∗ is 3. We have n = ϕ(49) =
42 = 2 · 3 · 7, and

2n/2 ≡ 1, 2n/3 ≡ 18, 2n/7 ≡ 15 (mod 49).

so 2 is not a generator for (Z/49Z)∗. (We see this just from 2n/2 ≡ 1 (mod 49).)
However 3 is since

3n/2 ≡ 48, 3n/3 ≡ 30, 3n/7 ≡ 43 (mod 49).

Example 4.3.6. In this example we compute minimal generators for N = 25,
100, and 200:

1. The minimal generator for (Z/25Z)∗ is 2.

2. Minimal generators for (Z/100Z)∗, lifted to numbers modulo 100, are g0 =
51 and g1 = 77. Notice that g0 ≡ −1 (mod 4) and g0 ≡ 1 (mod 25), and
g1 ≡ 2 (mod 25) is the minimal generator modulo 25.

3. Minimal generators for (Z/200Z)∗, lifted to numbers modulo 200, are g0 =
151, g1 = 101, and g2 = 177. Note that g0 ≡ −1 (mod 4), that g1 ≡ 5
(mod 8), and g2 ≡ 2 (mod 25).

68 CHAPTER 4. DIRICHLET CHARACTERS

In SAGE, the command Integers(N) creates Z/NZ.

sage: R = Integers(49)

sage: R

Ring of integers modulo 49

The unit gens() command computes the unit generators as defined above.

sage: R.unit_gens()

[3]

sage: Integers(25).unit_gens()

[2]

sage: Integers(100).unit_gens()

[51, 77]

sage: Integers(200).unit_gens()

[151, 101, 177]

sage: Integers(2005).unit_gens()

[402, 1206]

sage: Integers(200000000).unit_gens()

[174218751, 51562501, 187109377]

Fix an element ζ of finite multiplicative order in a ring R, and let D(N, R)
denote the group of Dirichlet characters modulo N over R, with image in 〈ζ〉 ∪
{0}. We specify an element ε ∈ D(N, R) by giving the list

[ε(g0), ε(g1), . . . , ε(gn)] (4.3.1)

of images of the generators of (Z/NZ)∗. (Note if N is even, the number of
elements of the list (4.3.1) does not depend on whether or not 8 | N—there
are always two factors corresponding to 2.) This representation completely
determines ε and is convenient for arithmetic operations with Dirichlet characters.
It is analogous to representing a linear transformation by a matrix. See Section 4.7
for a discussion of alternative ways to represent Dirichlet characters.

4.4 Evaluation of Dirichlet Characters

This section is about how to compute ε(n), where ε is a Dirichlet character
and n is an integer. We begin with an example.

Example 4.4.1. If N = 200, then g0 = 151, g1 = 101 and g2 = 177, as we
saw in Example 4.3.6. The exponent of (Z/200Z)∗ is 20, since that is the least
common multiple of the exponents of 4 = #(Z/8Z)∗ and 20 = #(Z/25Z)∗. The
orders of g0, g1 and g2 are 2, 2, and 20. Let ζ = ζ20 be a primitive 20th root of
unity in C. Then the following are generators for D(200, C):

ε0 = [−1, 1, 1], ε1 = [1,−1, 1], ε2 = [1, 1, ζ],

4.4. EVALUATION OF DIRICHLET CHARACTERS 69

and ε = [1,−1, ζ5] is an example element of order 4. To evaluate ε(3), we write 3
in terms of g0, g1, and g2. First, reducing 3 modulo 8, we see that 3 ≡ g0 · g1

(mod 8). Next reducing 3 modulo 25, and trying powers of g2 = 2, we find that
e ≡ g7

2 (mod 25). Thus

ε(3) = ε(g0 · g1 · g7
2)

= ε(g0)ε(g1)ε(g2)
7

= 1 · (−1) · (ζ5)7

= −ζ35 = −ζ15.

We next illustrate the above computation of ε(3) in SAGE. First we make
the group D(200, Q(ζ8)), and list its generators.

sage: G = DirichletGroup(200)

sage: G

Group of Dirichlet characters of modulus 200 over Cyclotomic Field

of order 20 and degree 8

sage: G.exponent()

20

sage: G.gens()

([-1, 1, 1], [1, -1, 1], [1, 1, zeta_20])

We construct ε.

sage: K.<zeta> = G.base_ring()

sage: eps = G([1,-1,zeta^5])

sage: eps

[1, -1, zeta_20^5]

Finally, we evaluate ε at 3.

sage: eps(3)

zeta_20^5

sage: -zeta^15

zeta_20^5

Example 4.4.1 illustrates that if ε is represented using a list as described
above, evaluation of ε is inefficient without extra information; it requires solving
the discrete log problem in (Z/NZ)∗. In fact, for a general character ε calculation
of ε will probably be at least as hard as finding discrete logarithms no matter
what representation we use (quadratic characters are easier—see Algorithm 4.4.5).

Algorithm 4.4.2 (Evaluate ε). Given a Dirichlet character ε modulo N , represented
by a list [ε(g0), ε(g1), . . . , ε(gn)], and an integer a, this algorithm computes ε(a).

1. [GCD] Compute g = gcd(a, N). If g > 1, output 0 and terminate.

70 CHAPTER 4. DIRICHLET CHARACTERS

2. [Discrete Log] For each i, write a (mod pei

i) as a power mi of gi using
some algorithm for solving the discrete log problem (see below). If pi = 2,
write a (mod pei

i) as (−1)m0 · 5m1 . (This step is analogous to writing a
vector in terms of a basis.)

3. [Multiply] Compute and output
∏

ε(gi)
mi as an element of R, and terminate.

(This is analogous to multiplying a matrix times a vector.)

4.4.1 The Discrete log problem

By Exercise 4.3 we have an isomorphism of groups

(1 + pn−1(Z/pnZ), ×) ∼= (Z/pZ, +),

so one sees by induction that Step 2 is “about as difficult” as finding a discrete
log in (Z/pZ)∗. There is an algorithm called “baby-step giant-step”, which
solves the discrete log problem in (Z/pZ)∗ in time O(

√
ℓ), where ℓ is the largest

prime factor of p − 1 = #(Z/pZ)∗ (note that the discrete log problem in
(Z/pZ)∗ reduces to a series of discrete log problems in each prime-order cyclic
factor). This is unfortunately still exponential in the number of digits of ℓ; it
also uses O(

√
ℓ) memory. We now describe this algorithm without any specific

optimizations.

Algorithm 4.4.3 (Baby-Step Giant Step Discrete Log). Given a prime p, a
generator g of (Z/pZ)∗, and an element a ∈ (Z/pZ)∗, this algorithm finds an n
such that gn = a. (Note that this algorithm works in any cyclic group, not just
(Z/pZ)∗.)

1. [Make Lists] Let m = ⌈√p⌉ be the ceiling of
√

p, and construct two lists

g, gm, . . . , g(m−1)m, gm2

(giant steps)

and
ag, ag2, . . . , agm−1, agm (baby steps).

2. [Find Match] Sort the two lists and find a match gim = agj. Then a =
gim−j .

Proof. We prove that there will always be a match. Since we know that a = gk

for some k with 0 ≤ k ≤ p− 1 and any such k can be written in the form im− j
for 0 ≤ i, j ≤ m − 1, we will find such a match.

Algorithm 4.4.3 uses nothing special about (Z/pZ)∗, so it works in a generic
group. It is a theorem that there is no faster algorithm to find discrete logs in
a “generic group” (see [Sho97, Nec94]). Fortunately there are much better
subexponential algorithms for solving the discrete log problem in (Z/pZ)∗,
which use the special structure of this group. They use the number field
sieve (see e.g., [Gor93]), which is also the best known algorithm for factoring
integers. This class of algorithms has been very well studied by cryptographers;

4.4. EVALUATION OF DIRICHLET CHARACTERS 71

though sub-exponential, solving discrete log problems when p is large is still
extremely difficult. For a more in-depth survey see [Gor04]. These algorithms
are particularly relevant when p is large, and their development is motivated
mainly by their application to breaking cryptosystems. For computing Dirichlet
characters in our context, p is not too large, so Algorithm 4.4.3 works well.

4.4.2 Enumeration of all values

The applications of Dirichlet characters in this book involve computing modular
forms, and for these applications N will be fairly small, e.g., N < 106. Also
we will evaluate ε on a huge number of random elements, inside inner loops of
algorithms. Thus for our purposes it will often be better to make a table of all
values of ε, so that evaluation of ε is extremely fast. The following algorithm
computes a table of all values of ε, and it does not require computing any
discrete logs since we are computing all values.

Algorithm 4.4.4 (Values of ε). Given a Dirichlet character ε represented by
the list of values of ε on the minimal generators gi of (Z/NZ)∗, this algorithm
creates a list of all the values of ε.

1. [Initialize] For each minimal generator gi, set ai = 0. Let n =
∏

gai

i , and
set z = 1. Create a list v of N values, all initially set equal to 0. When
this algorithm terminates the list v will have the property that

v [x (mod N)] = ε(x).

Notice that we index v starting at 0.

2. [Add Value to Table] Set v[n] = z.

3. [Finished?] If each ai is one less than the order of gi, output v and
terminate.

4. [Increment] Set a0 = a0 + 1, n = n · g0 (mod N), and z = z · ε(g0). If
a0 ≥ ord(g0), set a0 → 0, then set a1 = a1 + 1, n = n · g1 (mod N), and
z = z · ε(g1). If a1 ≥ ord(g1), do what you just did with a0, but with all
subscripts replaced by 1. Etc. (Imagine a car odometer.) Go to Step 2.

4.4.3 Quadratic characters

Frequently people describe quadratic characters in terms of the Kronecker symbol.
The following algorithm gives a way to go between the two representations.

Algorithm 4.4.5 (Kronecker Symbol). Given an integer N , this algorithm
computes a representation of the Kronecker symbol

(

a
N

)

as a Dirichlet character.

1. Compute the minimal generators gi of (Z/NZ)∗ using Algorithm 4.3.4.

2. Compute
(

gi

N

)

for each gi using one of the algorithms of [Coh93, §1.1.4].

72 CHAPTER 4. DIRICHLET CHARACTERS

Remark 4.4.6. The algorithms in [Coh93, §1.1.4] for computing the Kronecker
symbol run in time quadratic in the number of digits of the input, so they do

not require computing discrete logarithms. (They use, e.g., that
(

a
p

)

≡ a(p−1)/2

(mod p), when p is an odd prime.) If N is very large and we are only interested
in evaluating ε(a) =

(

a
N

)

for a few a, then viewing ε as a Dirichlet character in
the sense of this chapter leads to a less efficient way to compute with ε. The
algorithmic discussion of characters in this chapter is most useful for working
with the full group of characters, and non-quadratic characters.

Example 4.4.7. We compute the Dirichlet character associated to the Kronecker
symbol

(

a
200

)

. We find that
(

gi

200

)

, for i = 0, 1, 2, where the gi are as in
Example 4.4.1:

sage: kronecker(151,200)

1

sage: kronecker(101,200)

-1

sage: kronecker(177,200)

1

Thus the corresponding character is defined by [1,−1, 1].

Example 4.4.8. We compute the character associated to
(

a
420

)

. We have
420 = 4 · 3 · 5 · 7, and minimal generators are

g0 = 211, g1 = 1, g2 = 281, g3 = 337, g4 = 241.

We have g0 ≡ −1 (mod 4), g2 ≡ 2 (mod 3), g3 ≡ 2 (mod 5) and g4 ≡ 3
(mod 7). Using SAGE again we find

(

g0

420

)

=
(

g1

420

)

= 1 and
(

g2

420

)

=
(

g3

420

)

=
(

g4

420

)

= −1, so the corresponding character is [1, 1,−1,−1,−1].

4.5 Conductors of Dirichlet characters

The following algorithm for computing the order of ε reduces the problem to
computing the orders of powers of ζ in R.

Algorithm 4.5.1 (Order of Character). This algorithm computes the order of
a Dirichlet character ε ∈ D(N, R).

1. Compute the order ri of each ε(gi), for each minimal generator gi of
(Z/NZ)∗. Since the order of ε(gi) is divisor of n = #(Z/pei

i Z)∗, we can
compute its order by factoring n and considering the divisors of n.

2. Compute and output the least commmon multiple of the integers ri.

Remark 4.5.2. Computing the order of ε(gi) ∈ R is potentially difficult and
tedious. Using a different (simultaneous) representation of Dirichlet characters
avoids having to compute the order of elements of R. See Section 4.7.

4.5. CONDUCTORS OF DIRICHLET CHARACTERS 73

The next algorithm factors ε as a product of “local” characters, one for
each prime divisor of N . It is useful for other algorithms, e.g., for explicit
computations with trace formuls (see [Hij74]). This factorization is easy to
compute because of how we represent ε.

Algorithm 4.5.3 (Factorization of Character). Given a Dirichlet character ε ∈
D(N, R), with N =

∏

pei

i , this algorithm finds Dirichlet characters εi modulo
pei

i , such that for all a ∈ (Z/NZ)∗, we have ε(a) =
∏

εi(a(mod pei

i)). If 2 | N ,
the steps are as follows:

1. Let gi be the minimal generators of (Z/NZ)∗, so ε is given by a list

[ε(g0), . . . , ε(gn)].

2. For i = 2, . . . , n, let εi be the element of D(pei

i , R) defined by the singleton
list [ε(gi)].

3. Let ε1 be the element of D(2e1 , R) defined by the list [ε(g0), ε(g1)] of
length 2. Output the εi and terminate.

If 2 ∤ N , then omit Step 3, and include all i in Step 2.

The factorization of Algorithm 4.5.3 is unique since each εi is determined by
the image of the canonical map (Z/pei

i Z)∗ in (Z/NZ)∗, which sends a (mod pei

i)
to the element of (Z/NZ)∗ that is a (mod pei

i) and 1 (mod p
ej

j) for j 6= i.

Example 4.5.4. If ε = [1,−1, ζ5] ∈ D(200, C), then ε1 = [1,−1] ∈ D(8, C) and
ε2 = [ζ5] ∈ D(25, C).

Definition 4.5.5 (Conductor). The conductor of a Dirichlet character ε ∈
D(N, R) is the smallest positive divisor c | N such that there is a character
ε′ ∈ D(c, R) for which ε(a) = ε′(a) for all a ∈ Z with (a, N) = 1. A Dirichlet
character is primitive if its modulus equals its conductor. The character ε′

associated to ε with modulus equal to the conductor of ε is called the primitive
character associated to ε.

We will be interested in conductors later, when computing new subspaces of
spaces of modular forms with character. Also certain formulas for special values
of L functions are only valid for primitive characters.

Algorithm 4.5.6 (Conductor). This algorithm computes the conductor of a
Dirichlet character ε ∈ D(N, R).

1. [Factor Character] Using Algorithm 4.5.3, find characters εi whose product
is ε.

2. [Compute Orders] Using Algorithm 4.5.1, compute the orders ri of each εi.

3. [Conductors of Factors] For each i, either set ci → 1 if εi is the trivial

character (i.e., of order 1), or set ci = p
ordpi

(ri)+1

i , where ordp(n) is the
largest power of p that divides n.

74 CHAPTER 4. DIRICHLET CHARACTERS

4. [Adjust at 2?] If p1 = 2 and ε1(5) 6= 1, set c1 = 2c1.

5. [Finished] Output c =
∏

ci and terminate.

Proof. Let εi be the local factors of ε, as in Step 1. We first show that the
product of the conductors fi of the εi is the conductor f of ε. Since εi factors
through (Z/fiZ)∗, the product ε of the εi factors through (Z/

∏

fiZ)∗, so the
conductor of ε divides

∏

fi. Conversely, if ordpi
(f) < ordpi

(fi) for some i, then
we could factor ε as a product of local (prime power) characters differently,
which contradicts that this factorization is unique.

It remains to prove that if ε is a nontrivial character modulo pn, where p is
a prime, and r is the order of ε, then the conductor of ε is pordp(r)+1, except
possibly if 8 | pn. Since the order and conductor of ε and of the associated
primitive character ε′ are the same, we may assume ε is primitive, i.e., that pn

is the conductor of ε; note that n > 0, since ε is nontrivial.

First suppose p is odd. Then the abelian group D(pn, R) splits as a direct
sum D(p, R) ⊕ D(pn, R)′, where D(pn, R)′ is the p-power torsion subgroup of
D(pn, R). Also ε has order u · pm, where u, which is coprime to p, is the order
of the image of ε in D(p, R) and pm is the order of the image in D(pn, R)′. If
m = 0, then the order of ε is coprime to p, so ε is in D(p, R), which means
that n = 1, so n = m + 1, as required. If m > 0, then ζ ∈ R must have order
divisible by p, so R has characteristic not equal to p. The conductor of ε does
not change if we adjoin roots of unity to R, so in light of Lemma 4.3.1 we may
assume that D(N, R) ≈ (Z/NZ)∗. It follows that for each n′ ≤ n, the p-power
subgroup D(pn′

, R)′ of D(pn′

, R) is the pn′−1-torsion subgroup of D(pn, R)′.
Thus m = n− 1, since D(pn, R)′ is by assumption the smallest such group that
contains the projection of ε. This proves the formula of Step 3. We leave the
argument when p = 2 as an exercise (see Exercise 4.4).

Example 4.5.7. If ε = [1,−1, ζ5] ∈ D(200, C), then as we saw in Example 4.5.4, ε
is the product of ε1 = [1,−1] and ε2 = [ζ5]. Because ε1(5) = −1, the conductor
of ε1 is 8. The order of ε2 is 4 (since ζ is a 20th root of unity), so the conductor
of ε2 is 5. Thus the conductor of ε is 40 = 8 · 5.

4.6 Restriction, Extension, and Galois Orbits

The following two algorithms restrict and extend characters to a compatible
modulus. Using them it is easy to define multiplication of two characters ε ∈
D(N, R) and ε′ ∈ D(N ′, R′), as long as R and R′ are subrings of a common
ring. To carry out the multiplication, just extend both characters to a common
base ring, then extend them to characters modulo lcm(N, N ′), then multiply.

Algorithm 4.6.1 (Restriction of Character). Given a Dirichlet character ε ∈
D(N, R) and a divisor N ′ of N that is a multiple of the conductor of ε, this
algorithm finds a characters ε′ ∈ D(N ′, R), such that ε′(a) = ε(a), for all a ∈ Z
with (a, N) = 1.

4.6. RESTRICTION, EXTENSION, AND GALOIS ORBITS 75

1. [Conductor] Compute the conductor of ε using Algorithm 4.5.6, and verify
that indeed N ′ is divisible by the conductor and divides N .

2. [Minimal Generators] Compute the minimal generators gi for (Z/N ′Z)∗.

3. [Values of Restriction] For each i, compute ε′(gi) as follows. Find a
multiple aN ′ of N ′ such that (gi +aN ′, N) = 1; then ε′(gi) = ε(gi +aN ′).

4. [Output Character] Output the Dirichlet character modulo N ′ defined by
[ε′(g0), . . . , ε

′(gn)].

Proof. The only part that is not clear is that in Step 3 there is an a such that
(gi +aN ′, N) = 1. If we write N = N1 ·N2, with (N1, N2) = 1, and N1 divisible
by all primes that divide N ′, then (gi, N1) = 1 since (gi, N

′) = 1. By the
Chinese Remainder Theorem, there is an x ∈ Z such that x ≡ gi (mod N1) and
x ≡ 1 (mod N2). Then x = gi + bN1 = gi + (bN1/N

′) · N ′ and (x, N) = 1,
which completes the proof.

Algorithm 4.6.2 (Extension of Character). Given a Dirichlet character ε ∈
D(N, R) and a multiple N ′ of N , this algorithm finds a characters ε′ ∈ D(N ′, R),
such that ε′(a) = ε(a), for all a ∈ Z with (a, N ′) = 1.

1. [Minimal Generators] Compute the minimal generators gi for (Z/N ′Z)∗.

2. [Evaluate] Compute ε(gi) for each i. Since (gi, N
′) = 1, we also have

(gi, N) = 1.

3. [Output Character] Output the character defined by [ε(g0), . . . , ε(gn)].

We finish with an algorithm that computes the Galois orbit of an element
in D(N, R). This can be used to divide D(N, R) up into Galois orbits, which is
useful for modular forms computations, because, e.g., the spaces Mk(Γ1(N))(ε)
and Mk(Γ1(N))(ε′) are canonically isomorphic if ε and ε′ are conjugate.

Algorithm 4.6.3 (Galois Orbit). Given a Dirichlet character ε ∈ D(N, R), this
algorithm computes the orbit of ε under the action of G = Gal(F/F), where F
is the prime subfield of Frac(R), so F = Fp or Q.

1. [Order of ζ] Let n be the order of the chosen root ζ ∈ R.

2. [Nontrivial Automorphisms] If char(R) = 0, let

A = {a : 2 ≤ a < n and (a, n) = 1}.

If char(R) = p > 0, compute the multiplicative order r of p modulo n,
and let

A = {pm : 1 ≤ m < r}.

3. [Compute Orbit] Compute and output the set of unique elements εa for
each a ∈ A (there could be repeats, so we output unique elements only).

76 CHAPTER 4. DIRICHLET CHARACTERS

Proof. We prove that the nontrivial automorphisms of 〈ζ〉 in characteristic p
are as in Step 2. It is well-known that every automorphism in characteristic p
on ζ ∈ Fp is of the form x 7→ xps

, for some s. The images of ζ under such
automorphisms are

ζ, ζp, ζp2

,

Suppose r > 0 is minimal such that ζ = ζpr

. Then the orbit of ζ is ζ, . . . , ζpr−1

.
Also pr ≡ 1 (mod n), where n is the multiplicative order of ζ, so r is the
multiplicative order of p modulo n, which completes the proof.

Example 4.6.4. The Galois orbits of characters in D(20, C∗) are as follows:

G0 = {[1, 1, 1]},
G1 = {[−1, 1, 1]},
G2 = {[1, 1, ζ4], [1, 1,−ζ4]}
G3 = {[−1, 1, ζ4], [−1, 1,−ζ4]}
G4 = {[1, 1,−1]},
G5 = {[−1, 1,−1]}

The conductors of the characters in orbit G0 are 1, in order G1 are 4, in orbit G2

they are 5, in G3 they are 20, in G4 the conductor is 5, and in G5 the conductor
is 20. (You should verify this.)

SAGE computes Galois orbits as follows:

sage: G = DirichletGroup(20)

sage: G.galois_orbits()

[[[1, 1]], [[-1, 1]],

[[1, zeta4], [1, -zeta4]],

[[-1, zeta4], [-1, -zeta4]],

[[1, -1]], [[-1, -1]]]

4.7 Alternative Representations of Characters

Let N be a positive integer and R an integral domain, with fixed root of unity ζ
order n, and let D(N, R) = D(N, R, ζ). As in the rest of this chapter, write
N =

∏

pei

i , and let Ci = 〈gi〉 be the corresponding cyclic factors of (Z/NZ)∗.
In this section we discuss other ways to represent elements ε ∈ D(N, R). Each
representation has advantages and disadvantages, and no single representation is
best. It emerged while writing this chapter that simultaneously using more than
one representation of elements of D(N, R) would be best. It is easy to convert
between them, and some algorithms are much easier using one representation,
than when using another. In this section we present two other representations,
each which has advantages and disadvantages. But, we emphasize that there is
frequently no reason to restrict to only one representation!

4.7. ALTERNATIVE REPRESENTATIONS OF CHARACTERS 77

We could represent ε by giving a list [b0, . . . , bn], where each bi ∈ Z/nZ and
ε(gi) = ζbi . Then arithmetic in D(N, R) is arithmetic in (Z/nZ)n+1, which
is very efficient. A drawback to this approach is that it is easy to accidently
consider sequences that do not actually correspond to elements of D(N, R),
though it is not really any easier to do this than with the representation we use
elsewhere in this chapter. Also the choice of ζ is less clear, which can cause
confusion. Finally, the orders of the local factors is more opaque, e.g., compare
[−1, ζ40] with [20, 1]. Overall this representation is not too bad, and is more like
representing a linear transformation by a matrix. It has the advantage over the
representation discussed earlier in this chapter that arithmetic in D(N, R) is
very efficient, and doesn’t require any operations in the ring R; such operations
could be quite slow, e.g., if R were a large cyclotomic field.

Another way to represent ε would be to give a list [b0, . . . , bn] of integers,
but this time with bi ∈ Z/ gcd(si, n)Z, where si is the order of gi. Then

ε(gi) = ζbi·n/(gcd(si,n)),

which is already complicated enough to ring warning bells. With this representation
we set up an identification

D(N, R) ∼=
⊕

i

Z/ gcd(si, n)Z,

and arithmetic is efficient. This approach is seductive because every sequence
of integers determines a character, and the sizes of the integers in the sequence
nicely indicate the local orders of the character. However, giving analogues of
many of the algorithms discussed in this chapter that operate on characters
represented this way is tricky. For example, the representation depends very
much on the order of ζ, so it is difficult to correctly compute natural maps
D(N, R) → D(N, S), for R ⊂ S rings, whereas for the representation elsewhere
in this chapter such maps are trivial to compute. This was the representation
the author (Stein) implemented in MAGMA.

The PARI documentation says the following (where we have preserved the
incorrect typesetting):

“A character on the Abelian group ⊕(Z/NiZ)gi is given by a row
vector χ = [a1, . . . , an] such that χ(

∏

gni

i) = exp(2iπ
∑

aini/Ni).”

This means that the abelian group has independent generators gi of order Ni.
This definition says that, e.g., the value of the character on g1 is

χ(g1) = (e2πi/N1)a1 .

Thus the integers ai are integers modulo Ni, and this representation is basically
the same as the one we described in the previous paragraph (and which the
author does not like).

78 CHAPTER 4. DIRICHLET CHARACTERS

4.8 Exercises

4.1 This exercise is about the structure of the units of Z/pnZ.

(a) If p is odd and n is a positive integer, prove that (Z/pnZ)∗ is cyclic.

(b) If n ≥ 3 prove that (Z/2nZ)∗ is a direct sum of the cylclic subgroups
〈−1〉 and 〈5〉, of orders 2 and 2n−2, respectively.

4.2 Prove that Algorithm 4.3.4 works, i.e., that if g ∈ (Z/prZ)∗ and gn/pi 6= 1
for all pi | n = ϕ(n), then g is a generator of (Z/prZ)∗.

4.3 Let p be an odd prime and n ≥ 2 an integer, and prove that

(1 + pn−1(Z/pnZ), ×) ∼= (Z/pZ, +).

Use this to show that solving the discrete log problem in (Z/pnZ)∗ is “not
much harder” than solving the discrete log problem in (Z/pZ)∗.

4.4 Suppose ε is a nontrivial Dirichlet character modulo 2n of order r over the
complex numbers C. Prove that the conductor of ε is

c =

{

2ord2(r)+1 if ε(5) = 1

2ord2(r)+2 if ε(5) 6= 1.

4.5 (a) Find an irreducible quadratic polynomial f over F5.

(b) Then F25 = F5[x]/(f). Find an element with multiplicative order 5
in F25.

(c) Make a list of all Dirichlet characters in D(25, F25, ζ).

(d) Divide these characters up into orbits for the action of Gal(F5/F5).

