next up previous
Next: The Torsion Subgroup Up: Lecture 27: Torsion Points Previous: Mordell's Theorem

Exploring the Possibilities

As $ E$ varies over all elliptic curves over  $ \mathbb{Q}$, what are the possibilities for $ E(\mathbb{Q})$? What finitely generated abelian groups occur? Mordell's theorem implies that

$\displaystyle E(\mathbb{Q}) \approx \mathbb{Z}^r \oplus E(\mathbb{Q})_{\tor},
$

where $ E(\mathbb{Q})_{\tor}$ is the set of points of finite order in $ E(\mathbb{Q})$ and $ \mathbb{Z}^r\approx E(\mathbb{Q})/E(\mathbb{Q})_{\tor}$. The number $ r$ is called the rank of $ E$.



Subsections

William A Stein 2001-11-16