William A. Stein
 Abstract:      Using an implementation of the modular symbols algorithm
described in Cremona's book Algorithms for modular 
elliptic curves I computed, for each 
prime N between 2 and 577, an integer DNwhich is divisible by the discriminant of
the Hecke algebra TN
associated to weight 2 cusp forms
of level N for 
 
    The Hecke algebra T=TN
is an order in a 
product E = 
E1 × E2 × ... × En
of totally
real number fields.  The discriminant of T, 
denoted disc(T),
is the product of
the discriminants of the number fields Ei, multiplied by the
square of the index of T
in its normalization.
 
Fix a prime number N and let S(N) be the space of
weight 2 cusp forms of level N for 
 
 
 
 
 
 .
For p not equal to N let Tp be the p-th Hecke
operator, and let dp be the discriminant
of the characteristic polynomial of Tp acting on S(N).
Consider the sequence of integers
.
For p not equal to N let Tp be the p-th Hecke
operator, and let dp be the discriminant
of the characteristic polynomial of Tp acting on S(N).
Consider the sequence of integers
 
where we omit p if p=N. 
Since each term divides its predecessor, this sequence must 
eventually stabilize at some limit  .
Since each term is divisible by the discriminant
of
.
Since each term is divisible by the discriminant
of  ,
this discriminant divides
,
this discriminant divides  .
.
      I have written a program which
computes the above sequence until it repeats some value DN for 
15 terms.  The result of that computation is given
in table 1, which can be found at the end of this document.
It is interesting to note that N=389 is the only case in our tables
for which N|DN. 
I have checked up to N=14537 and found no other 
cases in which this occurs. Whether or not this ever occurs
is of interest to 
Ribet 
as this hypothesis plays a role in his paper, 
``Torsion points on J0(N) and galois representations.'' 
      Another problem is to determine, for each N in table 1, whether
the primes dividing DN are exactly the same as the primes dividing
disc(T).
I have checked that this is the case for 
N < 73.
If the ring 
 is not reduced then 
p|disc(T).
This ring can't be reduced if Tq is not diagonalizable 
(modulo p) for some prime q not equal to N.
However, this sufficient condition is not always necessary, as the
case N=37 illustrates.  Here 2 ramifies in the Hecke algebra
even though the Hecke operators Tq with
is not reduced then 
p|disc(T).
This ring can't be reduced if Tq is not diagonalizable 
(modulo p) for some prime q not equal to N.
However, this sufficient condition is not always necessary, as the
case N=37 illustrates.  Here 2 ramifies in the Hecke algebra
even though the Hecke operators Tq with  act semisimply modulo 2.
act semisimply modulo 2.  
  N 
DN
  (upper bound on discriminant of Hecke algebra)
 
11 
1 
13 
0 
17 
1 
19 
1 
23 
5 
29 
23 
31 
5 
37 
22 
41 
22×37 
43 
25 
47 
19×103 
53 
24×37 
59 
27×31×557 
61 
24×37 
67 
24×54 
71 
34×2572 
73 
24×32×5×13 
79 
24×83×983 
83 
28×197×11497 
89 
26×53×6689 
97 
26×72×2777 
101 
28×17568767 
103 
28×5×17×411721 
107 
212×5×7×1667×19079 
109 
210×72×7537 
113 
210×34×72×112×107 
127 
212×34×7×86235899 
131 
219×5×46141×75619573 
137 
210×52×29×401×895241 
139 
214×32×72×997×2151701 
149 
212×72×234893×1252037 
151 
218×72×11×672×257×439867 
157 
213×61×397×48795779 
163 
215×32×65657×82536739 
167 
216×5×8269×5103536431379173 
173 
214×52×7×29×5608385124289 
179 
222×34×72×313×137707×536747147 
181 
216×52×7×61×397×595051637 
191 
28×33×5×382146223×319500117632677 
193 
214×5×112×17×103×401×4153×680059 
197 
218×52×61×397×35217676193989 
199 
216×3×53×29×31×712×347×947×37316093 
211 
220×3×5×74×412×43×229×52184516509 
223 
236×72×19×103×3995922697473293141 
227 
237×32×53×74×132×29×312×13591×57139×273349 
229 
232×107×17467×39555937×53625889 
233 
222×37×53×139×653×4127×24989×8388019 
239 
212×72×2833×51817×97423×1174779433×8920940047 
241 
223×97×1489×20857×651474368435017 
251 
228×52×29×373×8768135668531×2006012696666681 
257 
265×29×479×71711×409177×654233×32354821 
263 
220×11×61×397×15631853×34867513×97092067×252746489 
269 
222×32×43×151×27767×65657×5550873754172978311 
271 
224×32×1367×6091×592661×1132673×14171513×172450541 
277 
222×52×19×29×37×1372×92767×1530091×25531570859 
281 
222×3×5×181×857×8388019×2647382149×1778899342669 
283 
246×349×1297×413713×73199099×5832488839 
293 
226×32×29×233×23512×69763×42711913589792108923 
307 
250×36×55×112×133×1072×457×3697×21577×974513×568380457 
311 
216×52×29×3013091897×2106873009119126062143259000543887593 
313 
224×5×412×8619587×9614923×130838023×2164322751511 
317 
226×7×367×3217×660603043×14989400036918065702697531 
331 
238×32×532×229×1399×21911×205493×6363601×584461573862449 
337 
228×113×593×2791×2963615537×747945736667×4122851467451 
347 
261×5×72×192×331×349×479×617×1797330450291217×918291275915301361 
349 
228×13×103×1118857×72318613×6771977049413×1313981654817031 
353 
234×32×5×1272×229×114641×551801×12611821×7779730837×24314514437 
359 
236×36×2777×16512254293×64542630435970307×2171776478013633068927 
367 
244×7×81421×251387×418175501×15354151381×13144405392643360366681 
373 
232×7×113×23×199×673×2143×1542194372227×72819251148518000363297 
379 
234×59×317×421×278329×5698591×2117788336277×2851210737989187265253 
383 
232×5×112×13×72893×3151861×16141144314299×
178236551484825400362837637090811 
389 
263×34×56×312×37×389×3881×215517113148241×477439237737571441 
397 
257×232×312×97×317×7612×302609750073209×83566618884497478937 
401 
296×52×19×163×2932×811×1218675071×71742740351×388881803749×34393898968391 
409 
232×33×17×1667×1741×2341×537071×14884451×18631199×1334964067081334453235547 
419 
255×17×43×113×151×167×971×493657×20375986548898473293×53097073649092855361102575237 
421 
234×3×31×557×4729×825403×857459×144211946777593109
×2328579379136648917067 
431 
291×34×56×11×192×29×31×43×197×257×69472×37619×29252013842927×806505757406715084824003 
433 
268×37×72×372×101×379×1439×3613×18719×2792477×77087971×5830108671536745647 
439 
266×32×5×312×173×84179×85667×16794662617×513841517138871835091506167235408934202857 
443 
288×32×72×312×499×6899×48508479390300197×2817219327571188909266947704801865987 
449 
240×3×72×101×44933757980789×188247485945671
×653016225615601×1431966252229376199841 
457 
236×5×312×653×3169×38983093×52621913×33122975406370693×5653726203394180386934181 
461 
273×5×72×193×972×80750473×3104029729×607263139073×3729490905341009668647473177 
463 
262×113×311×9929×568201×132502583×1474412920219×2770309905285622039024420194209857723 
467 
271×172×1212648089519×32432206859088781×6296651104824906148358708614333895055221783 
479 
232×13×17×1861×4021×28745083×41556253×1202203127423×201529385024397103×7037463122648759781611869895003 
487 
272×316×54×132×172×194×59×1032×109×257×623519211698413571686763×15408475904697077364866629 
491 
2104×56×192×43×131×479×887×5650859×54796097920639362740205317747356273097682333252495603721 
499 
269×311×5×712×167×495613×25224990196319×573452584782809×277143583167463430555979797274731 
503 
278×32×54×112×193×257×821×20032×13597×45587×384479819×8659024393×20115672029938390602701696607766073563 
509 
271×33×13×157×971×1277×4567×3691783×42330311×1157039662523351992921397×6331071860925306189417509 
521 
242×23×53×67×929×13877×531096383×19526270957×1089951135204631559833×14340527343875384245648725589439 
523 
291×3×5×413×59×1492×1201×279121937×8371971617×9059602909494267071628228952878552757512056969593 
541 
246×32×5×13×277×307×591581×1940573213×221136462575339×1453183329662653×18044474614550745414465332996771 
547 
2105×73×73×1032×5501×11783×16097×43781×1152631×146768003×9959758037×91268351929×102277460687×106666343972273 
557 
246×74×132×4787×252163×16849164271275021852893×53296770296923102812608983×2381022539751738307256162767 
563 
2139×52×134×372×612×37591×52667×155083×301703×938251×46706589087295134421×299128314984453465128592656821021 
569 
246×73×449531828286229614392569×189316003×257022598600391962761793946239×2294643649486046267496627432517 
571 
2166×312×58×74×132×17×373×412×792×1272×181×211×293×709×15792×16672×12030433×807024744595934649052018211 
577 
2131×312×54×133×592×612×257×163753×41340850017998228328234516909328723846661×85934741209775683850815667