The following are the valuations 
 at
 at  of the discriminant
of the Hecke algebras associated to
 of the discriminant
of the Hecke algebras associated to 
 for
 for  .
.
 
| 
|  | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |  |  | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 8 | 8 |  |  | 61 | 67 | 71 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 | 127 | 131 | 137 | 139 |  |  | 10 | 10 | 10 | 12 | 12 | 12 | 14 | 16 | 16 | 16 | 16 | 18 | 18 | 20 | 20 | 22 | 24 |  |  | 149 | 151 | 157 | 163 | 167 | 173 | 179 | 181 | 191 | 193 | 197 | 199 | 211 | 223 | 227 | 229 | 233 |  |  | 24 | 24 | 26 | 26 | 26 | 28 | 28 | 30 | 30 | 32 | 32 | 32 | 34 | 36 | 36 | 38 | 38 |  |  | 239 | 241 | 251 | 257 | 263 | 269 | 271 | 277 | 281 | 283 | 293 | 307 | 311 | 313 | 317 | 331 | 337 |  |  | 38 | 40 | 40 | 42 | 42 | 44 | 44 | 46 | 46 | 46 | 48 | 50 | 50 | 52 | 52 | 54 | 56 |  |  | 347 | 349 | 353 | 359 | 367 | 373 | 379 | 383 | 389 | 397 | 401 | 409 | 419 | 421 | 431 | 433 | 439 |  |  | 56 | 58 | 58 | 58 | 60 | 62 | 62 | 62 | 65 | 66 | 66 | 68 | 68 | 70 | 70 | 72 | 72 |  |  | 443 | 449 | 457 | 461 | 463 | 467 | 479 | 487 | 491 | 499 |  |  |  |  |  |  |  |  |  | 72 | 74 | 76 | 76 | 76 | 76 | 78 | 80 | 80 | 82 |  |  |  |  |  |  |  |  | 
For each prime tex2html_wrap_inline$p$, let 
displaymath
 &delta#delta;(p) = S_4(&Gamma#Gamma;_0(p)) - S_p+3(&Gamma#Gamma;_0(1)).
 
Then tex2html_wrap_inline$|&delta#delta;(p) - d_4(&Gamma#Gamma;_0(p))| &le#leq;2$ for each tex2html_wrap_inline$p<500$.
Moreover, for every tex2html_wrap_inline$p&ne#neq;139$ we have that tex2html_wrap_inline$&delta#delta;(p)&ge#geq;
d_4(&Gamma#Gamma;_0(p))$, but for tex2html_wrap_inline$p=139$, tex2html_wrap_inline$&delta#delta;(p)=23$ but
tex2html_wrap_inline$d_4(&Gamma#Gamma;_0(p))=24$.