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Motivating Problem
Let K be a number field.

Theorem (Mordell-Weil): If E is an elliptic curve over K, then E(K) is a finitely generated
abelian group.

Thus E (K )i, is a finite group.



Problem: Which finite abelian groups E/ (K )tor occur, as we vary over all elliptic curves E/ / K?

Observation: E'(K);,, is a finite subgroup of C /A, so E(K )., is cyclic or a product of two
cyclic groups.

An Old Conjecture

Conjecture (Levi around 1908; re-made by Ogg in 1960s):
When K = Q, the groups E(Q);.r, as we vary over all E/Q), are the following 15 groups:
Z/mZ form < 10orm = 12

(Z/2Z) x (Z/20Z) forv < 4,

Note:

1. This is really a conjecture about rational points on certain curves of (possibly) higher genus
(title of Michael Stoll's talk today)...
2. Or, it's a conjecture in arithmetic dynamics about periodic points.

Modular Curves

The modular curves Yy (V) and Y; (N):

o Let Yy(IV) be the affine modular curve over Q whose points parameterize isomorphism
classes of pairs (E, C ), where C' C E is a cyclic subgroup of order N .



o Let Y1 () be ... of pairs (E, P), where P € E(Q) is a point of order N .
Let X((IN) and X; (V) be the compactifications of the above affine curves.

Observation: There is an elliptic curve E/ K with p | #E(K) if and only if Y (p)(K) is
nonempty.

Also, Yy (V) is a quotient of Y7 (IN), so if Yy (IV)(K) is empty, then so is Yy (V).

Mazur's Theorem (1970s)

Theorem (Mazur) If p | #E(Q);or for some elliptic curve E /Q, thenp < 13.

Combined with previous work of Kubert and Ogg, one sees that Mazur's theorem implies Levi's
conjecture, i.e., a complete classification of the finite groups F (Q)tor.

Here are representative curves by the way (there are infinitely many for each j-invariant):

for ainvs in ([01_2]1[018]1[014]1[410]1[or-lr-llolo]l[oll]l
[ll _ll ll _31 3]![7101011610]1 [11_1111_14129]1
[1,0,0,-45,81], [1, -1, 1, -122, 1721], [-4,0],
[11_51_51010]1 [51_31_61010]1 [171_601_1201010] ):
E = EllipticCurve(ainvs)
view( (E.torsion subgroup().invariants(), E))

(,y* ==2*—-2)

(2,4 =*+8)

(3.4 =2 + 4)

(4].4 = 2* + dz)

(5], y° —y = 2® — z?)

([6],y° = 2®+1)

(7, v* +zy+y=2° — 2% — 3z + 3)
([8],y* + Tzxy = z* + 16z)

([9],9* + zy +y = 2% — 2% — 14z + 29)
([10], 42 + zy = 23 — 45x + 81)

([12] , 9% + zy +y = 2° — 2? — 1222 + 1721)
([272] 7y2 =z’ — 433)

([4,2],9? + zy — by = =3 — 5x?)
([6,2],9* + bzy — 6y = x> — 3z?)
([8,2] , 4% + 17zy — 120y = z* — 60x?)



Mazur's Method

Theorem (Mazur) If p | #E(Q)or for some elliptic curve E/Q, then p < 13.
Basic idea of the proof:

1. Find a rank zero quotient A of Jy(p) such that...
2. ...the induced map f : X (p) — A is a formal immersion at infinity (this means that the
induced map on complete local rings is surjective, or equivalently, that the induced map on
cotangent spaces is surjective).
. Then consider the point * € Y (p) corresponding to a pair (E, <P >) , where P has order p.
4. If E has potentially good reduction at 3, get contradiction by injecting p-torsion mod 3 since
p > 13, so E has multiplicative reduction, hence we may assume T reduces to the cusp 0O.

5. The image of « in A(Q) is thus in the kernel of the reduction map mod 3.  But this kernel of
reduction is a formal group, hence torsion free. But A(Q) = A(Q)tmr is finite, so image of
T is 0.

6. Use that f is a formal immersion at infinity along with step 5, to show that Z = 00, which is a
contradiction since € Yy (p).

W

Mazur uses for A the Eisenstein quotient of J, (p) because he is able to prove -- way back in the
1970s! -- that this quotient has rank 0 by doing a p-descent. This is long before much was known
toward the BSD conjecture. More recently one can:

o Merel 1995: use the winding quotient of J, (p) , which is the maximal analytic rank 0
quotient. This makes the arguments easier, and we know by Kolyvagin-Logachev et al. or by
Kato that the winding quotient has rank 0.

o Parent 1999: use the winding quotient of J; (p), which leads to a similar argument as above.
This quotient has rank 0 by Kato's theorem.

Kamienny-Mazur

A prime p is a torsion prime for degree d if there is a number field K of degree d and an elliptic
curve E/K suchthat D | #E (K )tor.

Let S(d) = {torsion primes for degree < d}. For example, S(1) = {2, 3,5, 7}.



Finding all possible torsion structure over all fields of degree < d often involves determining S (d)
then doing some additional work (which we won't go into). E.g.,

Theorem (Frey, Faltings): If S(d) is finite, then the set of groups E (K )i, as E varies over all
elliptic curves over all number fields K of degree < d, is finite.

Kamienny and Mazur: Replace X (p) by the symmetric power X (p) () and gave an explicit

criterion in terms of independence of Hecke operators for f; : X (p) () Jo (p) to be a formal
immersion at (OO, 00, ...y OO) Apointy € X (p)(K), where K has degree d, then defines a

pointy € X (p)(d) (Q), etc.

Theorem (Kamienny and Mazur):

. S(2) =1{2,3,5,7,11,13},
 S(d) is finite for d < 8,
o S(d) has density 0 for all d.

Corollary (Uniform Boundedness): There is a fixed constant B such that if E// K is an elliptic
curve over a number field of degree < 8, then #FE (K )tor < B.

(Very surprising!)

Torsion Structures over Quadratic Fields

Theorem (Kenku, Momose, Kamienny, Mazur): The complete list of subgroups that appear over
quadratic fields is:

Z/mZ for m<=16 or m=18
(2/22) x (2/2vZ) for v<=6.

(2/32) x (2/3vZz) for v=1,2

(2/42) x (Z/4vZ)

and each occurs for infinitely many 7-invariants.

What is S(d)?

Kamienny, Mazur: "We expect that maz(S(3)) < 19, but it would simply be too embarrassing to
parade the actual astronomical finite bound that our proof gives."



But soon, Merel in a four de force, proves (by using the winding quotient and a deep modular
symbols argument about independence of Hecke operators):

Theorem (Merel, 1996): max(S(d)) < d* ford > 2.
thus proving the full Universal Boundedness Conjecture, which is a huge result.

Shortly thereafter Oesterle modifies Merel's argument to get a much better upper bound:
Theorem (Oesterle): max(S(d)) < (3%% + 1)2.

for d in [1..10]:

print '%2s%10s $s'%(d, floor((3"(d/2)+1)"2), d"(3*d"2))

1 7 1

2 16 4096

3 38 7625597484987

4 100 79228162514264337593543950336
5 275

26469779601696885595885078146238811314105987548828125

6 784
109732441312869509501449851976294844429931517040974256952168836
69310779664367616

7 2281
169594546175636826980540058407921025216322438767327712321503417
856731878591823809299439924812705151100914349041188035543

8 6724
247330401473104534060502521019647190035131349101211839914063056
722510653186717031640106124304498959767142601613933935136503430
09967546155101893167916606772148699136

9 19964
760203375682968817953561210192734243479800622291334588209667171
264508475583856383991330446400098575131267909961063416584827367
692522663416083613709397190583473914100243037919870652143046001
7236044960360057945209303129

10 59536
100000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000

Parent's Method: Nailing Down S(3)

By Oesterle, we know that max(.S(3)) < 37.



In 1999, Parent made Kamienny's method applied to J; (p) explicit and computable, and used this to
bound S (3) explicitly, showing that maX(S (3)) < 17. This makes crucial use of Kato's theorem
toward the Birch and Swinnerton-Dyer conjecture!

In subsequent work, Parent rules out 17 finally giving the answer:
S(3) = {2,3,5,7,11,13}

The list of groups E (K ), that occur for K cubic is still unknown. However, using the notion of
trigonality of modular curves (having a degree 3 map to P 1), Jeon, Kim, and Schweizer showed that
the groups that appear for infinitely many j-invariants are:

Z/m% for m<=16, 18, 20
72/2%2 x Z/2vZ for v<=7

What about Degree 4?

By Oesterle, we know that max(.S(4)) < 97.

Recently, Jeon, Kim, and Park (2006), again used gonality (and big computations with Singular), to
show that the groups that appear for infinitely many 7-invariants for curves over quartic fields are:

Z/mz for m<=18, or m=20, m=21, m=22, m=24
72/2%2 x Z/2VZ for v<=9

Z2/3%2 x 2/3vZ for v<=3

72/47 x Z/4vZ for v<=2

72/57 x 2/5%

72/67Z x Z/6%

Question (Kamienny to me): Is S(4) = {2, 3,5,7,11,13,17}?

Explicit Kamienny-Parent for d = 4

To attack the above unsolved problem about .S (4), we made Parent's (1999) approach very explicit in
case d = 4 and £ = 2 (he gives a general criterion for any d...). One arrives that the following
(where ? is a certain explicitly computed element of the Hecke algebra):



Proposition 3.3. Let p > 25 be a prime and consider Hecke operators Ty, in
the Hecke algebra T = Tr () ® Fa associated to S3(I'1(p); F2). Consider the
follownng sequences of 4 elements of the Hecke algebra mod 2:

1. Partition 4=4: (t,tTs, tT3,tT})

2. Partition 4=1+3: (t, t{d),t(d)Ts,t(d)T3),
forl <d<p/2.

3. Partition 4=2+2: (t,tT>, t(d),t(d)Ts),
forl <d<p/2.

4. Partition 4=1+1+2: (t, t(dl), t(dQ),t(dQ)TQ),
for1 <dy # ds < p/2.

5. Partition 4=1+1+1+1: (t, t{d1), t(d2), t(ds)),
for 1 <d; # ds # ds <p/2.

If the entries in every single one of these sequences (for all choices of d;) are
linearly independent then there is no elliptic curve over a degree 4 number field
with a rational point of order p.

NOTES:

1. This looks pretty crazy, but this is really just a way of expressing the condition that a certain
map is a formal immersion.

2. As p gets large, there are a LOT of 4-tuples of elements of the Hecke algebra to test for
independence mod 2.

3. Here is code that implements this algorithm: code.sage

Running the Algorithm

After a few days we find that the criterion is not satisfied for p = 29, 31, but it is for
37 <p<97.

Conclusion:
Theorem (Kamienny, Stein): max(S(4)) < 31.

It's unclear to me, but Kamienny seems to also have a proof that rules out 29, 31, which would
nearly answer the big question for degree 4.



Future Work

1. Kamienny (unpublished): "Moreover 29, 31,41 , and 59 can't occur over any quartic field...
I've known an easy geometric proof for a long time, but I simply forgot about it..."

2. Kamienny (unpublished): "For 19 and 23 we only get the result for fields in which at least one
of 2, 3 doesn't remain prime. We can try dealing with 19 and 23 by looking (later) at equations
for the modular curves if that's computable."

3. Alternatively, deal with 19 and 23 in a way similar to how Parent dealt with p = 17 for
d = 3, which was the one case he couldn't address using his criterion. (His paperonp = 17
looks very painful though!)

4. Make the algorithm for showing that max(S(4)) < 31 more efficient. Right now it takes
way too long.

5. Given 3, repeat my calculations, but for d = 5 and hope to replace the Oesterle bound of

max(S(5)) < 271 by
max(S(5)) <43  (or something close)

float ((1+27(5/2))"2)
44.,313708498984766

previous prime(275)
271



