Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture

William Stein
Harvard University
http://modular.fas.harvard.edu/129-05/

Math 129: April 5, 2005

This talk is a first introduction to elliptic curves and the
Birch and Swinnerton-Dyer conjecture.

Elliptic Curves over the Rational Numbers \mathbb{Q}

 An elliptic curve is a nonsingular plane cubic curve with a rational point (possibly "at infinity").$$
y^{2}+y=x^{3}-x
$$

EXAMPLES

$$
y^{2}+y=x^{3}-x
$$

$$
x^{3}+y^{3}=z^{3}(\text { projective })
$$

$$
y^{2}=x^{3}+a x+b
$$

The Group Operation

$$
\begin{aligned}
& \bullet \oplus= \\
& (-1,0) \oplus(0,-1)=(2,2)
\end{aligned}
$$

The set of rational points on E forms an abelian group.

$$
y^{2}+y=x^{3}-x
$$

The First 150 Multiples of $(0,0)$

(The bluer the point, the bigger the multiple.)

Fact: The group $E(\mathbb{Q})$ is infinite cylic, generated by $(0,0)$.

In contrast, $y^{2}+y=x^{3}-x^{2}$ has only 5 rational points!

Mordell's Theorem

Theorem (Mordell). The group $E(\mathbb{Q})$ of rational points on an elliptic curve is a finitely generated abelian group, so

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \oplus T,
$$

with $T=E(\mathbb{Q})_{\text {tor }}$ finite.

Mazur classified the possibilities for T.

Folklore conjecture: r can be arbitrary, but the biggest r ever found is (probably) 24.

Conjectures Proliferated

"The subject of this lecture is rather a special one. I want to describe some computations undertaken by myself and SwinnertonDyer on EDSAC, by which we have calculated the zeta-functions of certain elliptic curves. As a result of these computations we have found an analogue for an elliptic curve of the Tamagawa number of an algebraic group; and conjectures have proliferated. [...] though the associated theory is both abstract and technically complicated, the objects about which I intend to talk are usually simply defined and often machine computable; experimentally we have detected certain relations between different invariants, but we have been unable to approach proofs of these relations, which must lie very deep."

- Birch 1965

Birch and Swinnerton-Dyer (Utrecht, 2000)

The L-Function

Theorem (Wiles et al., Hecke) The following function extends to a holomorphic function on the whole complex plane:

$$
L^{*}(E, s)=\prod_{p \nmid \Delta}\left(\frac{1}{1-a_{p} \cdot p^{-s}+p \cdot p^{-2 s}}\right) .
$$

Here $a_{p}=p+1-\# E\left(\mathbb{F}_{p}\right)$ for all $p \nmid \Delta_{E}$. Note that formally,
$L^{*}(E, 1)=\prod_{p \nmid \Delta}\left(\frac{1}{1-a_{p} \cdot p^{-1}+p \cdot p^{-2}}\right)=\prod_{p \nmid \Delta}\left(\frac{p}{p-a_{p}+1}\right)=\prod_{p \nmid \Delta} \frac{p}{N_{p}}$
Standard extension to $L(E, s)$ at bad primes.

Real Graph of the L-Series of $y^{2}+y=x^{3}-x$

More Graphs of Elliptic Curve L-functions

The Birch and Swinnerton-Dyer Conjecture

Conjecture: Let E be any elliptic curve over \mathbb{Q}. The order of vanishing of $L(E, s)$ as $s=1$ equals the rank of $E(\mathbb{Q})$.

The Kolyvagin and Gross-Zagier Theorems

Theorem: If the ordering of vanishing $\operatorname{ord}_{s=1} L(E, s)$ is ≤ 1, then the conjecture is true for E.

BSD Conjectural Formula

$$
\frac{L^{(r)}(E, 1)}{r!}=\frac{\Omega_{E} \cdot \operatorname{Reg}_{E} \cdot \Pi_{p \mid N} c_{p}}{\# E(\mathbb{Q})_{\text {tor }}^{2}} \cdot \# Ш(E)
$$

- $\# E(\mathbb{Q})_{\text {tor }}$ - torsion order
- c_{p} - Tamagawa numbers
- Ω_{E} - real volume $\int_{E(\mathbb{R})} \omega_{E}$
- Reg_{E} - regulator of E
- $\amalg(E)=\operatorname{Ker}\left(\mathrm{H}^{1}(\mathbb{Q}, E) \rightarrow \oplus_{v} \mathrm{H}^{1}\left(\mathbb{Q}_{v}, E\right)\right)$
- Shafarevich-Tate group

One of My Research Projects

Project. Find ways to compute every quantity appearing in the BSD conjecture in practice.

NOTES:

1. This is not meant as a theoretical problem about computability, though by compute we mean "compute with proof."
2. I am also very interested in the same question but for modular abelian varieties.
3. Working with Harvard Undergrads: Stephen Patrikas, Andrei Jorza, Corina Patrascu.
