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1 Motivation

Let K be a global field (i.e., K is a finite extension of Q or of Fq(x)).

Definition 1.1. The ζ-function is

ζK(s) =
∑

I

1

NIs
,

where I runs through all the ideals of OK .

Proposition 1.2. We have

ζK(s) =
∏

p∈SpecOK

1

1−Np−s
.

Proof. There are sensible convergence issues here, but we will not worry about these. Since
OK is a Dedekind domain, with unique factorization, every ideal I = pn1

1 · · · pnkk so

ζK(s) =
∑

(Npn1
1 · · · pnkk )−s =

∏

pi

∞∑

ni=0

(Npi)
−nis =

∏

pi

1

1−Np−si
.

The ζK(s) clearly converges for Res > 1 and moreover it has an analytic continuation to
C \ {1}.
Theorem 1.3 (Dirichlet’s Class Number Formula). If K is a number field then the residue
of ζK at 1 is

vol(A×K/K
×) =

2r1(2π)r2hKRK

wK
√
|DK |

.

This can be rewritten as

ζr1+r2−1
K (0) = −hKRK

wK
,
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which looks exactly like the Birch And Swinnerton-Dyer conjecture since the rank of Gm(OK)
is r1 + r2 − 1.

One way to prove this is to relate ζK to ζ-functions associated to characters A×K/K
× → C×

and then use harmonic analysis. We will not prove this theorem here but we’ll see more of this
analogy later when we study elliptic curves.

2 Riemann-Roch on Function Fields

2.1 Divisors on Adèles

We would like to obtain similar formulas for function fields.
Let K be a finite extension of Fq(x). Recall the topological rings K× ↪→ A1

K ↪→ A×K ↪→ AK .
For each finite place v of K (all places are finite!) recall that we have Kv,Ov, ℘v, kv/Fq, qv = qdv .

Definition 2.1. Div(K) is the free abelian group generated by the (finite) places v of K, i.e.
Div(K) =

⊕
v vZ. The map Div(K)→ Z given by deg :

∑
nvv 7→

∑
nvdv is a homomorphism

with kernel Div0(K).

There is an obvious map A×K → Div(K) given by div : a = (av) 7→
∑
v(av)v, a homomor-

phism. Then we clearly have |a|A = q− deg a so this gives

Lemma 2.2. The map div is a surjection from A1
K to Div0(K) with kernel

∏O×v .

Let P (K) = div(K×) be the principal divisors. Then write Pic(K) = Div(K),Pic0(K) =
Div0(K)/P (K).

Proposition 2.3. There is an isomorphism Cl(K) ∼= Pic0(K) which proves that Cl(K) is
finite.

Proof. There is an isomorphism between the group of fractional ideals and A1
K . Moreover, the

group A1
K/K

× is compact and
∏O×v is open so Pic0(K) ∼= A1

K/K
×∏O×v is finite.

2.2 Invertible sheaves associated with divisors

Definition 2.4. For a =
∑
avv ∈ Div(K) let U(a) = {b = (bv) ∈ A×K ||bv|v ≤ q−avv } =∏{b ∈ K×v ||b|v ≤ q−avv } which is compact by Tychonov since each factor is compact. Let

L(a) = (U(a) ∩ K×) ∪ {0}. This is compact in K× which is discrete, so L(a) is a finite
K ∩∏Ov module. Since K ∩∏Kv = Fq we get |L(a)| = q`(a) where `(a) = dimFq L(a).

Lemma 2.5. If deg a < 0 then L(a) = 0. If deg a = 0 but a 6= 0 in Pic(K) then L(a) = 0.
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Proof. L(a) consists of elements x ∈ K× such that |x|A = q− deg a > 1 which cannot be unless
a = 0.

If deg a = 0 then the above proof shows that the only possible nonzero element in L(a)
must be x ∈ K× such that xv = −av which means that a = divx = 0 in Pic(K) contradicting
the hypothesis.

Lemma 2.6. Prove that L(a) can be identified with divisors b ∈ Div(K) such that b ≥ 0 and
b = a ∈ Pic(K).

Proof. L(a) = K ∩ {b ∈ AK |v(bv) + v(av) ≥ 0}. So the divisor b + a is nonnegative and is
clearly linearly equivalent to a since b ∈ K.

Remark 2.7. We have `(0) = 1 which corresponds to the fact that L(0) = K× ∩∏Ov = Fq.

Lemma 2.8. If I is an ideal of OK then NI = qdeg(div◦ideal(I)), where ideal : I =
∏

pnvv 7→
(πnvv ) for uniformizers πv ∈ Kv.

Proof. Assume that I =
∏

pnvv then div◦idealI =
∑
nvv while NI = q

P
nvdv = qdeg(div◦ideal(I)).

2.3 The canonical divisor

Let χ : AK/K → C× be a nontrivial character, which corresponds to a collection of local
characters χv : Kv → C× that are trivial on Ov for almost all v. Let ord(χv) be the smallest
integer nv such that χv is trivial on ℘nvv . Then ord(χ) =

∑
ord(χv)v ∈ Div(K).

Proposition 2.9. Let χ′ be another nontrivial character of AK/K. Then ord(χ) = ord(χ′) in
Pic(K).

Proof. Characters are defined up to scalar action so for each v there exists a bv ∈ K×v such
that χ′v(x) = χv(bvx) which means that χ′(x) = χ(bx) where b = (bv)v ∈ AK . But χ and χ′ are
trivial onK by definition so χ(b) = 1 which implies that ord(χ′) = ord(χ(b)) = ord(χ)+div(b) =
ord(χ) since b ∈ K.

Definition 2.10. There exists a unique divisor c = ord(χ) for some χ nontrivial character of
AK/K. This is called the canonical divisor and `(c) = g is called the genus of K. (For number
fields there are analogous notions genus of K coming from Arakelov geometry.)
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2.4 Topological duality

For a topological group G we define the topological dual Ĝ = Homcontinuous(G,C×). Fix χ a
nontrivial character of AK/K for which c = ord(χ). The map a 7→ χ(a−) identifies AK to its
topological dual.

Lemma 2.11. If H ⊂ G is an open topological subgroup and H⊥ = {f ∈ Ĝ|f(H) = 1} then

Ĝ/H ∼= H⊥. Moreover, G is compact if Ĝ is discrete and G is discrete if Ĝ is compact. Via
topological duals the exact sequence

1→ H → G→ G/H → 1

becomes
1→ H⊥ → Ĝ→ Ĥ → 1.

If G/H is compact and H is discrete in G then the measure on G is the composite of the
discrete measure on H and the Haar measure on G/H.

Remark 2.12. This shows that ÂK/K = K is discrete.

Lemma 2.13. For a ∈ Div(K) we write U = U(a) and U ′(c − a). Then AK/(K + U) is the
topological dual of K ∩ U ′.

Proof. It is enough to show that (K+U)⊥ ∼= K ∩U ′. First, (K+U)⊥ ⊂ K⊥ = K. Now under

the indentification AK ∼= ÂK the set (K +U)⊥ consists of x ∈ AK such that χ(x(K +U)) = 1.
This happens if and only if χ(x(k+b)) = 1 for all k ∈ K and b such that |b|v ≤ q−avv . Therefore

we want χv(xv(kv + bv)) = 1 which happens for all xv(kv + bv) ∈ ℘ord(χv)
v . This happens when

xv ∈ ℘ord(χv)+av
v so x ∈ U ′. Therefore, (K + U)⊥ = K ∩ U ′.

2.5 Riemann-Roch

Lemma 2.14. Let µ be a Haar measure on AK induced from the discrete measure on K and the
normalized Haar measure on AK/K. Then µ(U) = q− deg a = q`(a)µ((K + U)/U). Moreover,
µ(AK/K) = q`(c−a)µ((K + U)/U).

Proof. We have an exact sequence 1 → K → AK → AK/K → 1 in which we have an exact
sequence 1 → K ∩ U → U → (K + U)/K → 1. Therefore µ(U) = q`(a)µ((K + U)/U) since
µ(K ∩ U) = µ(L(a)). The fact that µ(U) = q−deg a is immediate from definition.

The last equality follows from the exact sequence 1→ (K+U)/K → AK/K → (AK/K)/((K+
U)/K) = AK/(K + U)→ 1 because µ(K ∩ U ′) = q`(c−a).

Theorem 2.15 (Riemann-Roch). For each a ∈ Div(K) we have

`(a) = `(c− a) + deg a− g + 1.
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Proof. From Lemma 2.14 we have

µ(AK/K) = q`(c−a)µ((K + U)/U) = q`(c−a)q−deg a/q`(a)

= q`(c−a)−deg a−`(a)

The theorem follows if say qg−1 = µ(AK/K).

Proposition 2.16. We have deg c = 2g − 2 and g = `(c).

Proof. Add `(a) = `(c − a) + deg a − g + 1 and `(c − a) = `(a) + deg(c − a) − g + 1 and get
deg c = 2g−2. So if a = 0 in the formula we get `(0) = `(c)+0−g+1 so `(c) = g−1+1 = g.

Proposition 2.17. If deg a > 2g − 2 then `(a) = deg a− g + 1.

Proof. Then deg(c− a) < 0 so by Lemma 2.5 we have `(c− a) = 0.

3 Class number formula for function fields

Let’s get back to our analogy between the case of number and function fields. Let K be
a finite extension of Fq(x). Recall that ζK(s) =

∑
I(NI)−s and we have a homomorphism

div : I → Div(K) that takes integral ideals to nonnegative divisors.

Lemma 3.1. There exists u ∈ Div(K) such that deg u = 1.

Proof. If u =
∑
nvv then deg u =

∑
nvdv so it is enough to prove that the dv have no common

factor. I am not going to prove this, but you can think about what happens if K = Fq(x) (the
analogous case of K = Q for number fields) and generalize. (See Weil, Basic Number Theory,
pp 126 if impatient.)

Lemma 3.2. We have

ζK(s) =
∑

a∈Div≥0(K)

qdeg a =
∞∑

k=0

∑

deg a=k,a≥0

q−ks

=
∑

ai∈Pic0(K)

∞∑

k=0

∑

a≥0,a=ai+ku

q−ks

= (q − 1)−1
∑

ai∈Pic0(K)

∞∑

k=0

q`(ai+ku)−ks −
∑

ai∈Pic0(K)

1/(1− q−s)
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Proof. The first equality follows from Lemma 2.8. From Lemma 2.6 we get that the number
of a ≥ 0 such that a = ai + ku is equal to (q`(ai+ku) − 1)/(q − 1) (the 0 divisor corresponds to
no ideal and any ideal defines a divisor up to a unit of F×q ) so the last equality follows. (Here I

used that a− ku ∈ Pic0(K) must equal one of the ai-s, up to scalars, which do not count.)

Lemma 3.3. We have
∑∞

k=0 q
`(ai+ku)−ks =

∑2g−2
k=0 q`(ai+ku)−ks + qg−s(2g−1)/(1− q1−s).

Proof. Recall that for k > 2g − 2 we have `(ai + ku) = deg(ai + ku) − g + 1 = k − g + 1 so∑∞
k=0 q

`(ai+ku)−ks =
∑2g−2

k=0 q`(ai+ku)−ks+
∑

k>2g−2 q
k(1−s)−g+1 which is equal to

∑2g−2
k=0 q`(ai+ku)−ks+∑

k>2g−2 q
(k−2g+1)(1−s)+g−s(2g−1) =

∑2g−2
k=0 q`(ai+ku)−ks + qg−s(2g−1))/(1− q1−s).

Proposition 3.4. There exists a polynomial P of degree 2g such that

ζK(s) =
P (q−s)

(1− q−s)(1− q1−s)
.

Proof. By Lemma 3.3 and the fact that qs−s(2g−1)/(1− q1−s) and −1/(1− q−s) have the above
property, it is enough to show that for each i the sum

∑2g−2
k=0 q`(ai+ku)−ks has the required

property.
But (1− q−s)(1− q1−s)

∑2g−2
k=0 q`(ai+ku)−ks has degree 2g in q−s since only the term corre-

sponding to k = 2g − 2 counts. The conclusion then follows.

The really interesting facts that are analogous to the analytic class number formula in the
case of number fields occur when we apply the Riemann-Roch theory.

Theorem 3.5 (Class number formula). We have P (z) = qgz2gP (1/qz).

Proof. Clearly we can get rid of the (q − 1)−1 factor for the first part of the problem. Define
Pi(q

−s) = (1− q−s)(1− q1−s)
∑2g−2

k=0 q`(ai+ku)−ks + (1− q−s)qg−s(2g−1) − (1− q1−s) so Pi(z) =

(1− z)(1− qz)
∑2g−2

k=0 q`(ai+ku)zk + (1− z)qgz2g−1 − (1− qz).
We need to show that

∑
i Pi(z) = qgz2g(

∑
i Pi(1/qz)). This is equivalent to

∑
i((1− z)(1−

qz)
∑2g−2

k=0 q`(ai+ku)zk+(1−z)qgz2g−1−(1−qz)) =
∑

i(q
gz2g((1−1/qz)(1−1/z)

∑2g−2
k=0 q`(ai+ku)q−kz−k+

(1− 1/qz)q−(g−1)z−(2g−1)) + (1− z)qgz2g−1)
But the RHS is equal to

∑

i

((1− z)(1− qz)

2g−2∑

k=0

q`(ai+ku)−k+g−1z2g−2−k + (qz − 1) + (1− z)qgz2g−1).

But the Riemann-Roch formula gives that `(ai + ku) − k + g − 1 = `(c − ai + ku). But
c = a1 + (2g − 2)u for our choice of a1.

So we need to show that
∑

i((1−z)(1−qz)
∑2g−2

k=0 q`(ai+ku)zk+(1−z)qgz2(g−1) +(qz−1)) =∑
i((1 − z)(1 − qz)

∑2g−2
k=0 q`(a1−ai+(2g−2−k)u)z2g−2−k + (qz − 1) + (1 − z)qgz2(g−1)) which is

obvious.
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Proposition 3.6. We have P (0) = 1 and P (1) = hK .

Proof. We have P (z) = (q − 1)−1
∑

ai∈Pic0(K) Pi(z). Since Pi(1) = q − 1 we have P (1) =

(q − 1)−1hK(q − 1) = hK .
Also note that lim∞ ζK(−s) = 1 by definition. So P (0) = 1.

Proposition 3.7 (Class number formula). The residue at 0 of ζK is

Res0ζK(s) =
hK

(1− q) log q
.

Proof. The residue at 0 is

lim
s→0

P (q−s)
1− q1−s

s

1− q−s =
hK

1− q
1

log q
.
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