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1 Motivation

Let K be a global field (i.e., K is a finite extension of Q or of Fy(z)).

Definition 1.1. The (-function is
-y 1
N NI’
I
where I runs through all the ideals of O

Proposition 1.2. We have
1
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Proof. There are sensible convergence issues here, but we will not worry about these. Since
Ok is a Dedekind domain, with unique factorization, every ideal I = p7*---p;* so
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The (x(s) clearly converges for Res > 1 and moreover it has an analytic continuation to
C\ {1}.

Theorem 1.3 (Dirichlet’s Class Number Formula). If K is a number field then the residue
of Cx at 1 is
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This can be rewritten as
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which looks exactly like the Birch And Swinnerton-Dyer conjecture since the rank of G, (Ok)
isry+rog— 1.

One way to prove this is to relate (x to (-functions associated to characters Aj; /K> — C*
and then use harmonic analysis. We will not prove this theorem here but we’ll see more of this
analogy later when we study elliptic curves.

2 Riemann-Roch on Function Fields

2.1 Divisors on Adeéles

We would like to obtain similar formulas for function fields.
Let K be a finite extension of Fy(z). Recall the topological rings K* — AL — A% — Ag.
For each finite place v of K (all places are finite!) recall that we have K., Oy, v, kv /Fq, ¢ = q%.

Definition 2.1. Div(K) is the free abelian group generated by the (finite) places v of K| i.e.
Div(K) = @, vZ. The map Div(K) — Z given by deg : > n,v — ) _ nyd, is a homomorphism
with kernel Div?(K).

There is an obvious map Ay — Div(K) given by div : a = (a,) — > v(a,)v, a homomor-
phism. Then we clearly have |a|y = ¢~ 98¢ so this gives

Lemma 2.2. The map div is a surjection from Ak to Div?(K) with kernel [] OX.

Let P(K) = div(K*) be the principal divisors. Then write Pic(K) = Div(K), Pic®(K) =
Div’(K)/P(K).
Proposition 2.3. There is an isomorphism CI(K) = Pic®(K) which proves that CI(K) is
finite.

Proof. There is an isomorphism between the group of fractional ideals and Ak.. Moreover, the
group AL /K> is compact and [[ O is open so Pic’(K) = AL /K> [ O is finite. O

2.2 Invertible sheaves associated with divisors

Definition 2.4. For a = Y a,v € Div(K) let U(a) = {b = (by) € Ax|lbylo < ¢y ™} =
[I{b € KS||bly < g, *} which is compact by Tychonov since each factor is compact. Let
L(a) = (U(a) N K*) U {0}. This is compact in K* which is discrete, so L(a) is a finite
K NJ[O, module. Since K N[] K, =F, we get |L(a)| = ¢"*) where £(a) = dimp, £(a).

Lemma 2.5. Ifdega < 0 then L(a) =0. If dega =0 but a # 0 in Pic(K) then L(a) = 0.



—dega

Proof. L(a) consists of elements x € K* such that |z|y = ¢ > 1 which cannot be unless

a=0.

If dega = 0 then the above proof shows that the only possible nonzero element in L(a)
must be x € K* such that x, = —a, which means that a = dive = 0 in Pic(K) contradicting
the hypothesis. O

Lemma 2.6. Prove that L(a) can be identified with divisors b € Div(K) such that b > 0 and
b= a € Pic(K).

Proof. L(a) = KN{b € Ag|v(b,) + v(a,) > 0}. So the divisor b + a is nonnegative and is
clearly linearly equivalent to a since b € K. O

Remark 2.7. We have £(0) = 1 which corresponds to the fact that £(0) = K* N[[O, =F,.

Lemma 2.8. If I is an ideal of Ok then NI = qdeg(divoideal([)), where ideal : I = [[plv —
(mv) for uniformizers m, € K.

Proof. Assume that I = []p? then divoideall = 3" n,v while NI = ¢2=mvdv = gdes(diveideal(D))
U

2.3 The canonical divisor

Let x : Ax/K — C* be a nontrivial character, which corresponds to a collection of local
characters y, : K, — C* that are trivial on O, for almost all v. Let ord(x,) be the smallest
integer n, such that x, is trivial on p!*. Then ord(x) = Y ord(x,)v € Div(K).

Proposition 2.9. Let X’ be another nontrivial character of Ak /K. Then ord(x) = ord(x’) in
Pic(K).

Proof. Characters are defined up to scalar action so for each v there exists a b, € K such
that x/ (z) = xv(byz) which means that x’(z) = x(bx) where b = (b,), € Ag. But x and ' are
trivial on K by definition so x(b) = 1 which implies that ord(x’) = ord(x(b)) = ord(x)+div(b) =
ord(y) since b € K. O

Definition 2.10. There exists a unique divisor ¢ = ord(x) for some x nontrivial character of
Ak /K. This is called the canonical divisor and ¢(¢) = g is called the genus of K. (For number
fields there are analogous notions genus of K coming from Arakelov geometry.)



2.4 Topological duality

For a topological group G we define the topological dual G = Homcontinuous (G, C*). Fix x a
nontrivial character of Ax /K for which ¢ = ord(x). The map a — x(a—) identifies A to its
topological dual.

Lemma 2.11. If H C G is an open topological subgroup and H+ = {f € é|f(H) = 1} then

G/H = H*. Moreover, G is compact if G is discrete and G is discrete if G is compact. Via
topological duals the eract sequence

l1-H—-G—-G/H—1

becomes
1—-H—-G— H—1.

If G/H is compact and H is discrete in G then the measure on G is the composite of the
discrete measure on H and the Haar measure on G/H.

Remark 2.12. This shows that A/K/\K = K is discrete.

Lemma 2.13. For a € Div(K) we write U = U(a) and U'(¢ — a). Then Ag /(K + U) is the
topological dual of K NU’.

Proof. Tt is enough to show that (K +U)* = KNU'. First, (K +U)* ¢ K+ = K. Now under
the indentification Ay = Af the set (K + U)* consists of x € A such that y(z(K +U)) = 1.

This happens if and only if x(z(k+b)) = 1 for all k € K and b such that |b|, < ¢, *. Therefore

we want (2 (ky + by)) = 1 which happens for all z,(k, + b,) € pgrd(xv)‘ This happens when

Ty € pgrdm)*“” so x € U'. Therefore, (K +U)* = KnU'. O

2.5 Riemann-Roch

Lemma 2.14. Let pu be a Haar measure on A induced from the discrete measure on K and the
normalized Haar measure on Ag /K. Then p(U) = ¢~ = ¢“® (K + U)/U). Moreover,
wAKR/K) = ¢"“Ou((K +U)/U).

Proof. We have an exact sequence 1 — K — A — Ag/K — 1 in which we have an exact
sequence 1 — KNU — U — (K + U)/K — 1. Therefore u(U) = ¢“u((K + U)/U) since
w(K NU) = pu(L(a)). The fact that u(U) = ¢~ 98 is immediate from definition.

The last equality follows from the exact sequence 1 — (K+U)/K — Ag/K — (Ax/K)/((K+
U)/K)=Ag /(K +U) — 1 because u(K NU’) = ¢*(<=9, O

Theorem 2.15 (Riemann-Roch). For each a € Div(K) we have

la)=Vl(c—a)+dega—g+1.



Proof. From Lemma 2.14 we have

whr/K) = ¢ TOu(K +U)/U) = ¢ gm e /g
qé(cfu)fdeg a—~{(a)
The theorem follows if say ¢9~! = u(Ax/K). O
Proposition 2.16. We have degc = 2g — 2 and g = {(c).

Proof. Add f(a) = £(c —a)+dega—g+ 1 and ¢(c — a) = ¢(a) + deg(c —a) — g+ 1 and get
deg ¢ =2¢g—2. Soif a = 0 in the formula we get £(0) = £(c)+0—g+1sol(c) =g—1+1=g. O

Proposition 2.17. If dega > 2g — 2 then {(a) = dega — g + 1.

Proof. Then deg(c — a) < 0 so by Lemma 2.5 we have £(¢ — a) = 0. O

3 Class number formula for function fields

Let’s get back to our analogy between the case of number and function fields. Let K be
a finite extension of Fy(z). Recall that (x(s) = Y ;(NI)™* and we have a homomorphism
div : I — Div(K) that takes integral ideals to nonnegative divisors.

Lemma 3.1. There exists u € Div(K) such that degu = 1.

Proof. If u =Y n,v then degu = > nyd, so it is enough to prove that the d, have no common
factor. I am not going to prove this, but you can think about what happens if K = F,(z) (the
analogous case of K = Q for number fields) and generalize. (See Weil, Basic Number Theory,
pp 126 if impatient.) O

Lemma 3.2. We have
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Proof. The first equality follows from Lemma 2.8. From Lemma 2.6 we get that the number
of a > 0 such that a = a; + ku is equal to (¢“™*t%%) —1)/(q — 1) (the 0 divisor corresponds to
no ideal and any ideal defines a divisor up to a unit of IFqX) so the last equality follows. (Here I
used that a — ku € Pic(K) must equal one of the a;-s, up to scalars, which do not count.) [

Lemma 3.3. We have Y 32, ¢“(Cthu)=ks = Zig:_(f gleitku)—ks | gg=s(29-1) /(1 — gl=9).

Proof. Recall that for k > 2¢g — 2 we have £(a; + ku) = deg(a; + ku) —g+1=k—g+ 1 so
ZZO:O q€(a¢+ku)—ks — ZZQ:—O? qé(ai+ku)—ks+2k>29_2 qk(l—s)—g—i-l which is equal to ZZQ:_OQ qf(ai+ku)—ks+
Zk>2g72 q(k72g+1)(1fs)+gfs(2gfl) _ Zi!]z—o? qf(aﬂrku)fks + qgfs(2g71))/<1 _ qlfs)' 0

Proposition 3.4. There exists a polynomial P of degree 2g such that

Plg™*)
K (s) (I—g*)(1—q'*)
Proof. By Lemma 3.3 and the fact that ¢*~*(29=Y /(1 — ¢'=%) and —1/(1 — ¢~*) have the above
property, it is enough to show that for each ¢ the sum 229 2 gt(aithu)— ks has the required
property.
But (1 — ¢ %)(1 —¢'7%) Eig:_2 ¢!(@ithu)=ks has degree 2¢g in ¢~ since only the term corre-
sponding to k = 2g — 2 counts. The conclusion then follows. O

The really interesting facts that are analogous to the analytic class number formula in the
case of number fields occur when we apply the Riemann-Roch theory.

Theorem 3.5 (Class number formula). We have P(z) = ¢92%9P(1/qz).

Proof. Clearly we can get rid of the (¢ — 1)~! factor for the first part of the problem. Define
Py(q ) = (1= g ")(1 — ¢"%) R0 g etk =ks 4 (1 — g72)go =9~ — (1 — ¢'=*) s0 Py(2) =
(1—2)(1 = g2) 33057 g/ TR 2k 4 (1 — 2)g922071 — (1 — g2).

We need to show that >, Pi(z) = ¢92%9(3., P;(1/qz)). This is equivalent to Z ((1 —2)(1—
g2) Y30 g1 2R (1—2) 227 — (1-¢2)) = 32,(¢72% (1-1/42) (1-1/2) 1397 g Fhlg k2 —hy
(1—1/qz)g~ 0 V2m o) 4 (1 — 2)g92%7")

But the RHS is equal to

2g9—2
Z((l _ Z)(l _ qz) Z qf(ai+ku)fk+g7122g727k + (qz _ 1) + (1 _ Z)quﬂgfl).
1 k=0

But the Riemann-Roch formula gives that ¢(a; + ku) —k 4+ g —1 = £(c — a; + ku). But
¢ = a1 + (29 — 2)u for our choice of a;.

So we need to show that >, ((1—2)(1—gz) 32977 ¢/ @thu 2k 4 (1-2)¢9229~1) 4 (g2 —1)) =
(1 = 2)(1 — g2) 3097 qHe—aitRe—2=ku) 202k 4 (g> — 1) + (1 — 2)¢92%9~V)) which is
obvious. O



Proposition 3.6. We have P(0) =1 and P(1) = hk.

Proof. We have P(z) = (¢ —1)7! P aerico(k) Fi(2). Since Pi(1) = ¢ — 1 we have P(1) =
(q — 1)71h[((q — 1) = hg.
Also note that lims (x(—s) = 1 by definition. So P(0) = 1. O

Proposition 3.7 (Class number formula). The residue at 0 of (x is

hk

ResoCr (s) = A=) losq

Proof. The residue at 0 is

. P(g) s hg 1
lim = .
s—=01—qgl=s1—qg=5 1—gqloggq




