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These are sketches of solutions to the exam. I have written them so that
you, having worked on the exam, can easily see what the answer is to each
question. (Note: These solutions are slightly more abbreviated than I would
have liked for your solutions.)

1. (20 points) Let R be a noetherian integral domain, and let K = Frac(R)
be the field of fractions of R. Let K be an algebraic closure of K. Let
R be the set of α ∈ K such that there is a nonzero monic polynomial
f(x) ∈ R[x] with f(α) = 0. Is R necessarily a ring? Prove or give a
counterexample.

This is true. The proof is exactly like the one we gave in the book for
R = Z, but everywhere that we put Z and Z there put R and R.

2. (10 points) Let OK be the ring of integers of a number field K, and
suppose K has exactly 2s complex embeddings. Prove that the sign of
the discriminant of OK is (−1)s.

We proved in class that

dK = det(A)2 = ((−2i)−s · Vol(V/σ(OK)))2

The right hand side is

((−2)−s · Vol(V/σ(OK)))2 · i−2s = α · i−2s = α · (−1)s,

where α is a positive real number, since it is the square of a real number.
Thus the sign of dK is (−1)s.
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3. Suppose K is a number field. For any finite extension L of K, define
set-theoretic maps

ΨL : CK → CL, [I] 7→ [IOL]

ΦL : CL → CK , [I] 7→ [I ∩ OK ],

where [I] denotes the class of the nonzero integral ideal I.

(a) (10 points) Is ΨL a group homomorphism? Prove or give a coun-
terexample.

Yes, ΨL is a group homomorphism. It is well defined because
I = (α) maps to αOL, which is principal. It is a homomorphism
since IOLJOL = IJOL.

(b) (10 points) Is ΦL a group homomorphism? Prove or give a coun-
terexample.

The map ΦL is not even well defined, so it can’t be a group ho-
momorphism. It does induce a set-theoretic map on ideals. How-
ever, it need not send principal ideals to principal ideals. For
example, suppose ℘ ⊂ OK is a prime ideal that is not principal.
Then (as we’ll see below), there is an extension L of K such that
I = ℘OL = (α) is principal. But I ∩ OK = ℘, since ℘ is con-
tained in this intersection, and ℘ is maximal. Thus the image of
a principal need not be principal.

(c) (20 points) Prove that there is a number field L such that ΨL

is the 0 map, i.e., ΨL sends every element of CK to the identity
of CL. [Hint: Use finiteness of CK in two ways.]

Let I ∈ OK be a nonzero ideal. The class group CK is finite,
so there is an integer n such that [I]n is trivial, so In = (α) is
principal. Let L = K(α1/n). Let J = IOL. Then

(J/(α1/nOL))n = Jn/(αOL) = (InOL)/(αOL) = αOL/αOL = OL,

where we’ve used that our observation that the process of extend-
ing an ideal to OL preserves multiplication to see that Jn = InOL.
By unique factorization of ideals in OL and the fact that the frac-
tional ideals are a torsion free group, we see that J/(α1/nOL)
is the unit ideal (since its nth power is the unit ideal). Thus
J = (α1/nOL) is principal, which proves the claim.
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(Note: I wonder, is there always an L such that ΦL is the 0 map? This

question just occured to me while writing this exam. If you find an answer

and tell me the answer, I’ll be very thankful, though this is not part of the

official exam. This question is related to “visibility of Mordell-Weil groups”,

which I just wrote a paper about.)

This question is meaningless since ΦL is not well defined. Also as men-
tioned above the induced map on sets of fractional ideals is surjective.

4. A number field is totally real if every embedding is real, i.e., s = 0, and
a number field is totally complex if every embedding is complex, i.e.,
r = 0.

(a) (15 points) Find with proof the possible degrees of totally real
fields.

Every degree appears. The field Q is totally real, so it suffices
to prove that every degree > 1 occurs. Let K = Q(ζn + 1/ζn)
where n is a primitive nth root of unity. Then for 3 ≥ 2, K has
degree ϕ(n)/2, and is a Galois extension of Q with cyclic Galois
group, so there is a subfield of K of degree d for each divisor d of
ϕ(n)/2. If pr is a prime power, then pr | ϕ(pr+1), etc., so we see
pretty easily that if m is any integer then there exists n such that
m | ϕ(n)/2.

(b) (15 points) Find with proof the possible degrees of totally complex
fields.

Since n = r + 2s, if r = 0 then n is even. In fact every even
degree appears. If K is totally real and i =

√
−1, then K(i) is

totally complex, since there is no real number α with α2 = −1, so
there’s no way to embed K(i) into R. The degree of K(i) is twice
the degree of K. As we saw in the previous part of this problem,
every possible degree occurs for totally real fields, so twice every
degree occurs for totally complex fields.
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