Harvard Math 129: Algebraic Number Theory Homework Assignment 7

William Stein

Due: THURSDAY, April 14, 2005

The problems have equal point value, and multi-part problems are of the same value. In any problem where you use a computer, include in your solution the exact commands you type and their output. You may use any software, including (but not limited to) MAGMA and PARI.

1. Let K be a number field. Prove that $p \mid d_{K}$ if and only if p ramifies in K. (Note: This fact is proved in many books-finding a proof in one and rephrasing it in your own words and the context of this course is not cheating.)
2. Using Zorn's lemma, one can show that there are homomorphisms $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow$ $\{ \pm 1\}$ with finite image that are not continuous, since they do not factor through the Galois group of any finite Galois extension. [Hint: The extension $\mathbb{Q}(\sqrt{d}, d \in$ $\left.\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}\right)$ is an extension of \mathbb{Q} with Galois group $X \approx \prod \mathbb{F}_{2}$. The index-two open subgroups of X correspond to the quadratic extensions of \mathbb{Q}. However, Zorn's lemma implies that X contains many index-two subgroups that do not correspond to quadratic extensions of \mathbb{Q}.]
3. (a) Give an example of a finite nontrivial Galois extension K of \mathbb{Q} and a prime ideal \mathfrak{p} such that $D_{\mathfrak{p}}=\operatorname{Gal}(K / \mathbb{Q})$.
(b) Give an example of a finite nontrivial Galois extension K of \mathbb{Q} and a prime ideal \mathfrak{p} such that $D_{\mathfrak{p}}$ has order 1 .
(c) Give an example of a finite Galois extension K of \mathbb{Q} and a prime ideal \mathfrak{p} such that $D_{\mathfrak{p}}$ is not a normal subgroup of $\operatorname{Gal}(K / \mathbb{Q})$.
(d) Give an example of a finite Galois extension K of \mathbb{Q} and a prime ideal \mathfrak{p} such that $I_{\mathfrak{p}}$ is not a normal subgroup of $\operatorname{Gal}(K / \mathbb{Q})$.
4. Let S_{3} by the symmetric group on three symbols, which has order 6 .
(a) Observe that $S_{3} \cong D_{3}$, where D_{3} is the dihedral group of order 6 , which is the group of symmetries of an equilateral triangle.
(b) Use (4a) to write down an explicit embedding $S_{3} \hookrightarrow \mathrm{GL}_{2}(\mathbb{C})$.
(c) Let K be the number field $\mathbb{Q}(\sqrt[3]{2}, \omega)$, where $\omega^{3}=1$ is a nontrivial cube root of unity. Show that K is a Galois extension with Galois group isomorphic to S_{3}.
(d) We thus obtain a 2-dimensional irreducible complex Galois representation

$$
\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Gal}(K / \mathbb{Q}) \cong S_{3} \subset \mathrm{GL}_{2}(\mathbb{C})
$$

Compute a representative matrix of Frob_{p} and the characteristic polynomial of Frob_{p} for $p=5,7,11,13$.

