Harvard Math 129: Algebraic Number Theory
 Homework Assignment 2

William Stein

Due: Thursday, February 24, 2005

The problems have equal point value, and multi-part problems are of the same value. There are $\mathbf{7}$ problems.

1. Prove that the ring $\overline{\mathbb{Z}}$ is not noetherian, but it is integrally closed in its field of fraction, and every nonzero prime ideal is maximal. Thus $\overline{\mathbb{Z}}$ is not a Dedekind domain.
2. Let K be a field.
(a) Prove that the polynomial ring $K[x]$ is a Dedekind domain.
(b) Is $\mathbb{Z}[x]$ a Dedekind domain?
3. Let \mathcal{O}_{K} be the ring of integers of a number field. Let F_{K} denote the abelian group of fractional ideals of \mathcal{O}_{K}.
(a) Prove that F_{K} is torsion free.
(b) Prove that F_{K} is not finitely generated.
(c) Prove that F_{K} is countable.
(d) Conclude that if K and L are number fields, then there exists an isomorphism of groups $F_{K} \approx F_{L}$.
4. From basic definitions, find the rings of integers of the fields $\mathbb{Q}(\sqrt{11})$ and $\mathbb{Q}(\sqrt{13})$.
5. Factor the ideal (10) as a product of primes in the ring of integers of $\mathbb{Q}(\sqrt{11})$. You're allowed to use a computer, as long as you show the commands you use.
6. Let \mathcal{O}_{K} be the ring of integers of a number field K, and let $p \in \mathbb{Z}$ be a prime number. What is the cardinality of $\mathcal{O}_{K} /(p)$ in terms of p and [$K: \mathbb{Q}$], where (p) is the ideal of \mathcal{O}_{K} generated by p ? (Prove that your formula is correct.)
7. Give an example of each of the following, with proof:
(a) A non-principal ideal in a ring.
(b) A module that is not finitely generated.
(c) The ring of integers of a number field of degree 3 .
(d) An order in the ring of integers of a number field of degree 5 .
(e) The matrix on K of left multiplication by an element of K, where K is a degree 3 number field.
(f) An integral domain that is not integrally closed in its field of fractions.
(g) A Dedekind domain with finite cardinality.
(h) A fractional ideal of the ring of integers of a number field that is not an integral ideal.
