REGULAR PRIMES AND FERMAT’S LAST THEOREM

STEVEN SIVEK

1. INTRODUCTION

Fermat’s Last Theorem is the well-known result that the equation z™ + y™ = 2"
has no nontrivial integer solutions for n > 3. Fermat gave only a proof in the case
n = 4, and the theorem was proven for other specific values of n by mathematicians
including Euler, Gauss, Dirichlet, and Lamé.

Given Fermat’s solution in the case n = 4, it is easy to show that it suffices to
prove the theorem in the case where x, y, z are pairwise relatively prime and n is
an odd prime, and also that one may instead address the equation zP +yP 4 2P = 0,
since this is equivalent to 2P + y? = (—z)?. Early attempts often split the theorem
into two cases: in the first, x, y, and z are not multiples of p, and in the second
case, p divides one of them. The first proof of Fermat’s theorem in any generality
came from Sophie Germain, who proved the first case of the theorem for any p such
that 2p + 1 is also prime.

The first significant advance toward a proof in both cases was provided by Kum-
mer, who proved the theorem to be true whenever p is a “regular” prime and invented
much of the theory of ideals along the way. His proof made use of cyclotomic fields
and the elegant identity

n—1
(1.1) 2 +yt = [[@+ ),
i=0
where ¢ = ¢>™/™, Though Fermat’s Last Theorem was eventually proven by Wiles
et. al. in 1995 using a very different approach, Kummer’s work is still significant
because it motivated much of the earliest work in algebraic number theory.
The primes for which Kummer proved Fermat’s Last Theorem are defined as
follows:

Definition 1.1. Let p be prime, and let K = Q(e2™"/?) be the field obtained by
adjoining a primitive pth root of unity to Q. Then p is said to be regular if the
order of the class group of K is not a multiple of p.

Kummer’s result established the theorem for all primes less than 100 except the
irregular primes 37, 59, and 67. It is still unknown whether or not there are infinitely
many regular primes, though Jensen proved in 1915 that infinitely many primes (in
fact, infinitely many primes congruent to 3 mod 4) are irregular. However, the
regular primes are believed to have density e~1/2 (just over 60 percent) in the set
of all primes. This paper will give both cases of Kummer’s proof and then develop
a criterion for regularity which is much easier to use in practice.

The proof will proceed as follows: We will first prove case I by using unique
factorization of ideals to show that (x + (y) is a pth power of some ideal, which
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must be principal by the regularity of p. This will enable us to write = + (y = ua?
for some unit u, and upon writing a? = a (mod p) for some rational integer a
we will derive a congruence relating z, y, and ¢ modulo p which cannot have any
solutions. In case II, we will assume that p divides z, write z = p©zp, and show that
the more general 2 + y? = (1 — ()"Pz{ cannot have any nontrivial solutions when
n > 1. We will do this by taking a solution which minimizes n and showing that
for such a solution, (z + ('y) is always two particular ideals times a pth power of an
ideal. Then the quotient of two of these ideals is a pth power of a principal ideal,
and so using two generators of these principal ideals and invoking a powerful lemma
on units we will construct a solution with a strictly smaller value of n, causing a
contradiction.

2. CYCLOTOMIC FIELDS

In this section we will gather some useful facts about cyclotomic fields, that is,
fields of the form Q(¢,) for some nth root of unity ¢, = ¢**/™. We note without
proof that the cyclotomic field Q({,) has degree ¢(n) over Q, where ¢ denotes the
Euler totient function. In fact, it is easy to show that Q({,) is a Galois extension
of Q, and Gal(Q(¢,)/Q) is isomorphic to (Z/nZ)*, the group of units modulo n.

Now let p denote an odd prime, and let { = ¢, and K = Q(¢).

Proposition 2.1. The roots of unity in K are precisely those n such that n?P = 1.

Proof. Note that (5, = —gSp +/ 2, so that (2, and hence all of the 2pth roots of
unity are contained in K in fact, since ¢, = §22p we see that K = Q((ap). For the
converse, we note that the torsion subgroup of the group of units Uk is known to be
cyclic, so it is generated by some (,. Since (2, is in this cyclic group, we must have
2p | n; but also Q C Q(¢,) C K, so [Q(&,) : Q] divides [K : Q)], or ¢(n) | ¢(2p). It
is an easy exercise to show that this is only possible when n = 2p. (|

Lemma 2.2. If1<a<p-—1, then 1 —( and 1 — (® are associates in the ring of
integers O .

Proof. Let bbe the inverse of a modulo p. Then 1—(® = (1—¢)(1+¢+¢?3+- - -+¢*7 1Y),
and 1 —(=1-¢" = (1-¢)A+¢* 4%+ ---+¢=Da) All factors are algebraic
integers, since Z[¢] C Ok, so 1 — ¢ and 1 — ¢ are multiples of each other in Ok
and hence the two differ by a unit factor. O

Corollary 2.3. The ideal pOy factors into primes as pOx = (1 — ()P~1,

Proof. We know that [[V_ (z — (') = &=L = 2P~! + ... + z + 1, so setting = = 1
yields [T?—4 (1 — ¢*) = p. If we pass to ideals, then pOx = [['— (1 — ¢*), and each
ideal in the product is equal to (1 — () since 1 — ¢ and 1 — (* are associates. It now
remains to be shown that (1 — ¢) is prime.

Assume pOk factors into primes as [[7_, p¢, where each p; has residue class
degree f and all p; share the same e and f since K is Galois. Since pOf is a perfect
(p—1)st power, we have p—1 | e. Then we know that p—1 = [K : Q] = efg, which
is only possible if g = 1 and e = p — 1, so pOg = p’f_l for a prime p;. Unique
factorization of ideals tells us that p; = (1 — {), as desired. O

Proposition 2.4. The ring of integers Ok is equal to Z[(].
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Proof. Corollary 2.3 gives us pOK = {(1 — ¢)P71). We expand using the binomial
theorem: (1 — ¢Q)P~! = 020 (P2 (=OF = Sh22 (1) — (=1)F) (=¢)*, since
(Pl = P2 (1. But (1) = (-1)* (mod p) for 0 < k < p—1
by an easy induction: it is true for Kk = 0, and for 1 < k£ < p — 1 we note that
") = @) -] =0—(=1)*! (mod p). Hence we can write (7,") —(—1)* = pay,
for some integers ax, and then we have (1 — )P~ = Y7 _¢ 2 par(—C)F = py, where
y = > ar(—¢)* is clearly a member of Z[(].

We now have pOx = (py) = (p){y), so by unique factorization of ideals we may
cancel (p) on both sides to get Ox = (y) C Z[{]. But clearly Z[{] C Ok, as
remarked earlier, so we conclude that Ok = Z[(] as desired. O

We remark that this proof is only valid for p prime, but in general it is still true
that the cyclotomic field Q(¢,,) has ring of integers Z[(,| even when n is not prime.

Proposition 2.5. Every unitn € Ok is of the form r(™ for some real unit r € Ok .

Proof. First note that 77 € O is also a unit, and so if we let p = " then p € Ok.

Given any automorphism o € Gal(K/Q), we have |o(p)

o] = el
U(n)} = =1 I

f(x) is the minimal polynomial of p, and f has sphttlng field L, then L C K, so
|7(p)| = 1 for every 7 € Gal(L/Q). Thus the conjugates of p all lie on the unit
circle. The same is clearly true for every p¢, ¢ > 1, since we may replace n with the
unit ¢ and proceed identically.

Let p¢ have minimal polynomial g(x) with roots pi, p2,-- - , pk, all have which
must have modulus 1. Then g(z) = 2* + a;2*~! + --- + ax_12 + ay, where each
a; is the sum of all i-wise products of the roots p;; since |p;| = 1 for all j, each

i-wise product has modulus 1, and since there are (*) such products the triangle
inequality yields |a;| < (’f) But deg(g) < p — 1, since g splits in a subfield of K,
so g can only be one of finitely many polynomials. Since every p° is a root of one
of these polynomials, each of which has at most p — 1 roots, we must have p® = p®
for some a # b, and so p is necessarily a root of unity. Then by proposition 2.1 we
have p = (™ for some m.

We now have n = +7j¢("™. Suppose that the sign is negative, and since n € Z[(]
let n = > ¢;¢* for some integers ¢;. Then since 1 — ¢* € (1 — () for all i, we
have n = Y. ¢; = 7 (mod 1 — (), hence n = —7¢*¥ = —n (mod 1 — ¢). But then
2n € (1 — (), hence 2 € (1 — ). This is impossible, since p € (1 — () is relatively
prime to 2 and (1 — ) is not the unit ideal, so n = 7¢"™. If m is odd, then replace
m with m + p so that n = 7¢?>" for some integer n, and define » = n(~"; then r is
a unit, and r is real since 7 = 7" = r, so n = (" and we are done. O

For the sake of convenience, throughout the rest of this paper we will let A = 1—¢
and let | = ()\). Therefore [ is prime, pOx = P!, and since p € [ we note that
INZ = pZ.

3. CASE 1: p f zyz

Suppose that for some regular prime p, we have relatively prime integers z, v,
and z which are not multiples of p such that «? + y? + 2P = 0, or zP 4+ yP = (—2)P.
If p = 3, we note that (3k = 1)3 = +1 (mod 9), and since each of z, y, and z has
the form 3k + 1 we have +1 £ 14+ 1 = 0 (mod 9), which is impossible; hence we
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need only consider p > 5. Using the factorization (1.1) and passing to ideals in the
field K = Q(¢), where ¢ = >™/P we have

p—1

G = T+ c).

i=0
Proposition 3.1. The ideals (x+('y) are all relatively prime fori =0,1,...,p—1.

Proof. Suppose that some prime p divides both (z + ('y) and (v + (’y), where
0 <i<j <p—1. Then p contains both generators = + 'y and z + {7y, so it also
contains (z + ¢*y) — (" (z + (Yy) = (1 = ")z and (7 ((z + Iy) — (z + ('y)) =
(1 — ¢*7)y. Since x and y are relatively prime, there exist integers m and n such
that mz + ny = 1, and so p must contain m(1 — ¢z +n(l — 7))y =1— 7.
It follows that [ = (1 — (*~7) C p; but prime ideals in O are maximal, so p = .
Since [ | (z+('y), we have [ | (z), and so z € (2)NZ C INZ. But [NZ = pZ, and
this contradicts the assumption that z is not a multiple of p. Therefore the ideals
(x + C'y) and (x + (Jy) must be relatively prime. O

Since (z)P is a perfect pth power, we see that each of the ideals (x + ('y) must
also be a pth power. In particular, we may write (xz + (y) = I? for some ideal I.
But if I? is principal, then I has order dividing p in the class group CI(K). Since
p is regular, p does not divide the order of C1(K), so p cannot divide the order of
any element; hence I belongs to the trivial class in CI(K), or I is principal. Then
I = (a) for some o € Ok, so (xz + Cy) = (aP), and we get = + (y = ua? for some
unit © € Ok . By proposition 2.1, then, there exist a real unit r and integer k such
that

z+Cy = rcta?,
Lemma 3.2. There exists an integer a such that o = a (mod p).

Proof. Since O = Z[(], we may write a = > _ ¢;¢?, where the ¢; are integers. Then
a? = (L) =Y () =X ¢ =Y ¢; (mod p). 0

Lemma 3.2 allows us to write (*(x + (y) = ra (mod p), where r is real and
a is an integer, and taking complex conjugates yields ¢*(z + ¢~'y) = ra (mod p).
Combining these two equations, we get (% (x + Cy) = (¥ (x + (" 1y), or

(3.1) CFa+Fly—¢Fa— ¢y = 0 (mod p).

Assume without loss of generality that 0 < k < p. The proof now proceeds by a
case-by-case analysis:

Case 1. Suppose k = 0. Then equation 3.1 reduces to ((~* — {)y =0 (mod p), or
multiplying by ¢ and factoring, (1 —¢)(1 4 ¢)y = 0 (mod p). But 1+ ¢ is a unit
since (1+¢)(1—¢) = (1—¢?) and 1 — ¢ and 1 — ¢? are known to be associates, so
Ay =0 (mod p). Therefore \y € pOx = [P~! and since p > 2 we have y € [P~2 C .
We know that y is an integer, so y € [NZ = pZ, and this cannot happen.

Likewise, when k = 1 we have ((—( 1)z = 0 (mod p), and by the same argument
this implies « € pZ, which is impossible.

Case 2. Suppose that k& # 0,1 and p > 5. For some 3 € Z[(] we have fp =
ka4 Pty — ¢pFx — =Dy, Since any p — 1 of the elements 1,¢,..., (P!
form a basis of Z[(], if the exponents k, k — 1, p — k, p — k + 1 are all incongruent
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modulo p then we may pick a basis which includes these powers of (. Expressing (3
in terms of this basis and comparing coefficients, we see that p divides both x and
y, which is impossible. Hence some of the exponents must be congruent modulo p:
either 2k =0 (mod p), 2(k—1) =0 (mod p), or p =2k —1 (mod p). The first two
of these yield £k = 0 and k = 1, which we have already eliminated, so we must have
2k =1 (mod p).

Returning to the congruence and multiplying both sides by ¢*, we now have
(g + Ly — 2 — Cy = 0 (mod p), or (C — 1)z + (1 - C)y = 0 (mod p), or
A —y) € pOg = P~L. Therefore x —y € [P~2 C [, and since z — y is an integer it
must be in [N Z: hence we have x =y (mod p).

We have now shown that if 2P + y? 4+ 2P = 0 and p [ zyz, then p > 5 and so
2 =y (mod p). But we may simply switch the roles of y and z at the beginning of
this section to get © = z (mod p) as well, so 0 = zP + yP 4 2P = 32 (mod p). This
can only happen when 2 = 0 (mod p), and so there are no solutions.

4. CASE 2: p | zyz

Suppose that P + y? + 2P = 0 and p | zyz, where p > 3 is regular. Assume
without loss of generality that p divides z, and write z = p°®zy, where p does not
divide zp; note that since x, y, and zy are not multiples of p in Z, they are not
multiples of A in Z[¢]. Then (z) = [€P=D (), so as in case 1, we have

p—1
(4.1) [T+ = )r=r(=),

i=0
where n = e(p — 1); we will prove that a slightly more general version of this has
no solutions.

Proposition 4.1. Equation 4.1 has no solutions, where x,y,zo € Z[(] are not
multiples of X and n > 1.

Following the proof of proposition 3.1, we see that the greatest common divisor
of any distinct ideals (z + ('y) and (z + (/y) is the ideal ? = (x,y) times some
power of [.

Let (x,y, z0,n) be a solution of equation 4.1 such that n is minimal. Note that
for all i and j we have x + ('y = = + (‘y (mod )\), since the two sides differ by
Cly(1—¢7~%) and 1 —¢7~* is a multiple of 1 — ¢ = \. Therefore if \ divides x + ('y
for some i, it divides x + ¢’y for all j. But [ is prime and pn > 1, so [ divides some
ideal on the left hand side and therefore [ | (z + ('y) for all i.

Suppose there exist some i and j which are distinct modulo p such that [? divides
each of (x+(%y) and (z+¢’y). Then both 2+ 'y and z+ ¢’y are multiples of A\, so
A? divides their difference y(?(1—¢7~*): passing to ideals, we have [ | (y)(1—¢77%).
Since j — i is not a multiple of p, (1 — ¢/~%) = [, hence by unique factorization of
ideals [ | (y). But y is not a multiple of A, so this is impossible. We conclude that
ged({z + C'y), (x + ¢7y)) = ol for all distinct ¢ and j.

We now claim that equation 4.1 has no solutions when n = 1. Assume such a
solution exists; then (z+(’y) is always a multiple of [ but not of [?, so z+('y = ;A
(mod \?) for some «; € Z[¢] which is not a multiple of \. The «; are all distinct
modulo ), since otherwise x + (‘y = = + (y (mod A\?) and this is impossible as
argued above. But Z[(]/A\Z[(] = F,, so there are only p — 1 nonzero residue classes
modulo \ for the p values «;. This is a contradiction, and so we must have n > 2.
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As a consequence, we have pn > p, so [ | (z + (*y) for some unique k. Replacing
y with ¥y in our original equation, we may assume that k¥ = 0 without loss of
generality. Then "=~ || (z +y), and [ || (z + y) for 1 <i<p.

Write (z + y) = 0PV ) and (z + (iy) = olI; for 1 < j < p. Dividing each
side by 0PIP" in equation 4.1 gives us

I = @ ')
§=0

Since each of the I; must be relatively prime and the right hand side is a perfect
pth power, it follows that each I; = JJ’-’ for some ideal J;. Then for ¢ > 1
X + Czy o O[J,Lp o —p(n—l) —1\p
<x+y>—m—[ (Jidy )",
and since p does not divide the order of CI(K) but the fractional ideal (.J;J; ")?
must be principal, J;J; ! is principal.
Set JiJ; ! = ($4), where a;, b; € Z[(], for 1 < i < p; since [ does not divide Jo or
Ji, we may assume that A does not divide a; or b;. Then for some unit ¢; we have

I+Ci’lj _ (nfl) a; p . .
= e§NP 7= ) , or clearing denominators,
‘ i

)\p("_l)bf(:v + () = e;al (x +y).

When i = 1 we have \?("" D (z + (y) = e1a}(z + y), and when i = 2 we have
NP (=DpE (2 4 (?y) = eab(x + y). Subtracting b% times the second equation from
(1 + ¢)bh times the first, we get

N (bibo)P [((z+y)] = (@ +y) [er(1+()(arbs)” — ea(aghr)?] .
Since 1+ ¢ is a unit, we define units ¢, = 7%+ and ¢; = m and divide
both sides by the nonzero €1 (z + y)(1 + ¢) to get
(4.2) (albg)p + Eé(agbl)p = Eg)\p(n_l)(blbg)p.

We wish to eliminate the €, term, for then we will have constructed a solution to
equation 4.1 with a smaller value of n than in the original solution. Since n > 2,
AP divides (a1b2)? 4 €5(azb1)P. But A does not divide asby, so {asby) is relatively
prime to [; hence there is some ¢ € Z[(] such that casb; =1 (mod \).

Lemma 4.2. If « = § (mod \) for some «, 3 € Z[(], then a? = 3P (mod AP).

Proof. We have a = 3 + ¢\ for some ¢ € Z[(], so a? = (8 + qg\)? = 8P + (g\)P +
Zf;ll () B*(gA)P~". Bach term in the summation is a multiple of pA and hence a
multiple of AP, and (g\)P is clearly also a multiple of AP, so o? = P (mod AP) as

desired. O
From this lemma it follows that ¢?(a2b1)? =1 (mod AP), and so 0 = ¢?(a1b2)? +
ehel (aghb)P = (carbe)? + € (mod AP), or €5 = (—ca1bz)? (mod AP). But also

—caiby = d (mod \) for some integer d, since Z[(]/AZ[¢] = F,, so by another
application of the lemma ¢, = d? (mod MP). Since p is an associate of \P71, it
divides A7, and so €5 = d? (mod p), or simply €, = d (mod p).

We now invoke a deep result known as Kummer’s Lemma:

Lemma 4.3. Let p be a regular prime, let u € Z[(] be a unit, and suppose there
exists m € Z such that u=m (mod p). Then u = €P for some unit .
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Thus we can write €, = 1P, where € Z|(] is a unit. Equation 4.2 now becomes
(a1b2)? + (nasb)P = AP (byby)P.

Let 2’ = aibs, vy = nagb1, and z) = b1be. Factoring the left hand side and
passing to ideals, we have

p—1
[T@ +¢y) = e,

=0

and we know that none of 2/, ¥/, and z{ are multiples of \. Since n —1 > 1, we
have a solution of 4.1 of the form (z/,y’,2),n — 1), contradicting the minimality
of n. Therefore there cannot be any solutions, and in particular the equation
2P + yP 4+ 2P = 0 does not have any solutions where p divides z.

Combining this with case I, we have now proven (modulo Kummer’s lemma)

Theorem 4.4. The equation xP +yP+ 2P = 0 does not have any nontrivial solutions
in integers x,y, z when p is a regular prime.

5. BERNOULLI NUMBERS

The goal of this section is to define a sequence of numbers which provide a very
useful criterion for the regularity of a prime p.

Given n > 0, let B, (t) be the unique polynomial of degree n (up to a constant)
such that f;“ B, (t)dt = z™ for all z; we may easily see that it is unique because
differentiation yields B, (z + 1) — B, (x) = nz"~!, and specifying a value of b,, =
B,,(0) guarantees that this difference equation has a unique solution. Furthermore,
we have [T Bl (t)dt = L ["M B, (t)dt = na"t = n [T B,_1(t)dt, and so
B! (t) = nBp-1(t).

From this differential equation it follows by an easy induction that B, (t) = t" +
()brt" L+ -+ (7)b,. But since (n+1)0" = fol B, 1 (t)dt = Bpy1(1) — Bpy1(0),
or B,+1(0) = By1(1), if we set Bo(t) = by = 1 we have

n+1 n+1 n+1
1 b b b, = 0.
(5.1 ("o D (" e (U0 0

The numbers b,, which satisfy this recurrence (and are the constant terms of the
polynomials B,,(t)) are called the Bernoulli numbers. It is clear from the recurrence
that the Bernoulli numbers are all rational. Furthermore, one can easily see that
the problem of finding sums of consecutive nth powers reduces easily to knowing
values of the Bernoulli numbers, since by the definition of the polynomials B,,(t)

we have ¢” + (c+1)" +---+d" = fcdH B, (t)dt = n+r1 fcdH B, 1 (t)dt, or

d
(5.2) Z o Byi1(d ;14)_1 Bn+1(0).

k=c
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n 1 n
Finally, from equation 5.1 we get 2= = (n+11), i (Mo =300, Wlk), ok

Multiplying by 2" and summing over all n, we have

00 co n—1 n+1k

bpz™ bpz
Z 1“;7f - Zkz%) n+1-—k)! l;i'x'

n=1
o n+1 k b ,Tk e bn$n+1 e bn xn—i—l
- > (St St
(n+1-k)! kK n! (n+1)!

1
1
n=0 0 n=0 n=0

' = byt o= bpa™
(5] (k] ()
i=0 j=0 n=0

or, if f(z) = Y37 B, then —a(f(x) — 1) = (e f(x) — 1) — af(z) — (f(z) = 1).

Solving for f(z), we conclude:

. bpa T
(5:3) Z nl e 1

n=0

n=
n
k=

>

As a corollary, note that & + 3 b’;ﬁn =2(1+25)=2%2 (e ) The quantity

er
. . . . = @ bz
in parentheses is an odd function, since &t = & 5o £ + 3 b2t g even.
Therefore by = —1 and b,, = 0 for all odd n > 3.
The criterion Kummer found for regularity is the following, which we will prove

in the following sections:

Claim 5.1. An odd prime p is regular if and only if p divides the numerators of the
Bernoulli numbers b, by, ... bp—3.

This claim, together with recurrence 5.1, give us a criterion which can easily be
checked to determine whether a prime is regular. We note the following useful fact:

Proposition 5.2. The quantity (n + 1)!b,, is an integer for all n > 0.

Proof. Clearly the assertion is true for n = 0; we will prove it for n > 1 by induction.
Multiplying equation 5.1 by n!, we get (n+1)!b,, = — Z;:ol ("‘:1) (nlb;). If (i+1)1b;
is an integer for all i < n, then n!b; must also be an integer. But then the entire
right hand side is an integer, and so (n + 1)!b,, is an integer as well. O

Therefore if p is prime, then p does not divide the denominators of the numbers
b; (when written in lowest terms) for i < p — 2, since (p — 1)!b; is an integer and
p f (p—1)L. In particular, we may treat these b; as integers mod p and use equation
5.1 to compute bo, bs, ..., bp—3 (mod p); the prime p is regular if and only if any of
these are zero.

Assuming the truth of claim 5.1 and the ability to do arithmetic mod p in
constant time, we now have an algorithm which can determine if p is regular: for
eacheven i, 2 <i<p-—3, compute the (74 1)st row of Pascal’s triangle mod p and
use this to calculate the sum Y77~ (Z-;l)bj (mod p), then multiply by —(i + 1)~*
to get b;. Each of these steps takes linear time (except the O(1) multiplication),

since the coefficients (ing) can each be computed from the (i — 1)st row in constant

time using the recurrence (“51) = (;:;) + 2(;1) + (lgl) We conclude that this

algorithm determines the regularity of p in O(p?) time.
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6. THE CLASS NUMBER OF Q((p)

Fix an odd prime p and let K = Q((,). For a choice of primitive root v modulo
p such that v?=! #£ 1 (mod p?), we define v; = +* (mod p) such that 0 < v; < p
for all ¢, and then we construct a polynomial ¢(z) = Zi;g yez®. Of course, this
requires us to know that such ~ exists:

Proposition 6.1. There exists some v, 1 < v < p, such that v is a primitive root
modulo both p and p>.

Proof. Let g be a primitive root mod p with 1 < g < p, and let h and H be
the smallest positive inverses of ¢ mod p and p?, respectively. Then gh < p? and
gH > p?, so we must have H = h + pd for some integer d, 0 < d < p. If g is not
a primitive root mod p?, then we must have g?~! =1 (mod p?), since the order of
g mod p? is a proper divisor of ¢(p?) = p(p — 1) but a multiple of its order mod
p (namely, p — 1). But (¢H)?~! = 1 (mod p?), so HP~! = 1 (mod p?) as well.
Since H = h+pd, we have 1 = (h+pd)P~! = hP~! + (P7")hP~2pd (mod p?) by the
binomial theorem, so h?~1 = 1 + (h?~2d)p # 1 (mod p?). Since h has order p — 1
mod p, its order mod p? is a multiple of p — 1 but a divisor of p(p — 1), hence it
must be p(p — 1); that is, h is the desired primitive root. O

Let @« = ¢ = ¢, and 8 = (,—1 be primitive pth and (p — 1)st roots of unity,
respectively. Let p = pz;l, and consider the automorphism o : a — «”. Note that
ota =a" =a~!, since y* = —1 (mod p).

Lemma 6.2. For any rational integers x1,x3, - -+ ,x, which sum to zero, the prod-
uct £aF(1 — oa)™ (1 — o?a)®2 - - - (1 — oha)® is a unit in Z[(].

Proof. Call this product P € K. Since o'a = (*ifor some k;, we know that 1 —
o'a and 1 — ( are associates; let ¢; denote their quotient. Hence P = +a*(1 —
Q)mrteatFTu [Tef . But Y. x; =0, 50 P = +a* [[ €/, and all of the terms on the
right hand side are units in Z[(]. O

If we let Uk denote the group of units of Z[¢] and H C Uk the subgroup of
units of the form +a* [](1 — o’a)® as in the lemma, then H is a subgroup of finite
index.

Kummer showed, via some extensive analytic calculations, the following result:

Theorem 6.3. K has class number h = hihs, where h; = IMBW((@;));?I(BPQ)‘ and
h2 = [UK : H]

See [4] for a detailed proof, or [1] for a proof which characterizes ho diffferently
as the class number of the field Q(a + a~1).

In order to determine whether a prime p is regular, it now suffices to check that p
does not divide h; or hy. We will provide a criterion for determining whether p | hq
in this section and show in the next section that this is the only needed criterion
because p | ho only if p | hy.

Let P = [[/2) ¢(8%11), so that hy = (2)7)%. Since ¢(z) = P2 ypz* and

¥k = Y1 (mod p), we have (yz — 1)é(z) = 3777 (v1k — Y1) 2k + yyp-0a? ! —
Yo- Then 7yy,—2 = 4?~" = 1 (mod p), and 7 = 1, so (yz — 1)p(z) = py(z) +
xP~1 — 1 for some polynomial v(x) with integer coefficients. Applying this for
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x=03,3,...,6°"2, and noting that (5°)P~! — 1 = 0, for each i we get

(YB=1) (P2 =P = p"Pp(B)p(5°) - -(8772).
Now, 3,32,..., P2 are the roots of m(”ff:i)l/;l_l = 2P~ D241 so[[(x—3") = a*+1,
where ¢ runs through 1,3,...,p—2. Substituting}a: = v~ ! and multiplying through
by v#, we get [[(1 —~8") = 1+ ~*, hence [[(v6* — 1) = (—1)*(y* + 1). Therefore

DO+ 1P = pp(B)(8%) (5772,

Since « is a primitive root modulo p and 2y = p — 1, we have v* = —1 (mod p),
or p | v*+ 1. But 4* + 1 divides 47~! — 1, and this is not a multiple of p2. It
follows that p#~! divides P, and p divides h; = (2)7)% if and only if it divides

Y(B)Y(B) - (BP~2). Next, since 3 and v are both primitive (p — 1)st roots

of unity modulo p, it follows that 1(3)y(8%) - ¥ (BP72) = Y(V)Y(y3) - - - (7P ~2)
(mod p). Therefore p f hq if and only if p does not divide any of the 1 (v*).

Lemma 6.4. p divides ¥v(v"), 1 < n < p—2, if and only if EZ: B (%) =
(v = 1)Bnt1(p) (mod p).

Proof. Note first that the Bernoulli polynomials involved are well-defined modulo
p, since their coeflicients are Bernoulli numbers by, k < p — 1, and by proposition
5.2 we know that p does not divide the denominators of any of these numbers.

Define c; such that pc; = yy; —vj4+1 for j < p—1and pc,—1 = yyp—2—1, so that
Y(x) = Z;i crx®. Note that 0 < ¢; < « for all j, since ;11 is the least positive
integer congruent to the positive vyv; modulo p and pc; < vp. In fact, it is clear
that if %p <7 < @, then ¢; = k. We may write ¢(v") = Zi;i cxYp (mod p),
and since each of the v is congruent to a unique integer between 1 and p — 1, we
have

p—1 k
$(") = IR (mod p).

k=1 p

Rearranging terms and applying equation 5.2, we get

b Z(f@1”+---+<p—1>") (mod p)

k=1 v

15 (i (1)

But n + 1 is invertible modulo p, so ¥(y™) = 0 (mod p) iff the summation is a
multiple of p, and thus we may drop the — term.

Finally, note that the numbers v (%] Y [27’7], N (('yf—vl)p} are congruent to some
permutation of 1,2,...,v — 1 (mod p). This is true because they are all distinct

modulo p (since v is invertible) but kp < w(k—,f] < kp + ~y. Therefore the numbers
B ((%ﬂ), 1 < k < y—1, are congruent to the numbers B,, ;1 (%), 1<i<y-1,
and we are done. O

Recall from the previous section that (yx)™ = ,;Y;H B,,(t)dt, hence y"x™ =

f;“m vBn(yu)du by a simple substitution. But also 4"z™ = 4™ f;“ B,,(t)dt,
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which is in turn equal to ™ {ffﬂ/’y (Bm(t) + B (t+ %) B (t+ 1= 1)) dt}.
Since this is true for any x, we conclude that yB,, ( ) Y [ ( ) -+ B (t+
1=2)]. Finally, letting t = 0, we get Yb,, = 7" [by + Bm(2) + (7771)], or

(= by = ZBm(§>

Combining th1s with the lemma, we see that for 1 < n < p — 2, p divides (")
if and only if (v™" — 1)by41 = (y—1)Bpn41(p) (mod p). But Bn+1( ) = Bn41(0) =
bpt+1 (mod p), so this condition is equivalent to (™™ — ¥)by41 = 0 (mod p). We
know that 4"*1 # 1 (mod p) since ~ is a primitive root and n +1 < p — 1, so we
may cancel out the term =™ — v to conclude that for n < p — 2, p divides (™)
if and only if p divides the numerator of b,,1.

We now handle the case n = p — 2 separately: in fact, we assert that p never
divides ¥(y?~2). Write v~ — 1 = pv, noting that v is not a multiple of p. Then

(v - 9772 = 1)p(rP72) = (p?/gg(”ypj) + (y»=2®=1) _1). Dividing by p, we have
P— r—1)_1q

vp(yP72) = P(yP72) + T————, where the last term is an integer. In fact,
since v*~! = pv + 1 (mod p?), we may raise both sides to the (p — 2)nd power
to get v(P=2P=1) = (p — 2)pr + 1 (mod p?), so % = (p—2)v (mod p).
Therefore

vp(v*7?) = Y(v*7?) —2v (mod p).

But ¢(y*~2) = S0P 2k = 3007 E = 3307015 = p— 1 (mod p), so
we get ¥(7?~2) = v (mod p), and thus p does not divide zb("yp ).
Combining the information we have about each ¥)(v*), we conclude the following:

Theorem 6.5. p divides hy if and only if p divides the numerator of one of the
Bernoulli numbers b, by, ..., b,_3.

7. ha AND KUMMER’S LEMMA

In order to determine whether p is regular, we must also consider whether or
not p divides ho. It turns out that this is in fact irrelevant. More precisely, we will
prove the following theorem (and obtain Kummer’s Lemma as a corollary):

Theorem 7.1. If p divides hs, then p divides h;.

Suppose p | ha, and recall that hy = [Ug : H]. Since p is prime, Ux/H contains
an element of order p; that is, there is some unit € not of the form +¢* I, (1 -
o), S x; = 0, such that ¢” has that form (i.e. ¢ € H). Fix a choice of sign,
k, and all values of z; so that ¢? = £(* [[(1 — ¢°¢)®. Then we cannot have p | z;
for all i: otherwise, we would have ¢ = +£(*nP, where = [](1 — ¢%¢)¥" and
Ti = PYi, SO (en_l)p = +¢* and thus +¢* = +1. We would then have ¢? = (£n)?,
so e = £ [](1 — 6°¢)¥ for some j, which contradicts the assumption that e & H.

Since we can write e = ag + a1{ + -+ + ap_1CP_1 for some integers a;, we have
e? = > (a;¢")? = Y a; (mod p), so there is an integer ¢ such that €’ = ¢ (mod p).
Therefore (absorbing a factor of —1 into c if necessary)

(7.1) 1 —0Q) (1= 0%)™ - (1=a"()™ = ¢ (mod p)

for some integers k, ¢, z; such that > z; = 0 and the x; are not all multiples of p.
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Define the rational function f(t) = t* []*_, (1 —0't)", where o't = t'". Equation
71 givesus f(t) =c+p-qt)+ (1 +t+---+t?~1)r(t) for some polynomials ¢(t)
and r(t) with integer coefficients. Taking logarithmic derivatives, we get

L A+ L+ () + (SIS DE) ()

R
t = 1—gzt B cHp-qt)+ (A +t+-- +tr1)rt)

and if we multiply through by ¢ and then set t = { we get

. Z rfotc @ d(©Q + (TG + D) r(©)
1—0¢ f(Q)

Note that f(C) = +¢P, so the right hand side is in Z[¢], and 372 (i + 1)¢* = pgp%ll

(wh1ch one may compute by calling it S and noting that (S — S = (p — 1)¢P~! —

P72 ¢t = p¢P~1). Thus if we let 1) denote the unit —(+¢?)~!, we have

k—@va)l—fg = (12) 0 modp)

But 17 = %C (p§:1) =S (CH2C 4+ (p— 1)¢P1), soif we write y; = '

(mod p) as before and rearrange the terms j¢7, noting that ;{7 = %(’Yi = v;0'C,
we get 1 C — é r=ot (%) = pl ot ( f;ll yiai) ¢ . Writing the operator in
parentheses as ¢(c), where ¢(x) = >_ ;2" as before, we have

(Zm )M = n<1%<>r<<> (mod p).

p

Note on the left that o* commutes with the operator in parentheses, since that
operator is a linear combination of powers of 0. Also, if we write n - r(¢) = = -
(1 =¢) —d for some z € Z[¢] and d € Z (recall that we can do this because
Z[¢]/(1=Q)Z[¢] = Fp), the right hand side becomes pz — t£-d = {%:(—d) (mod p).
But a‘ga‘in 18{ = _(¢(U))(C)7 S0

k+o" (Zvcf)(“ﬁ(”pﬂ = d-(4(0))(¢) (mod p),

i=1

Finally, we apply the operator yo —1 to both sides and recall that (yx—1)¢(z)

pY(z)+ (2771 —1), and so (yo —1)(¢(0))(¢) = (pvb(0) + (P~ =1))¢ = (po(0))(¢
to get

0,

n
(vk — k) + o* <Z $i7101> ®(0)(C) = dp(¥(0))(¢) =0 (mod p).
i=1
Let F(o) = (31, ziv'o")y (o). Since o#(F(0))¢ =k —~k (mod p), and k —~vk
is an integer, we may apply (0#)~! to get (F(0))¢ = k—~k (mod p). Furthermore,
F(0) commutes with 07, so (F(0))(07¢) = o/ (k — vk) = k — vk (mod p) for all j,
so we see that F(o) carries all powers of ¢ to the integer K = k — vk modulo p.
We now consider ¢ as an operator on the F,-vector space Z[(]/pZ[(]. Note that
this space has dimension < p — 1, since the elements ¢* (0 < i < p — 2) span it.
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Proposition 7.2. The operator o has eigenvectors v; = ¢ + Vol + v¥o?¢ +
o APDIgP2¢ where ov; = Y Iv;, for 0 < j < p— 2. Since the eigenvalues
YO,y =2 are all distinct modulo p, Z[C]/p has dimension p — 1 and the
elements v; form a basis.

Proof. Note that ov; = Ef:_oz Yot I¢, so yYov; = Zf_OQ D GHE = v, or

ov; =y Jv;. It is easy to check that v; # 0 for all j, so the proposition follows. [

As a result, note that for any polynomial f(z), we have f(o)v; = f(y7)v; in
this vector space. In particular, F(o)v; = (3 z;v"79)) ¢(y7)v; (mod p). But
since F(0)¢* = K (mod p) for all 4, we also have F(o)v; = Y72 F(0)(y70'¢) =
SP2AUK (mod p). Since Y149 = % = 0 (mod p), we have F(c)v; =0
(mod p) for 1 <j<p-—2.

Since F(y7)v; = (34, 29"37)) ¢(y™7)v; = 0 (mod p), either ¢(y~7) = 0
(mod p) or Y. x;v*"9) = 0 (mod p) for each of i = 1,2,...,p — 2. Suppose
that p / hi; then from the previous section we know that 1(y%) # 0 (mod p) for
i=1,3,...,p—2,or equivalently ¥)(y~7) £ 0 (mod p) for j = 1,3,...,p—2. Hence
for these u values of j we have

Il”ylij + I272(17j) 4+ xlu‘ﬂ)/'u(lij) = 0 (InOd p)

Thus we have a system of u equations in the p unknowns z1, 2, ...,z,, and the
coefficient matrix (7*(!=7)) is invertible because it can be easily transformed into
a Vandermonde matrix, so the only solution is x; = 0 (mod p) for 1 < i < p.
But recall the construction of the unit ¢ which we used to define the z; at the
beginning of this section: we assumed that p | he and showed that the x; cannot
all be multiples of p. Since this is clearly the case here, we have a contradiction, so
we conclude that p | hy and thus our proof of theorem 7.1 is complete.

Corollary 7.3. A prime p is reqular if and only if p does not divide the numerators
of the Bernoulli numbers b, by, ..., by_3.

The corollary follows by observing that p divides h = h1hs if and only if p divides
h1, and applying theorem 6.5.
We may now prove Kummer’s Lemma on units quite easily:

Theorem 7.4. [Kummer’s Lemma] Let p be an odd regular prime, and let u € Z|(]
be a unit. Then u = ¢ (mod p) for some rational integer c if and only if u is the
pth power of some unit of Z[(].

Proof. Tt is clear that for integers a; we have (E aici)p =Y a; (mod p), so perfect
pth powers are always congruent to rational integers modulo p.

Suppose u = ¢ (mod p). Since |Ux/H| = ha, we have u"* € H, and so u? =
+¢CF T (1—07¢)* for some k and integers x; which sum to zero, hence £¢* [](1—
0'¢)* = c"* (mod p). We have just shown that if p does not divide hy, then p | z;
for all 4, so u"? = +¢C*nP where n = [[(1 — 0¢)*/? is a unit. Furthermore, p does
not divide hs, 50 ahg +bp = 1 for some a,b € Z; then u = u®2u = (£(F)nPup,
so u = (% (£n2ub)P. Therefore +c(n u)? = ¢** (mod p), and so (** = ¢
(mod p) for a rational integer ¢/. But raising both sides to the pth power gives
1 = () = ¢ (mod p), so ¢(** = 1 (mod p), or p divides 1 — (. If ak # 0
(mod p), then ak is an associate of 1 — (, hence p divides 1 — (. This is impossible
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since p and (1 — ¢)P~! are associates, so we conclude that p | ak, hence (** = 1. It
follows that u = (£n%ub)P, as desired. O

This result completes the proof of Fermat’s Last Theorem for regular primes. In
other words, the equation x? + y? = zP has no nontrivial solutions whenever p is a
regular prime, and we have shown that p is regular if and only if p does not divide
the numerators of b2, by, ..., bp_3.
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