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1 Introduction

1.1 Prime factorization and the Number Field Sieve

One of the most important and widely-studied questions in computational number the-
ory is how to efficiently compute the prime factorizations of large integers. Among
other applications, fast prime-factorization algorithms would break the widely-used RSA
cryptosystem, and be of great interest in complexity theory. In particular, there is no
algorithm which can factor an integer n in polynomial time with respect to log n. Indeed,
a number can be proven prime or composite in polynomial time [1]; unfortunately, the
proof of compositeness does not generate a factor.

Of the many sophisticated prime-factoring algorithms, the one which is (conjecturally)
asymptotically the fastest is called the “Number Field Sieve.” Its conjectured run-time
for factoring a general integer n is

exp

[
(log n)1/3

((
64

9
+ o(1)

)
log log n

)2/3
]

([3], Conjecture 11.2.) Indeed, as recently as May 9, 2005, this algorithm was used to
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factor “RSA-200,” a 200-decimal-digit number, into its two 100-digit prime factors (the
number was posed as a challenge by the cryptography company RSA Laboratories).

In this paper, we will explain how and why the Number Field Sieve works.

1.2 Square Roots of One

When using the Number Field Sieve to factor a number n, the end goal (as with many
other factoring algorithms) is to “randomly” generate square roots of unity (mod n).
This pursuit is justified by the following theorem:

Theorem 1. Let n ∈ Z be odd. Then the set of solutions to x2 ≡ 1 (mod n) forms a
vector space V of dimension m over F2, where m is the number of distinct prime factors
of n. Moreover, given a nontrivial solution x, one can immediately recover a nontrivial
factorization of n.

Proof. First we define the vector-space operations. Vector-space addition corresponds to
mod n multiplication. Scalar multiplication in the vector space is mod n exponentiation.
Then it is easy to verify that the set of solutions is indeed a vector space over F2. Now
write n = pa1

1 · · · pam
m . Let S be the set of m-tuples with entries in ±1. By the Chinese

Remainder Theorem, for each s = (s1, . . . , sm) ∈ S there is a unique value (xs mod n)
satisfying xs

∼= si (mod pai
i ) for each 1 ≤ i ≤ m. Each xs is a square-root of 1, again

by CRT. And we will now show that every square root of 1 is of this form. By CRT, it
suffices to show that ±1 are the only square-roots of 1 (mod pa) for p odd. If x2 ≡ 1
(mod pa), then pa|(x + 1)(x− 1). Since p is odd, it cannot divide both x + 1 and x− 1,
so all the powers of p are in one of the two factors. But then either (x+1) or (x− 1) ≡ 0
(mod pa), as desired. So the square-roots of unity (mod n) correspond precisely to the
elements of S; in particular, there are 2m of them, so the dimension of the vector space
is m.

Now given a nontrivial solution to x2 ≡ 1 (mod n), let s ∈ S be the corresponding
m-tuple. Then by definition of xs, gcd(x − 1, n) is the product of pai

i over all i with
si = 1, and gcd(x + 1, n) is the product of pai

i over all i with si = −1. Since x 6≡ ±1, the
factorization n = gcd(x− 1, n) · gcd(x + 1, n) is nontrivial.

A prime power, of course, could not be factored by means of the above theorem;
but this is a minor detail, since it is quite easy to identify and factor perfect powers.
One could, for example, start by taking a numerical square root of n (say, by Newton’s
method) and rounding to the nearest odd integer, then try squaring that integer to see
whether the result is n. If not, then n is not a square; in the same way, test whether n
is a perfect kth power for 2 < k ≤ [log3 n]. This whole test takes only O((log n)3) time.
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2 Rational Sieve

We illustrate the main idea of the number field sieve by means of a simple special case
thereof: the “rational sieve.” The description will be qualitative (for example, terms like
“large number” and “fast algorithm” will not be defined), but we will fill in the details
when we describe the more general algorithm in the next section.

Let n be the integer we are trying to factor. We pick a subset of (Z/nZ)∗ as a “factor
base,” here P = {(p mod n) : p < B} for an appropriate integer B (we assume that no
element of P is a divisor of n; otherwise we are already done). A number is called B-
smooth iff all its prime factors lie below B. We search for numbers z such that both z and
z+n are B-smooth. Each such z gives a multiplicative relation among the elements of P .
Once we have found a few more of these relations than #P , we organize the relations into
a matrix, with a relation

∏
p∈P pap ≡ 1 corresponding to a row with entries a1, . . . , ar. We

reduce this matrix (mod 2), and since it has more rows than columns, we will find several
linear dependencies, which correspond to equations of the form

∏
i∈S

∏
p∈P paip ≡ 1 (mod

n) with
∑

i∈W aip even for each p. Each such equation gives us the element∏
p∈P

p( 1
2

∑
i∈W aip),

which is a square-root of unity (mod n). If we are lucky, at least one such dependency
will be nontrivial, and by Theorem 1 this will give us a nontrivial factorization of n.
If n has more than two prime factors, we can try again with more dependencies until
we find other nontrivial factorizations, and taking gcd’s will hopefully give the complete
factorization of n into prime powers.

The main reason that the Rational Sieve described above is prohibitively slow is that
we need to find numbers of order n (namely, z + n) which are B-smooth. These are
extremely rare, unless B is chosen to be so large that the matrix-reduction step becomes
unworkable. The purpose of the Number Field Sieve is to modify the algorithm so that
only numbers of order no(1) have to be tested for smoothness.

3 Special Number Field Sieve

3.1 Special and General Number Field Sieve

The term “Number Field Sieve” can refer to one of two algorithms. The Special Number
Field Sieve only works for numbers of the form re − s, with r, |s| small. The General
Number Field Sieve was a later extension of this algorithm to arbitrary integers. We
will describe both algorithms in some detail, starting with the Special Field Sieve in this
section, followed by the General Number Field Sieve in Section 4.
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We will leave out, for the purpose of clarity and brevity, some details of implementa-
tion. These details can be found, for example, in [6].

3.2 Idea of algorithm

In the Number Field Sieve, we pick a monic irreducible polynomial f ∈ Z[x], and an
element m ∈ Z/nZ such that f(m) ≡ 0 (mod n). Let α be a complex root of f , and
note that there is a homomorphism of rings ϕ : Z[α] → Z/nZ with α 7→ m. For ease
of exposition, we assume that Z[α] is a unique factorization domain; we will drop this
assumption later (Section 3.6). As before, we set up a factor base in Z of primes below
some number B1, and we also set up an analogous factor base in Z[α] consisting of a
generating set for the group of units in Z[α], along with a set of maximal set of non-
associate primes with norm below some number B2 (we actually only need a subset of
these – see Section 3.4). Then, by multiplicativity of the norm, every element of Z[α]
whose norm is B2-smooth will be uniquely expressible as a product of elements of the
Z[α] factor base. We look for pairs of relatively-prime integers (a, b) such that a+bm ∈ Z
is B1-smooth and a + bα ∈ Z[α] has a norm which is B2-smooth. Then, applying ϕ to
the factorization of a+ bα, and setting that equal to the factorization of a+ bm, we get a
multiplicative relation among the elements in a fixed factor base in Z/nZ. With enough
such pairs (a, b), we can proceed as in Section 2 to find square roots of 1 in Z/nZ, which
give rise to factorizations of n.

The advantage of this method is that m can be chosen to be much smaller than n, as
can the degree and coefficients of f . Then the numbers we are checking for smoothness
will be small enough that the smooth ones will not be too hard to come by, so B1 and
B2 can be chosen far lower than they could for the rational sieve, and the algorithm will
have a better chance of working in reasonable time.

3.3 Picking the Number Field

The first step of the algorithm is choosing a number field to work in. Recall that we want
to factor the number n = re− s. We first pick the degree d of the extension. Optimizing
the conjectured run-time for the algorithm gives

d ≈
(

(3 + o(1)) log n

log log n

)1/3

. (1)

This follows primarily from computing the density of B-smooth numbers – for details,
see ([6], §6.3, and [3], Conjecture 11.2). For example, d = 3 was used for factoring the
seventh Fermat number 227

+ 1, and d = 5 for the ninth. Having chosen d, we then find
the smallest integer k such that kd ≥ e, we let t = s · rkd−e, and we define f and m by

f = Xd − t, m = rk.
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Note that f(m) = rdk − srdk−e = nrdk−e ≡ 0 (mod n). There are simple criteria to check
whether polynomials of this form are irreducible (see [6], p15); if f is not irreducible,
we can factor it (e.g. through trial division) and plugging in m, we will either get a
factorization of n, or we can replace f by an irreducible factor, such that f(m) ≡ 0 (mod
n) still holds. We now let α be a complex root of f , so that we can define the ring
Z[α] ∼= Z[X]/f . Since f(m) ≡ 0 (mod n), there is a well-defined ring homomorphism
ϕ : Z[α] → Z/nZ with α 7→ m.

We assume for now that Z[α] is a principal ideal ring, a unique factorization ring, and
equal to the ring of integers of Q(α). We will drop these assumptions in Section 3.6.

3.4 Factoring in Z[α]

We next explain how factorizations are performed in Z[α]. We want all elements a + bα
whose norm is B2-smooth for some B2 to be factorizable in Z[α] as a product of elements
in a factor base. By our assumptions on Z[α], it would clearly suffice to take a generating
set U for the group of units (finite by Dirichlet’s Unit Theorem), along with a set G
consisting of one generator for each prime ideal of norm ≤ B2. In fact, it turns out that
we need only take generators for first-order prime ideals, that is, ideals with prime integer
norms:

Theorem 2. Suppose Z[α] is the ring of integers of Q(α). If a prime ideal p contains
an element of the form a + bα with (a, b) = 1, then p is a first-order prime ideal.

Proof. Suppose that p contains a + bα. Let x 7→ x be the reduction map from Z[α] →
Z[α]/p. Note that Z[α]/p is a finite field, of cardinality equal to Norm(p). Let p be its
characteristic, and define the subgroup Fp of Z[α]/p to be, as usual, the roots of xp−x in
the field. Since a+bα ∈ p, we get a+bα = 0. Since a, b ∈ Z and p ∈ p, we get by Fermat’s
Little Theorem a, b ∈ Fp. Moreover, b 6= 0, because if b = 0 then a = −bα = 0, and then
a and b would have the common factor p, a contradiction. Hence α = −a/b ∈ Fp. Then
Z[α] ⊂ Fp, so Z[α]/p = Fp, and hence Norm(p) = p.

Now the set of first-order prime ideals of norm p is in one-to-one correspondence with
the set of solutions (c mod p) to f(c) ≡ 0 (mod p), with the map given by letting c be the
image of α in the mod-p reduction map. Consequently, we will write first-order prime
ideals in the form (p, c). The number a + bα is in the ideal (p, c) iff 0 = a + bα = a + bc,
i.e. iff a+ bc ≡ 0 (mod p). Hence, it is easy to give a prime ideal factorization of (a+ bα)
in Z[α]: one needs to first prime-factor its norm ad − t(−b)d, and then for each prime-
power factor pk compute the unique (c mod p) for which a+ bc ≡ 0 (mod p); then a+ bα
contains the kth power of (p, c).
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3.5 Finding relations

3.5.1 Computing the factor base

First we choose parameters B1 and B2. This is often done empirically, although the
heuristic argument mentioned in Section 3.3 indicates (conjecturally) that an asymptot-
ically optimal choice would be

B1 ≈ B2 ≈ exp((2/3)2/3(log n)1/3(log log n)2/3)

(see [6], §6.2, and [3], Conjecture 11.4).

Having chosen B1 and B2, we want to generate the set P of prime integers ≤ B1,
a set U that generates the units of Z[α], and a set G containing a generator for each
first-order prime ideal of Z[α] with norm ≤ B2. P can be computed easily with the Sieve
of Eratosthenes. As a first step in computing G, the appropriate first-order prime ideals
are computed. This step is also easy: By the preceding section, this is equivalent to
finding solutions to f(c) ≡ 0 (mod p) for primes p < B2, and for each p this takes only
O(log p) time [2]. That still leaves the task of finding a generator for each such ideal, and
finding generators for the units. This can be done essentially through trial and error; see
([6],§3.1).

Applying ϕ to P ∪ U ∪G gives our “factor base” in Z/nZ.

3.5.2 Full Relations

We then search for pairs (a, b) of integers for which

gcd(a, b) = 1, a + bm is B1-smooth, and Norm(a + bα) is B2-smooth. (2)

Since we know which pair (p, c) each generator corresponds to, we can use the algorithm
in Section 3.4 to factor a + bα in terms of the elements of U and G; and it is easy to
factor a+ bm in terms of the elements of P ; so applying ϕ to both of these factorizations
gives the desired relation among the elements of the factor base.

It is worth noting that the reason the algorithm is called a “sieve” is because in
this step, smooth pairs are found through sieving. For example, a sieve to find pairs
with a + bm smooth would work as follows: A list of possible (a, b) are generated; for
each prime below B2, all the numbers a + bm which are multiples of that prime are
divided by it; and the entries which are 1 after this process are the ones where a + bm

was B1-smooth. In practice, the algorithm is a bit different: for example, by only keep
track of the approximate size of entries, speed is greatly enhanced at a small price in
thoroughness. The initial list of possible (a, b) is also important to choose appropriately
– based on the density of smooth numbers, a reasonable choice is to take all relatively
prime pairs (a, b) with max(|a|, |b|) on the order of B1 and B2 (see [6], §6.2).
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3.5.3 Partial Relations

In order to lower B1 and B2, we expand our search to include additional pairs (a, b)
besides those satisfying (2). Instead of forcing a + bm to be B1-smooth, we allow it to
have at most one prime factor p1 above B1, which must also be below a higher bound
B3. Likewise, instead of forcing Norm(a + bα) to be B2-smooth, we allow it to have at
most one prime ideal factor p2 above B2, which then must have norm below a higher
bound B4. These additional pairs (a, b) are called partial relations, since they do not in
themselves give a relation among the elements of the factor base. But we can combine
two or more partial relations into a “full relation.” For example, if (a1, b1) and (a2, b2)
yield the same pair of large primes p1 and p2, then in the ratio of their factorizations,
these large primes drop out, giving a full relation among the elements of the factor base.
More generally, we can represent each partial relation as a line on a graph between the
nodes p1 and p2 (or p1 and 1 if there is no large prime ideal, or 1 and p2 if there is no
large prime integer), and then each cycle in the graph easily yields a full relation.

In practice, cycles account for the majority of full relations found in the Special
Number Field Sieve. For example, in the factoring of the ninth Fermat number [5],
about 80% of relations came from cycles. The larger the prime or prime ideal is, the less
likely it is to contribute to a cycle; empirically, it seems to be counterproductive to set
B3 any higher than about B1.4

1 , or likewise to set B4 any higher than about B1.4
2 ([6],

§4.6).

3.5.4 Free Relations

A limited number of extra, easy-to-compute relations are those that follow from the
arithmetic of Z[α]. Each prime p < min(B1, B2) that is a product of d factors in Z[α]
(through splitting and/or ramification) is a product of first-order prime ideals (since the
Norm is multiplicative); hence each such prime yields a “free relation” in the factor base.
Ignoring the finite number of ramified primes, a prime splits completely iff it has a trivial
Frobenius element; the density of such primes, by the Chebotarev Density Theorem and
Galois Theory, is one over the degree of the splitting field of f . For example, if d is 3,
then adjoining the two primitive cube-roots of unity to Z[α] results in an extension of
degree 6, so we would get roughly π(min(B1, B2))/6 relations this way.

3.6 If Z[α] is not a unique factorization domain

We next summarize how these algorithms are modified in the case that Z[α] is not
necessarily a unique factorization domain, and not necessarily the entire ring of integers.
We first extend ϕ to the whole ring of integers O of Q(α). O can be computed via any
number of algorithms; see e.g. [7]. Then since Z[α] is an order, there is an integer e
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for which eO ⊆ Z[α], and by Proposition 7.2.4 and the remarks following 7.2.2 in the
course textbook, e divides the discriminant of f , which one can directly compute to be
−(−d)dtd−1. So as long as gcd(drs, n) = 1 (which holds, or else we get a factorization
of n), we conclude that ϕ(e) is a unit in Z/nZ, and therefore we can extend ϕ to O by
ϕ(a/e) = ϕ(a)ϕ(e)−1.

Second, we note that Theorem 2 need not hold in this case. If p is relatively prime
to the index [O : Z[α]], then by a theorem we proved in class (Lemma 5.2.1), Theorem 2
does still apply to primes p lying over p. But if p does divide [O : Z[α]], then it is
possible for a non-first-order prime ideal p lying over p to intersect Z[α] in a first-order
prime ideal, and hence to contain a number a+bα with gcd(a, b) = 1. We call such prime
ideals exceptional primes. Note that, by the previous paragraph, the prims p which divide
[O : Z[α] also divide drs, so we need only worry about the ideals over some small, fixed
set of primes. Both determining exceptional ideals and testing divisibility by them is
computationally quick – see ([7], Theorem 4.9ff).

The next difficulty is the possibility that O is not a principal ideal domain, and hence
that it may be impossible to pick generators for all the prime ideals (as we did when
forming G earlier). Note that there is a Minkowski bound M such that every ideal class
contains an integral ideal of norm at most M . Then for each first-order or exceptional
prime ideal p satisfying M < Norm(p) ≤ B2, we can find an element πp ∈ p such that
|Norm(πp)| < M Norm(p) (multiply p by an ideal with norm at most M in the ideal class
[p]−1). We let G′ be the set of such πp, and we let H be the group of nonzero elements
β ∈ Q(α) for which the fractional ideal βO contains only prime ideals of norm at most
M in its (fractional) prime factorization. Then every B2-smooth number is a product of
elements of G′ and one element of H (this is analogous to the fact that in the simpler
case above, every B2-smooth number was a product of elements of G and one unit of
Z[α]). Finally, we need a set U ′ of independent generators for H; a number of algorithms
for this purpose are possible – see ([6],§3.8). We extend ϕ to U ′ as we did for O before,
and finally we have a new factor base ϕ(P ∪G′ ∪ U ′).

3.7 Finishing the algorithm

Following the recipe in Section 3.5, we compute enough relations such that there are a
small excess k of relations, relative to the size of the factor base (we will specify k below).
As in Section 2, we put these relations into a matrix, one row for each relation, and search
for (mod 2) linear dependences among the rows. This search can be done, for example, by
standard Gaussian elimination, although there are faster techniques that take advantage
of the sparseness of the matrix (see e.g. [5], §7). Each dependency thus found, again as
in Section 2, gives a solution to x2 ≡ 1 (mod n), and hence, by Theorem 1, a possible
factorization of n.

Each dependency, assuming that it generates a random square-root of 1, has prob-
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ability at least 1/2 of generating a nontrivial factorization of n (by Theorem 1). And
by linear algebra, if there are k more rows than columns, then there will be at least k
linearly-independent dependencies. Hence, even taking k as small as 10, it is still reason-
able to expect a 99.9% chance of finding a fruitful dependency. In practice, it is chosen
to be a few orders of magnitude higher, to be sure of a fruitful dependency and to buffer
against hardware errors.

4 General Number Field Sieve

4.1 Introduction to the General Number Field Sieve

The General Number Field Sieve is an extension of the ideas in Section 3 to general
integers (i.e. integers not necessarily of the form re − s with r, |s| small).

The algorithm starts as before, using equation (1) to pick the degree d of the extension.
The choice of m and f is somewhat different. We pick m by m = [n1/d], and we write n in
base m with n = adm

d+ · · ·+a0, 0 ≤ ai < m. Then f is defined by f(x) = adx
d+ · · ·+a0.

Note that, as required, f(m) = n ≡ 0 (mod n).

Unlike the fs generated for the Special Number Field Sieve, the above polynomials
may have large coefficients (as high as n1/d) and large discriminants, and consequently
the number fields generated may be very hard to perform computations in. In particular,
attempting to find generators for the units and for prime ideals through exhaustive search,
as in Section 3.5.1, would take too long, and even storing these elements explicitly would
take up too much space. For example, the Minkowski bound M is a multiple of the
square root of the discriminant of the number field, so the elements of U ′ and G′ (as in
Section 3.6) would be quite large.

A good solution to these problems is to give up keeping track of explicit factorizations,
and just focus on generating a pair (a, b) with a + bm a perfect square in Z and a + bα
a perfect square in Z[α]. Once this pair is generated, we compute the square roots of
a + bm and a + bα, which easily give us a square root of 1 in Z/nZ. The principal
advantage of this approach is that by not having to keep track of explicit factorizations,
we do not need to write down U ′, G′, or even O. The principal disadvantage is that one
must compute the square root of the (generally) large algebraic integer a + bα, one of
the most difficult parts of the algorithm. We will explain here the method of “quadratic
characters,” perhaps the most elegant and important aspect of the algorithm, which is
used to generate squares in Z[α] without knowing their complete factorizations. We will
leave out other more minor aspects of the algorithm – for a more thorough account, see
[3].

Before starting, however, we will mention one small detail of the modified algorithm
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that will be relevant later. It may be the case that a product of numbers of the form
(a + bα) will be a perfect square in O, but not in Z[α]. As it turns out, multiplying the
product by f ′(α)2 gives a perfect square in Z[α] ([3],§6). If we correspondingly multiply
the product of (a + bm) by f ′(m)2, the algorithm can run as before, but with no risk of
producing a square root in O− Z[α]. The only thing to check is that gcd(f ′(m), n) = 1:
by definition of f , 1 < f ′(m) < n, so either this holds, or we have found a factor of n.

4.2 Quadratic Characters

Following [3], we introduce quadratic characters via an analogy. Suppose that we had
a finite set X of integer primes, and an integer r 6= 0, and we knew that every prime
outside X divided r to an even power. But suppose we could not look at the sign of
r or the exponent of the primes in X. Then how can we tell if r is a perfect square?
An effective way is to take a bunch of primes outside X, and test whether r is a perfect
square modulo all of them. If not, r is definitely not a perfect square; if so, there is a
good chance that it is.

To use this idea in the present case, we start with a definition:

Definition 1. Quadratic Characters. Let (q, s) be a first-order prime ideal, as in Sec-
tion 3.4, with q an odd prime, and suppose (q, s) - (c0+c1α+· · ·+cd−1α

d−1) (equivalently,
c0 + c1s + · · · + cd−1s

d−1 6≡ 0 (mod q)). Then we define the quadratic character χ(q,s) in
terms of the Legendre symbol as follows:

χ(q,s)(c0 + c1α + · · ·+ cd−1α
d−1) =

(
c0 + c1s + · · ·+ cd−1s

d−1

q

)
.

Note that χ(q,s) is a multiplicative homomorphism, since it is the composition of
modding out by (q, s) and applying the Legendre symbol. Note also that χ(q,s) can
be quickly computed by quadratic reciprocity. Next we prove a theorem relating these
characters to perfect squares in Z[α].

Theorem 3. Let S be a set of pairs of relatively prime integers (a, b) such that
∏

(a,b)∈S(a+
bα) is a perfect square in Q(α). Let (q, s) be a first-order prime ideal such that a+bs 6≡ 0
(mod q) for all (a, b) ∈ S, and f ′(s) 6≡ 0 (mod q) (equivalently, f ′(α) 6∈ (q, s)). Then∏

(a,b)∈S

χ(q,s)(a + bα) = 1.

Proof. Recall that there is a z ∈ Z[α] such that f ′(α)2
∏

(a,b)∈S(a + bα) = z2. No factor
on the left side is in (q, s) by hypothesis, so neither is z. Since χ(q,s) is a multiplicative
function, we apply it to both sides to prove the theorem.
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Next we look at the converse. For how many ideals (q, s) do we need to check∏
χ(q,s)(a + bα) = 1 before we can say with some certainty that

∏
(a + bα) is a square in

Q(α)? To answer this, we define the multiplicative group V as follows:

V = {z ∈ Q(α)∗ | ordp(zO) is even for all prime ideals p ⊂ Z[α]}

where ordp I is the exponent of p in the prime ideal factorization of I.

Theorem 4. Each χ(q,s) with q odd and f ′(α) 6∈ (q, s) induces a nontrivial group homo-
morphism from the quotient group V/Q(α)∗2 to {±1}.

Proof. First we show that each coset contains an element of Z[α] − (q, s). Fix a coset
H, and pick any h ∈ H. If ord(q,s)(hO) 6= 0, we pick an ideal I in the same class group
as (q, s) but with ord(q,s)(I) = 0, pick a generator g of (q, s)I−1, and multiply or divide
h by g2 as necessary (by definition of V , the initial value of ord(q,s)(hO) is even). In
this way, we can assume WLOG that ord(q,s)(hO) = 0. Now for each prime ideal p in
the denominator of (h), we multiply h by a generator for some positive power of p (this
generator exists by finiteness of the class group). This way, we can assume WLOG that
h ∈ O− (q, s). Finally, we multiply h by f ′(α)2, to get an element of Z[α] (see [3], p61);
note that (q, s) - (f ′(α)) by hypothesis. Therefore, every coset contains an element in
h ∈ Z[α]− (q, s). We set χ(q,s)(H) = χ(q,s)(h).

It remains to show that this function is independent of the choice of h. If h1, h2 ∈ H
are both in Z[α] − (q, s), then f ′(α)2h1h2 = k2 for some k ∈ Q(α); it is clear that in
fact k ∈ Z[α] − (q, s). Hence χ(q,s)(f

′(α))2χ(q,s)(h1)χ(q,s)(h2) = χ(q,s)(k
2) = 1, so indeed

χ(q,s)(h1) = χ(q,s)(h2).

We have now proven that χ(q,s) is a well-defined homomorphism from V/Q(α)∗2 to
{±1}. The fact that it is nontrivial is simple: since q is odd, there is at least one quadratic
nonresidue (a mod q), and then χ(q,s)(a) = −1.

Note that V/Q(α)∗2 can be written as a vector space over F2. With some additional
work ([3], Theorem 6.7), one can also prove:

dimF2(V/Q(α)∗2) < log2 n. (3)

Now if we pick enough χ(q,s) to span the space Hom(V/Q(α)∗2, {±1}), then doing the
test from Theorem 3 with each will give a completely reliable test for whether

∏
(a+ bα)

(in V and satisfying the hypotheses of the theorem) is a perfect square in Q(α). Moreover,
by the Chebotarev density theorem, the χ(q,s) (for q odd, f ′(α) 6∈ (q, s)) are asymptoti-
cally evenly distributed among all nontrivial elements of Hom(V/Q(α)∗2, {±1}). Assum-
ing that the same distribution holds among first-order primes with small q (this is only an
assumption, and its accuracy should first be tested in different fields), we can regard dif-
ferent χ(q,s) as picked randomly from the nontrivial elements of Hom(V/Q(α)∗2, {±1}).
Given this, how many χ(q,s)’s are necessary? To answer this we prove the following
Lemma:
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Lemma 1. Let k, ` > 0 be integers, and let W be a k-dimensional vector space over F2.
Let P be the probability that ` randomly-picked nontrivial elements of W span W . Then
P > 1− 2k−`.

Proof. The probability that these elements do not span W is the probability that they
all lie on a (k− 1)-hyperplane. Each such hyperplane is the kernel of a different nonzero
element of the dual space of W ; hence there are 2k − 1 of them. And given such a
hyperplane, the probability that all ` elements lie on it is 2−` (actually a bit less, since `
is constrained to be nontrivial). It follows that

1− P < (2k − 1)2−` < 2k−`.

Note that Hom(V/Q∗2, {±1}) can be regarded as the dual space of V/Q∗2, and hence
has the same dimension over F2. Thus, combining the above lemma with (3), we find
that if we pick, say, B = ([log2 n] + 30) pairs (q, s) we can be quite confident that the
χ(q,s) will give an accurate test of squareness for elements in V .

4.3 Summary of the Algorithm

We are now ready to summarize the algorithm for the General Number Field Sieve.
We start with a sieving process to generate a set T of integer pairs (a, b) such that
gcd(a, b) = 1, b > 0, (a + bm) is B1-smooth, and Norm(a + bα) is B2-smooth. Let π(B1)
be the number of primes below B1 and let π′(B2) be the number of first-order prime
ideals of Z[α] with norm below B2. We put all the elements of T into a matrix with
π(B1) + π′(B2) + B + 1 columns and entries in Z/2Z, with one row for each (a, b) ∈ T ,
as follows. The first π(B1) entries are the exponent (mod 2) of p dividing (a + bm), for
each prime p below B1. The next π′(B2) entries are (ord(q,s)(a + bα) mod 2), for each
first-order prime ideal (q, s) with norm below B2. The next B entries are ν(χ(q,s)(a+bα)),
for B fixed choices of (q, s) with q > B2 and f ′(α) 6∈ (q, s); here, ν maps −1 to 1 and 1
to 0 – it merely converts the multiplicative representation of Z/2Z to an additive one.
And finally, the last entry is ν applied to the sign of (a + bm).

We find (mod 2) dependencies in this matrix via some algorithm; the end result is a
number of sets Si ⊂ T , such that the sum of the matrix rows corresponding to the Si gives
0 (mod 2). Since the first π(B1) and last entry are 0, we conclude that

∏
(a,b)∈S(a + bm)

is a square in Z. Since the second π′(B2) entries are 0 (and Norm(a+ bα) is B2-smooth),
we get that z :=

∏
(a,b)∈Si

(a + bα) ∈ V . And since the next B entries are 0, we get that
none of the chosen quadratic characters contradict z being a square in Q(α); so by the
discussion in Section 4.2, z is indeed almost certainly a square in Q(α). It follows that
f ′(α)2z is the square of an element in Z[α].
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We compute the square root of f ′(m)2
∏

(a,b)∈Si
(a + bm) in Z, which we denote by x

– this step is easy, since we know the factorization of each a + bm. We also compute
the square root of f ′(α)2z = f ′(α)2

∏
(a,b)∈Si

(a + bα) in Z[α], which we denote by y –
this step is computationally difficult, but not impossible – see ([3], §9) and [4]. We have
ϕ(x2) ≡ ϕ(y2) (mod n), so (ϕ(x)/ϕ(y))2 ≡ 1 (mod n). Hence each set Si gives us a
square root of unity. If we generate enough, we will likely find a nontrivial one, and by
Theorem 1, this will give us a factorization of n.
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