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1. INTRODUCTION

The main theorem that we are going to prove in this paper is the following:

Theorem 1.1. Kronecker-Weber Theorem Let K/Q be an abelian Galois extension.
There exists an n such that K C Q((,).

Theorem 1.1 is equivalent to the following equality
Q" =[] Q)
n=1

where Q% denotes the maximal abelian extension (the field that contains all the abelian
extensions of QQ.) So basically theorem 1.1 says that the maximal abelian extension of Q
is the compositum of the cyclotomic extensions of Q. Therefore it gives a classification of
abelian extensions of Q. In general the abelian extensions of a number field can be classified
by means of class field theory. In this paper we present a proof of theorem 1.1 without
appealing to class field theory. A remarkable aspect of this work is that it makes use of the

local-global principle. In other words we obtain theorem 1.1 from the following theorem:

Theorem 1.2. Local Kronecker- Weber Theorem Let K/Q, be an abelian Galois exten-
sion. There exists an n such that K C Q,((y)

2. NOTATIONS AND FUNDAMENTAL THEOREMS

Throughout this paper p will denote a rational prime, Q, the completion of rational num-
bers with respect to p-adic valuation, K, the completion of a number field K with respect to

one of its prime ideals p and (,, a primitive nth root of unity.

We start with basic facts and well known theorems from algebraic number theory. We give

some of the proofs.

Definition 2.1. Let K and L be finite extensions of Q (or Q,.) The smallest field containing

K and L is called the compositum of K and L and denoted as K L.
1
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Theorem 2.2. Let K and L be finite Galois extensions of Q.Gal(KL/Q) is isomorphic to

the subgroup {(¢,V)|¢|knr = Y|knr} of Gal(K/Q) x Gal(L/Q). Similar argument holds for
Qp-

Proof Let G = Gal(KL/Q) and H = {(¢,vV)|d|knr = ¥|knr}. Clearly the map A: G —
H, 0 — (0|k,0|L) defines an injective homomorphism between G and H. We show that
this homomorphism is indeed an isomorphism by showing that |G| = |H|. Let M = KN L
and let [M : Q] = m, [KL : K| = k and [KL : L] = [. Viewing A = Gal(KL/K) and
B = Gal(KL/L) as subgroups of Gal(KL/M) one can easily show that AN B = {id|x.}
and the fixed field of AB is M. It follows that [KL : M| = kl. So [K : M| = [ and
[L : M] = k. Combining with [M : Q] = m and simple counting shows that |H| = klm. But
|G| =[KL:Q]=[KL:M][M:Q] = klm so we are done.

Theorem 2.3. Let L/Q be an abelian Galois extension and let
Gal(L/Q) =[] G:.
i=1

Then

Similar argument holds for Q,.

Proof It suffices to prove for m = 2. Let L/Q = G; x G5. Then L% N L% = Q. By
theorem 2.2 Gal(L“ L%) = G| x Gy. From this the theorem follows.

Theorem 2.4. Let L/K be a finite Galois extension. (L and K can be number fields or local
fields) Let p be a prime ideal of K. Then p factorizes in L as

p = b5b5...b¢

The number e is called the ramification index. The degree of the extension of the residue fields

Or mod by / Ok mod p is denoted by f. If the degree of L/K is n then

n=cefg.

(If K and L are local g = 1) p is said to be totally ramified in L if e = n and unramified if
e=1. (If K and L are local fields then we say L/K is unramified or totally ramified if e = 1
or e = n respectively. A number field extension is said to be unramified if all prime ideals are

unramified. )

Proof See any introductory Algebraic Number theory book or [S2] p. 101.
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Definition 2.5. Let L/K be a Galois extension, p a prime of K, b a prime lying above p.
The decomposition group Dy of b is given by Dy = {0 € Gal(L/K)|o(b) = b}.(If L and K
are local then Dy is the whole Galois group.) The ramification group Iy is defined as follows:

Iy ={0 € Dy | o(a) =« (mod b) for all « € O}
p is unramified in L’ and L’ is the largest such field among the intermediate fields of L/K.

Theorem 2.6. Let L/K be a Galois extension of number fields. If p is a prime of K and
Lo/ K, is the localization of L/K with respect to p, then Gal(Ly/K,) = Dy and the inertia

groups of b in both extensions are isomorphic.

Proof There exist injections 41 : K — K, and iy : L < L. Certainly any element of
Gal(Ly/K,) induces an automorphism of i5(L)/;(K). Furthermore since i (/) is dense in
K, and iy(L) is dense in Ly the restriction ¥ : Gal(Ly/K,) — Gal(iz(L)/i1(K)) is injective.
Furthermore since any automorphism of Ly/K, preserves b-adic absolute value the image of

> must be in Dy. Conversely if o € Dy then one can extend ¢ uniquely to an automorphism

Theorem 2.7. Let K and L be finite Galois extensions of Q, and suppose that L/K is
Galois. Then there is a surjective homomorphism between the inertia groups Iy, and I of L
and K.

Proof Let M/Q, be the maximal unramified subextension of L/Q,. Then the maxi-
mal unramified subextension of K/Q, is M N K/Q,. Since the restriction homomorphism
Gal(M/Q,) — Gal(M N K/Q,) is surjective, the theorem follows.

Theorem 2.8. The inertia group of the extension Q,((,)/Q, is isomorphic to (Z/p°Z)* where

p¢ is the exact power of p dividing n.

Proof By theorem 2.6 the inertia group of is isomorphic to the inertia group of Q((,)/Q

corresponding to p. Now let n = p®m. Then

Gal(Q(¢)/Q) = (Z/p°Z)" x (Z/mZ)"

It is not hard to check that the fixed field of the subgroup isomorphic to (Z/mZ)* is Q((pe)-
Furthermore Q((,c)/Q is totally ramified with inertia group (Z/p°Z)*. Since Q((,)/Q is

unramified at p no further ramification occurs.

Theorem 2.9. (Hensel’s Lemma) Let L be a local field, b be its mazimal ideal, | be the
residue field, f € Oplx] be a monic polynomial, f be its restriction to 1, and o € 1 be such

that f(a) = 0 and f'(a) # 0. Then there exists a root 3 of f in Oy such that § = a (mod b).
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Proof Let 5y € Op be such that 8y = a (mod b). Define 3, = GB_1 — f,(é’jnj)). It is an

easy exercise to show that the sequence {3,,} converges and the limit is a root of f. For a
proof see [F-V] p. 36.

Theorem 2.10. If K/Q is unramified then K = Q

Proof By a theorem of Minkowski
T o n"
dg| > (=) —
Vi > (P
where s is half the number of complex embeddings of K and n = [K : Q]. Using this one
can show that if n > 1 then |dx| > 1 therefore there exists primes that are ramified. So if all

primes are unramified, n = 1.

Theorem 2.11. Let K/Q be a Galois extension. The Galois group is generated by the inertia

groups 1, where p runs through all rational primes.

Proof Let L be the fixed field of the group generated by I,s. Then L/Q is unramified so
L = Q. The theorem follows.

3. DERIVING THE GLOBAL THEOREM FROM THE LOCAL CASE

Theorem 3.1. The local Kronecker-Weber theorem implies the Global Kronecker-Weber the-

orem.

Proof Assume that the local Kronecker-Weber theorem holds for all rational primes. Let
K/Q be an abelian extension and p a rational prime that ramifies in K. Let b be a prime
lying above p. Consider the localization Ky/Q,. The Galois group is the decomposition group
of b and hence the extension is abelian. By the local Kronecker-Weber theorem Ly C Q,((y,)

for some n,. Let p°» be the exact power of p dividing n,. Let

n = H peP.

p ramifies

Claim 3.2. K C Q(¢,)

proof of the claim Let L = K((,). By the proof of theorem 2.7 we know that Q((,)/Q
is unramified outside n so the primes that ramify in L are the same as that of K. Let p be a
prime that ramifies in L. Then by theorem 2.6 I, can be computed locally. The localization
of Lis L,=Ku(¢n) C Qp(Cnyr Gn) = Qp(Grn) where m is the least common multiple of n, and n.
Now by theorem 2.8 the inertia groups of Q,((,)/Q, and Q,(¢,)/Q, are both isomorphic to
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(Z/p°Z)*. Since Q,(¢,) C Ly C Qp(Gn) by theorem 2.7, the inertia group of L, is (Z/p*Z)*.
Therefore |I,| = ¢(p°). By theorem 2.11,
Gal(L/Q)I <[] 15l <60
p ramifies

It follows that [L : Q] < ¢(n), but L already contains Q(¢,) and [Q((,) : Q] = ¢(n). Therefore
L = Q(¢,) from which it follows that K C Q(¢,).

g

Now let L/Q, be an abelian Galois extension. For the proof of the local Kronecker-Weber

theorem we handle the following three cases seperately:

e The extension is unramified i.e. the maximal ideal of QQ, remains prime in L.
e The extension is tamely ramified i.e. the ramification degree e is not divisible by p.

e The extension is wildly ramified i.e. the ramification degree e is divisible by p.

4. THE UNRAMIFIED CASE

We prove a stronger theorem from which the unramified case of the local Kronecker-Weber

theorem follows.

Theorem 4.1. Let L/K be an unramified, finite Galois extension where K and L are finite
extensions of Q,.L = K((,) for some n with p { n.

Proof Assume that L/K is such an extension. Since e = 1 the inertia group is trivial and
therefore the Galois group of L/K is isomorphic to the Galois group of the extension of the
residue fields. Let « generate the extension of residue fields {/k. Since « is an element of
a finite field with characteristic p, it is a root of unity with order coprime to p. Let n be
the order of a. Now apply theorem 2.9 with f = 2™ — 1 to obtain a root g € Op of 2™ — 1
such that § = « (mod b). Then [K(B) : K] > [k(«) : k] but the latter has degree equal to
[l : k] =[L: K] therefore L = K() = K((,).

Now taking K = Q, gives us the desired result.

5. THE TAMELY RAMIFIED CASE

We begin with two auxilary lemmata.
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Lemma 5.1. Let K and L be finite extensions of Q, and px the mazimal ideal of Ok.
Suppose L/K is totally ramified of degree e with pte. Then there exists T € px\p% and a
root a of ¢ —m =0 such that L = K(«).

proof Let |.| denote the absolute value on C,. Let Ty € px\p% and let 8 € L be a
uniformizing parameter so that |3¢| = |mg|. Then 3¢ = mou for some u € Uy, (= the units
of Op) Now since f = 1 the extension of the residue fields is trivial, hence there exists
ug € Uk such that u = ug (mod @r). Therefore u = ug + = with x € p;. Let 71 = mouy.
Then (¢ = mo(ug + ) = m + mox so |3° — w| < |mo| = |7|. Let aq, as, ..., a. be the roots of
f(X)=X°¢—m. We claim that L = K (o) for some i.

Since |o;|¢ = |7|, |a;| = |ay| for all ¢, 5. We have

i = g < Mazai], [ey[} = laal.

But
H i — i = | f'(ar)] = lea™] = [ |
i#1

So |a; — ag| = |au]|, Vi # 1. Since

[T - i = 1@ <1l = [T b

we must have |§ — ;| < |ay]| for some i. Without loss of generality assume that i = 1. Now
let M be the Galois closure of the extension K(«aq,3)/K(3). Let 0 € Gal(M/K((3)). We
have

6 —o(a)l =lo(B — )| =6 —ai] <|aa] = |a; —n]
for i # 1. But

jar — o) < Maz{|oan — B, [8 — o(on)[} <[ — aal.
It follows that o(ay) # «a; for i # 1. So o(a;) = ;. Since o was arbitrary we have
a; € K(B) thus K(ay) C K(8) C L. But f(X) is irreducible over K by Eisenstein criterion
so [K(ay) : K] =e=[L: K]. Therefore L = K (o).

Lemma 5.2. Q,((—p)V/®Y) =Q,(¢,)
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Proof It is easy to prove that the maximal ideal of Q,((,) is given by (1 — (,). Now
consider the polynomial
(X +1)7 -1
X
— xr-1 +po_2+"'+p

9(X)

Then
0=y9g(G—1)=(¢— 1)p71 +p (mod (¢, — 1)),

S0 [yt
u:%zl (mod ¢, — 1).
Let f(X) = XP~! —w then f(1) =0 (mod ¢, —1) and (¢, —1) 1 f'(1). It follows from theorem

2.9 that there exists u; € Q,((,) such that «}~" = u. But then we have
-1
(=)0 = 22 € Qy(c,)
Ui
On the other hand XP~! +p is irreducible over Q, by Eisenstein’s criterion so Q,((—p)*/®~1)
and Q,(¢,) have the same degree over Q,. Therefore Q,((—p)Y/®=Y) = Q,(¢,).

i

Now let L/Q, be a tamely ramified abelian extension. Let K/Q, be the maximal unramified
subextension. Then K C Q,((,) for some n by the previous section. L/K is totally ramified
with degree p { e. By lemma 5.1 L = K(7'/¢) for some 7 of order 1 in K. Since K/Q, is
unramified, p is of order 1 in K, so m = —up for some unit u € K. Since u is a unit and p 1 e
the discriminant of f(X) = X® — u is not divisible by p, hence K (u!'/¢)/K is unramified. By
theorem 4.1

K (u!*) € K(Cur) © Qp(Carn)
for some M. Let T be the compositum of the fields Q,(Ca,) and L. By theorem 2.2, T/Q,
is abelian. Since u'/¢ w'/¢ € T = (—p)¥/¢ € T. Tt follows that Q,((—p)/¢)/Q, is Galois
since it is a subextension of the abelian extension 7//Q,. Therefore (. € Q,((—p)'/¢). Since
Q,((—p)¥e) is totally ramified, so is the subextension Q,((.)/Q,. But p { e, so the latter
extension is trivial and (. € Q,. Therefore e | (p — 1). Now by lemma 5.2,

Qp((_p)l/e> - @p((p)‘

Therefore
L= K%)= K" (=p)") C Qu(Carnp)-

This finishes the tamely ramified case.
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6. THE WILDLY RAMIFIED CASE

This part of the proof requires knowledge of Kummer theory. We briefly sketch the proof
for details see [W] p. 321. Assume that p is an odd prime. First of all note that we may
assume by structure theorem for abelian groups and theorem 2.3, that the extension L/Q,
is cyclic, totally ramified of degree p™ for some m. Now let K, /Q, be an unramified cyclic
extension of degree p™ and let K, /Q, be a totally ramified extension of degree p™. (K, can
be obtained by taking the extension F'/FF, of degree p™ and lifting the minimal polynomial
of its primitive element to Z,[X]. The root of this polynomial will generate an unramified
extension of degree p™. K, can be taken to be the fixed field of the subgroup isomorphic to
(Z/pZ)* in the extension Q,(¢ym)/Q,.) By the unramified case of the thorem we know that
K, C Q,(¢,) for some n. Since K, N K, = Q,, by theorem 2.2,

Gal(K,K,/Q,) = (Z/p" L)

If L g K, K, then
Gal(K (G, Gme1) /Qp) = (Z/p"L)* x L/p™ T,
for some m’ > 0. This group has (Z/pZ)? as a quotient, so there is a field N such that

Gal(N/Q,) = (Z/pZ)*.

Following lemma shows that this is impossible.

Lemma 6.1. Let p be an odd prime. There is no extension N/Q, such that
Gal(N/Q,) = (Z/pL)*

Before proving the above lemma we quote the following lemma without proof. Interested
reader can find the proof in [W] p. 327.

Lemma 6.2. Let F be a field of characteristic # p, let M = F((,), and let L = M(a'/?) for
some a € M. Define the character w: Gal(M/F) — F) by o(¢,) = ) Then

L/F is abelian = o(a) = a*) (mod (M*)P)
for all o € Gal(M/F).

Proof of 6.1 Assume that there exists such an N, then N((,)/Q, is abelian and
Gal(N(¢,)/Q,(¢p)) = (Z/pZ)3. This is a Kummer extension so there is a corresponding sub-

group B C Q,(¢,)*/(Q,(¢)*)P with B = (Z/pZ)? and Q,(¢,)(BY?) = N((,). Let a € B and
L =Q,((,a'?) € N((,). Since L/Q, is abelian, by lemma 6.2,

o(a) = ) (mod(Qy,(¢p) ™ )P), o € Gal(Qu(¢y)/Qp)-
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Let v be the valuation on Q,((,) such that v(¢, — 1) = 1. Then
v(a) =v(o(a)) = w(o)v(a) (mod p), for al o.
Now if o # id the above equality gives v(a) = 0 (mod p).It is easy to verify that

Qp(Gp)™ = (G — 1)Z x Wy_1 x Uy

where W,_; are the roots of unity in Q, and Uy = {u = 1 (mod ¢, — 1)}. Since p | v(a)
and W,_;’s elements are already pth powers, a is equivalent to an element in U;. So assume
a € U;. We can also assume B C U, /U7, and Gal(Q,(¢,)/Q,) acts via w. We claim that
Ul ={u=1 (mod 7?*1)}. Let 1 =1 —(,. Now if u € U; then u = 1 +7z. By looking at the
binomial expansion one can show that u? = 1 (mod 7wP™). Conversely if uy = 1 (mod 7P*1)

then the binomial series for (1 + uy — 1)1/P converges. This proves the claim.

Let w € B. Let u=1+bmr+---. Since ¢, = 1+7 we have C}I; =14+br+---. Thusu = Cgul
with u; = 1 (mod 7?). Since
o(u) = u* (mod U?)
substituting u = w1} yields o(uy) = uy” (mod UY). Write
up =1+ cn® + .-

with ¢ € Z,p 1 ¢, and d > 2. Note that

w(o)
—1
UEZT) _ p(p — = C;)U*l + -+ 1=w(o) (modn).

So (o(m))/m = w(o) (mod 7).We have

o(uy) =1+ cw(o)ir® 4 - -
but

W =1+ aw(o)rd + - -

Since o(u1) = u” (mod UP) and UP = {u = 1 (mod 7*1)}, we have o'(uy) = u%'” (mod 77*+1).
This means that either d > p+ 1 or d = 1 (mod p — 1). The former means that u; € U}
and the latter means that d = p. Clearly 1 + 7P generates modulo U? the subgroup of

uy; = 1 (mod 7P). We therefore obtained
B C (Cp, 1 +7P)

where (z,y) denotes the group generated by z and y. Since B = (Z/pZ)3, we have a contra-

diction.
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For p = 2 one has to make a more careful analysis so we shall omit it here. For the proof of
this case see [W] p. 329.

REFERENCES

[S1] William Stein, A Brief Introduction to Classical and Adelic Algebraic Number Theory, Course Notes
(2004).

[S2] William Stein, Introduction to Algebraic Number Theory, Course Notes (2005)

[G] Fernando Q. Gouvea, p-adic numbers, (1997).

[W] Lawrence C. Washington, Introduction to Cyclotomic Fields, (1997)

[F-V] I. B. Fesenko, S. V. Vostokov Local Fields and their extensions, (2002)

F-mail address: nizam@mit.edu



