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1. Introduction

The main theorem that we are going to prove in this paper is the following:

Theorem 1.1. Kronecker-Weber Theorem Let K/Q be an abelian Galois extension.

There exists an n such that K ⊂ Q(ζn).

Theorem 1.1 is equivalent to the following equality

Qab =
∞∏

n=1

Q(ζn)

where Qab denotes the maximal abelian extension (the field that contains all the abelian

extensions of Q.) So basically theorem 1.1 says that the maximal abelian extension of Q
is the compositum of the cyclotomic extensions of Q. Therefore it gives a classification of

abelian extensions of Q. In general the abelian extensions of a number field can be classified

by means of class field theory. In this paper we present a proof of theorem 1.1 without

appealing to class field theory. A remarkable aspect of this work is that it makes use of the

local-global principle. In other words we obtain theorem 1.1 from the following theorem:

Theorem 1.2. Local Kronecker-Weber Theorem Let K/Qp be an abelian Galois exten-

sion. There exists an n such that K ⊂ Qp(ζn)

2. Notations and Fundamental Theorems

Throughout this paper p will denote a rational prime, Qp the completion of rational num-

bers with respect to p-adic valuation, Kp the completion of a number field K with respect to

one of its prime ideals p and ζn a primitive nth root of unity.

We start with basic facts and well known theorems from algebraic number theory. We give

some of the proofs.

Definition 2.1. Let K and L be finite extensions of Q (or Qp.) The smallest field containing

K and L is called the compositum of K and L and denoted as KL.
1
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Theorem 2.2. Let K and L be finite Galois extensions of Q.Gal(KL/Q) is isomorphic to

the subgroup {(φ, ψ)|φ|K∩L = ψ|K∩L} of Gal(K/Q)×Gal(L/Q). Similar argument holds for

Qp.

Proof Let G = Gal(KL/Q) and H = {(φ, ψ)|φ|K∩L = ψ|K∩L}. Clearly the map Λ : G→
H, σ → (σ|K , σ|L) defines an injective homomorphism between G and H. We show that

this homomorphism is indeed an isomorphism by showing that |G| = |H|. Let M = K ∩ L
and let [M : Q] = m, [KL : K] = k and [KL : L] = l. Viewing A = Gal(KL/K) and

B = Gal(KL/L) as subgroups of Gal(KL/M) one can easily show that A ∩ B = {id|KL}
and the fixed field of AB is M . It follows that [KL : M ] = kl. So [K : M ] = l and

[L : M ] = k. Combining with [M : Q] = m and simple counting shows that |H| = klm. But

|G| = [KL : Q] = [KL : M ][M : Q] = klm so we are done.

Theorem 2.3. Let L/Q be an abelian Galois extension and let

Gal(L/Q) ∼=
m∏

i=1

Gi.

Then

L =
m∏

i=1

LGi .

Similar argument holds for Qp.

Proof It suffices to prove for m = 2. Let L/Q = G1 × G2. Then LG1 ∩ LG2 = Q. By

theorem 2.2 Gal(LG1LG2) = G1 ×G2. From this the theorem follows.

Theorem 2.4. Let L/K be a finite Galois extension. (L and K can be number fields or local

fields) Let p be a prime ideal of K. Then p factorizes in L as

p = be
1b

e
2...b

e
g

The number e is called the ramification index. The degree of the extension of the residue fields

OL mod b1 / OK mod p is denoted by f . If the degree of L/K is n then

n = efg.

(If K and L are local g = 1) p is said to be totally ramified in L if e = n and unramified if

e = 1. (If K and L are local fields then we say L/K is unramified or totally ramified if e = 1

or e = n respectively. A number field extension is said to be unramified if all prime ideals are

unramified.)

Proof See any introductory Algebraic Number theory book or [S2] p. 101.
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Definition 2.5. Let L/K be a Galois extension, p a prime of K, b a prime lying above p.

The decomposition group Db of b is given by Db = {σ ∈ Gal(L/K)|σ(b) = b}.(If L and K

are local then Db is the whole Galois group.) The ramification group Ib is defined as follows:

Ib = {σ ∈ Db | σ(α) ≡ α (mod b) for all α ∈ OL}

p is unramified in LIb and LIb is the largest such field among the intermediate fields of L/K.

Theorem 2.6. Let L/K be a Galois extension of number fields. If p is a prime of K and

Lb/Kp is the localization of L/K with respect to p, then Gal(Lb/Kp) ∼= Db and the inertia

groups of b in both extensions are isomorphic.

Proof There exist injections i1 : K ↪→ Kp and i2 : L ↪→ Lb. Certainly any element of

Gal(Lb/Kp) induces an automorphism of i2(L)/i1(K). Furthermore since i1(K) is dense in

Kp and i2(L) is dense in Lb the restriction Σ : Gal(Lb/Kp) → Gal(i2(L)/i1(K)) is injective.

Furthermore since any automorphism of Lb/Kp preserves b-adic absolute value the image of

Σ must be in Db. Conversely if σ ∈ Db then one can extend σ uniquely to an automorphism

of Lb/Kp.

Theorem 2.7. Let K and L be finite Galois extensions of Qp and suppose that L/K is

Galois. Then there is a surjective homomorphism between the inertia groups IL and IK of L

and K.

Proof Let M/Qp be the maximal unramified subextension of L/Qp. Then the maxi-

mal unramified subextension of K/Qp is M ∩ K/Qp. Since the restriction homomorphism

Gal(M/Qp) → Gal(M ∩K/Qp) is surjective, the theorem follows.

Theorem 2.8. The inertia group of the extension Qp(ζn)/Qp is isomorphic to (Z/peZ)∗ where

pe is the exact power of p dividing n.

Proof By theorem 2.6 the inertia group of is isomorphic to the inertia group of Q(ζn)/Q
corresponding to p. Now let n = pem. Then

Gal(Q(ζn)/Q) ∼= (Z/peZ)∗ × (Z/mZ)∗

It is not hard to check that the fixed field of the subgroup isomorphic to (Z/mZ)∗ is Q(ζpe).

Furthermore Q(ζpe)/Q is totally ramified with inertia group (Z/peZ)∗. Since Q(ζm)/Q is

unramified at p no further ramification occurs.

Theorem 2.9. (Hensel’s Lemma) Let L be a local field, b be its maximal ideal, l be the

residue field, f ∈ OL[x] be a monic polynomial, f̃ be its restriction to l, and α ∈ l be such

that f̃(α) = 0 and f̃ ′(α) 6= 0. Then there exists a root β of f in OL such that β = α (mod b).
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Proof Let β0 ∈ OL be such that β0 = α (mod b). Define βm = βm−1 − f(βm−1)
f ′(βm−1)

. It is an

easy exercise to show that the sequence {βm} converges and the limit is a root of f . For a

proof see [F-V] p. 36.

Theorem 2.10. If K/Q is unramified then K = Q

Proof By a theorem of Minkowski√
|dK | ≥ (

π

4
)sn

n

n!

where s is half the number of complex embeddings of K and n = [K : Q]. Using this one

can show that if n > 1 then |dK | > 1 therefore there exists primes that are ramified. So if all

primes are unramified, n = 1.

Theorem 2.11. Let K/Q be a Galois extension. The Galois group is generated by the inertia

groups Ip where p runs through all rational primes.

Proof Let L be the fixed field of the group generated by Ips. Then L/Q is unramified so

L = Q. The theorem follows.

3. Deriving the Global Theorem from the Local Case

Theorem 3.1. The local Kronecker-Weber theorem implies the Global Kronecker-Weber the-

orem.

Proof Assume that the local Kronecker-Weber theorem holds for all rational primes. Let

K/Q be an abelian extension and p a rational prime that ramifies in K. Let b be a prime

lying above p. Consider the localization Kb/Qp. The Galois group is the decomposition group

of b and hence the extension is abelian. By the local Kronecker-Weber theorem Lb ⊂ Qp(ζnp)

for some np. Let pep be the exact power of p dividing np. Let

n =
∏

p ramifies

pep .

Claim 3.2. K ⊂ Q(ζn)

proof of the claim Let L = K(ζn). By the proof of theorem 2.7 we know that Q(ζn)/Q
is unramified outside n so the primes that ramify in L are the same as that of K. Let p be a

prime that ramifies in L. Then by theorem 2.6 Ip can be computed locally. The localization

of L is Lp=Kb(ζn) ⊂ Qp(ζnp , ζn) = Qp(ζm) where m is the least common multiple of np and n.

Now by theorem 2.8 the inertia groups of Qp(ζm)/Qp and Qp(ζn)/Qp are both isomorphic to
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(Z/peZ)∗. Since Qp(ζn) ⊂ Lp ⊂ Qp(ζm) by theorem 2.7, the inertia group of Lp is (Z/pepZ)∗.

Therefore |Ip| = φ(pep). By theorem 2.11,

|Gal(L/Q)| ≤
∏

p ramifies

|Ip| ≤ φ(n).

It follows that [L : Q] ≤ φ(n), but L already contains Q(ζn) and [Q(ζn) : Q] = φ(n). Therefore

L = Q(ζn) from which it follows that K ⊂ Q(ζn).

�

Now let L/Qp be an abelian Galois extension. For the proof of the local Kronecker-Weber

theorem we handle the following three cases seperately:

• The extension is unramified i.e. the maximal ideal of Qp remains prime in L.

• The extension is tamely ramified i.e. the ramification degree e is not divisible by p.

• The extension is wildly ramified i.e. the ramification degree e is divisible by p.

4. The Unramified Case

We prove a stronger theorem from which the unramified case of the local Kronecker-Weber

theorem follows.

Theorem 4.1. Let L/K be an unramified, finite Galois extension where K and L are finite

extensions of Qp.L = K(ζn) for some n with p - n.

Proof Assume that L/K is such an extension. Since e = 1 the inertia group is trivial and

therefore the Galois group of L/K is isomorphic to the Galois group of the extension of the

residue fields. Let α generate the extension of residue fields l/k. Since α is an element of

a finite field with characteristic p, it is a root of unity with order coprime to p. Let n be

the order of α. Now apply theorem 2.9 with f = xn − 1 to obtain a root β ∈ OL of xn − 1

such that β = α (mod b). Then [K(β) : K] ≥ [k(α) : k] but the latter has degree equal to

[l : k] = [L : K] therefore L = K(β) = K(ζn).

�

Now taking K = Qp gives us the desired result.

5. The Tamely Ramified Case

We begin with two auxilary lemmata.
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Lemma 5.1. Let K and L be finite extensions of Qp and ℘K the maximal ideal of OK.

Suppose L/K is totally ramified of degree e with p - e. Then there exists π ∈ ℘K\℘2
K and a

root α of xe − π = 0 such that L = K(α).

proof Let |.| denote the absolute value on Cp. Let π0 ∈ ℘K\℘2
K and let β ∈ L be a

uniformizing parameter so that |βe| = |π0|. Then βe = π0u for some u ∈ UL (= the units

of OL) Now since f = 1 the extension of the residue fields is trivial, hence there exists

u0 ∈ UK such that u = u0 (mod ℘L). Therefore u = u0 + x with x ∈ ℘L. Let π = π0u0.

Then βe = π0(u0 + x) = π + π0x so |βe − π| < |π0| = |π|. Let α1, α2, ..., αe be the roots of

f(X) = Xe − π. We claim that L = K(αi) for some i.

Since |αi|e = |π|, |αi| = |αj| for all i, j. We have

|αi − αj| ≤Max{|αi|, |αj|} = |α1|.

But ∏
i6=1

|αi − α1| = |f ′(α1)| = |eαe−1
1 | = |α1|e−1.

So |αi − α1| = |α1|,∀i 6= 1. Since∏
i

|β − αi| = |f(β)| < |π| =
∏

i

|αi|,

we must have |β − αi| < |α1| for some i. Without loss of generality assume that i = 1. Now

let M be the Galois closure of the extension K(α1, β)/K(β). Let σ ∈ Gal(M/K(β)). We

have

|β − σ(α1)| = |σ(β − α1)| = |β − α1| < |α1| = |αi − α1|

for i 6= 1. But

|α1 − σ(α1)| ≤Max{|α1 − β|, |β − σ(α1)|} < |αi − α1|.

It follows that σ(α1) 6= αi for i 6= 1. So σ(α1) = α1. Since σ was arbitrary we have

α1 ∈ K(β) thus K(α1) ⊂ K(β) ⊂ L. But f(X) is irreducible over K by Eisenstein criterion

so [K(α1) : K] = e = [L : K]. Therefore L = K(α1).

�

Lemma 5.2. Qp((−p)1/(p−1)) = Qp(ζp)
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Proof It is easy to prove that the maximal ideal of Qp(ζp) is given by (1 − ζp). Now

consider the polynomial

g(X) =
(X + 1)p − 1

X

= Xp−1 + pXp−2 + · · ·+ p

Then

0 = g(ζp − 1) ≡ (ζp − 1)p−1 + p (mod (ζp − 1)p),

so

u =
(ζp − 1)p−1

−p
≡ 1 (mod ζp − 1).

Let f(X) = Xp−1−u then f(1) ≡ 0 (mod ζp−1) and (ζp−1) - f ′(1). It follows from theorem

2.9 that there exists u1 ∈ Qp(ζp) such that up−1
1 = u. But then we have

(−p)1/(p−1) =
ζp − 1

u1

∈ Qp(ζp)

On the other hand Xp−1 +p is irreducible over Qp by Eisenstein’s criterion so Qp((−p)1/(p−1))

and Qp(ζp) have the same degree over Qp. Therefore Qp((−p)1/(p−1)) = Qp(ζp).

�

Now let L/Qp be a tamely ramified abelian extension. LetK/Qp be the maximal unramified

subextension. Then K ⊂ Qp(ζn) for some n by the previous section. L/K is totally ramified

with degree p - e. By lemma 5.1 L = K(π1/e) for some π of order 1 in K. Since K/Qp is

unramified, p is of order 1 in K, so π = −up for some unit u ∈ K. Since u is a unit and p - e
the discriminant of f(X) = Xe − u is not divisible by p, hence K(u1/e)/K is unramified. By

theorem 4.1

K(u1/e) ⊂ K(ζM) ⊂ Qp(ζMn)

for some M . Let T be the compositum of the fields Qp(ζMn) and L. By theorem 2.2, T/Qp

is abelian. Since u1/e, π1/e ∈ T ⇒ (−p)1/e ∈ T . It follows that Qp((−p)1/e)/Qp is Galois

since it is a subextension of the abelian extension T/Qp. Therefore ζe ∈ Qp((−p)1/e). Since

Qp((−p)1/e) is totally ramified, so is the subextension Qp(ζe)/Qp. But p - e, so the latter

extension is trivial and ζe ∈ Qp. Therefore e | (p− 1). Now by lemma 5.2,

Qp((−p)1/e) ⊂ Qp(ζp).

Therefore

L = K(π1/e) = K(u1/e, (−p)1/e) ⊂ Qp(ζMnp).

This finishes the tamely ramified case.



8 NIZAMEDDIN H. ORDULU

6. The Wildly Ramified Case

This part of the proof requires knowledge of Kummer theory. We briefly sketch the proof

for details see [W] p. 321. Assume that p is an odd prime. First of all note that we may

assume by structure theorem for abelian groups and theorem 2.3, that the extension L/Qp

is cyclic, totally ramified of degree pm for some m. Now let Ku/Qp be an unramified cyclic

extension of degree pm and let Kr/Qp be a totally ramified extension of degree pm. (Ku can

be obtained by taking the extension F/Fp of degree pm and lifting the minimal polynomial

of its primitive element to Zp[X]. The root of this polynomial will generate an unramified

extension of degree pm. Kr can be taken to be the fixed field of the subgroup isomorphic to

(Z/pZ)∗ in the extension Qp(ζpm)/Qp.) By the unramified case of the thorem we know that

Ku ⊂ Qp(ζn) for some n. Since Kr ∩Ku = Qp, by theorem 2.2,

Gal(KrKu/Qp) ∼= (Z/pmZ)2.

If L * KrKu then

Gal(K(ζn, ζpm+1)/Qp) ∼= (Z/pmZ)2 × Z/pm′Z

for some m′ > 0. This group has (Z/pZ)3 as a quotient, so there is a field N such that

Gal(N/Qp) ∼= (Z/pZ)3.

Following lemma shows that this is impossible.

Lemma 6.1. Let p be an odd prime. There is no extension N/Qp such that

Gal(N/Qp) ∼= (Z/pZ)3.

Before proving the above lemma we quote the following lemma without proof. Interested

reader can find the proof in [W] p. 327.

Lemma 6.2. Let F be a field of characteristic 6= p, let M = F (ζp), and let L = M(a1/p) for

some a ∈M . Define the character ω : Gal(M/F ) → F×p by σ(ζp) = ζ
ω(σ)
p . Then

L/F is abelian⇒ σ(a) = aω(σ) (mod (M×)p)

for all σ ∈ Gal(M/F ).

Proof of 6.1 Assume that there exists such an N , then N(ζp)/Qp is abelian and

Gal(N(ζp)/Qp(ζp)) ∼= (Z/pZ)3. This is a Kummer extension so there is a corresponding sub-

group B ⊂ Qp(ζp)
×/(Qp(ζp)

×)p with B ∼= (Z/pZ)3 and Qp(ζp)(B
1/p) = N(ζp). Let a ∈ B and

L = Qp(ζp, a
1/p) ⊂ N(ζp). Since L/Qp is abelian, by lemma 6.2,

σ(a) = aω(σ)(mod(Qp(ζp)
×)p), σ ∈ Gal(Qp(ζp)/Qp).
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Let v be the valuation on Qp(ζp) such that v(ζp − 1) = 1. Then

v(a) = v(σ(a)) = ω(σ)v(a) (mod p), for al σ.

Now if σ 6= id the above equality gives v(a) = 0 (mod p).It is easy to verify that

Qp(ζp)
× = (ζp − 1)Z ×Wp−1 × U1

where Wp−1 are the roots of unity in Qp and U1 = {u = 1 (mod ζp − 1)}. Since p | v(a)
and Wp−1’s elements are already pth powers, a is equivalent to an element in U1. So assume

a ∈ U1. We can also assume B ⊂ U1/U
p
1 , and Gal(Qp(ζp)/Qp) acts via ω. We claim that

Up
1 = {u = 1 (mod πp+1)}. Let π = 1− ζp. Now if u ∈ U1 then u = 1+πx. By looking at the

binomial expansion one can show that up = 1 (mod πp+1). Conversely if u2 = 1 (mod πp+1)

then the binomial series for (1 + u2 − 1)1/p converges. This proves the claim.

Let u ∈ B. Let u = 1+bπ+ · · · . Since ζp = 1+π we have ζb
p = 1+bπ+ · · · . Thus u = ζb

pu1

with u1 = 1 (mod π2). Since

σ(u) = uωσ (mod Up
1 )

substituting u = u1ζ
b
p yields σ(u1) = uωσ

1 (mod Up
1 ). Write

u1 = 1 + cπd + · · ·

with c ∈ Z, p - c, and d ≥ 2. Note that

σ(π)

π
=
ζ

ω(σ)
p − 1

ζp − 1
= ζωσ−1

p + · · ·+ 1 = ω(σ) (modπ).

So (σ(π))/π = ω(σ) (mod π).We have

σ(u1) = 1 + cω(σ)dπd + · · ·

but

u
ω(σ)
1 = 1 + cω(σ)πd + · · ·

Since σ(u1) = uωσ
1 (mod Up

1 ) and Up
1 = {u = 1 (mod πp+1)}, we have σ(u1) = u

ω(σ)
1 (mod πp+1).

This means that either d ≥ p + 1 or d = 1 (mod p − 1). The former means that u1 ∈ Up
1

and the latter means that d = p. Clearly 1 + πp generates modulo Up
1 the subgroup of

u1 = 1 (mod πp). We therefore obtained

B ⊂ 〈ζp, 1 + πp〉

where 〈x, y〉 denotes the group generated by x and y. Since B ∼= (Z/pZ)3, we have a contra-

diction.

�
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For p = 2 one has to make a more careful analysis so we shall omit it here. For the proof of

this case see [W] p. 329.
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