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Abstract

In this paper we present the L-series attached to an elliptic curve with complex
multiplication. The L-series is an analytic function which encodes arithmetic informa-
tion about the curve. One hopes that by studying the L-series from the analytic point
of view, this might reveal important information about the curve. The purpose of the
paper is to show that in the case of elliptic curves with complex multiplication, the
L-series can be expressed in terms of Hecke L-series with Grössencharacter and thus
to show that it has an analytic continuation to the whole complex plane and that it
satisfies some functional equation.

1 The Idelic Formulation of Class Field Theory – A

Brief Review

In this section we will present, without proof, the results from class field theory that will be
necessary for the rest of the paper.

Let K be a number field and for each absolute value v on K, let Kv be the completion
of K at v. Moreover, let Ov be the ring of integers of Kv if v is non-archimedean and let
Ov = Kv otherwise. The idele group of k is the group A∗

K =
∏′

v K∗
v , where prime indicates

the fact that the product is restricted relative to the Ov’s. Thus, an element s ∈ ∏
K∗

v in
the unrestricted product is in A∗

K if and only if xv ∈ O∗
v for all but finitely many v’s. We

can embed K∗ into A∗
K by using the natural embedding:

K ↪→ A∗
K , α 7→ (..., α, α, α, ...),

since any α ∈ K∗ is in O∗
v for all but finitely many K.

Also, for any given v we embed K∗
v as a subgroup of A∗

K as follows:

K∗
v ↪→ A∗

K , t 7→ (..., 1, 1, t, 1, 1, ...),

where t appears in the v-th component.
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Definition 1. Let s ∈ A∗
K be an idele. We define the ideal of s to be the fractional ideal of

K given by:

(s) =
∏

p

p
ordpsp

where the product is taken over all prime ideals of K.

In order to make A∗
K into a topological group we do the following: for every integral ideal

c of K, let Uc be the subgroup of A∗
K defined by:

Uc = {s ∈ A∗
K : sp ∈ O∗

p and sp ≡ 1(mod cRp) for all primes p}.
Then, Uc is an open subgroup of A∗

K and it is easy to show that K∗Uc is a subgroup of
finite index in A∗

K .

Definition 2 (Norm). If L/K is a finite extension, then there is a natural norm map from
A∗

L to A∗
K. This is a continuous homomorphism NL

K : A∗
L → A∗

K defined by the fact that the
v component of NL

Kx is
∏

w|v NLw

Kv
xw.

The idelic formulation of class field theory is based on the reciprocity map described in
the following theorem.

Theorem 3. Let K be a number field and let Kab be the maximal abelian extension of K.
There exists a unique continuous homomorphism A∗

K → Gal(Kab)/K sending s 7→ [s,K],
with the property that:

Let L/K be a finite abelian extension and let s ∈ A∗
K be an idele whose ideal (s)

is not divisible by any primes that ramify in L. Then [s,K] |L= ((s), L/K).

Here (·, L/K) is the Artin map and Gal(Kab/K) is given the usual profinite topology.
The homomorphism [·, K] is called the reciprocity map for K.

Properties of the Reciprocity Map

• It is surjective and K∗ is contained in its kernel.

• It is compatible with the norm map, i.e. [x, L] |Kab= [NL
Kx,K]] for all x ∈ A∗

L.

• Let p be a prime ideal of K, let Iab
p ⊂ Gal(Kab/K) be the inertia group of p for the

extension Kab/K, let πp ∈ K∗
p be a uniformizer at p and let L/K be any abelian

extension that is unramified at p. Then, [πp, K] |L= (p, L/K) = Frobenius for L/K at
p, and [O∗

p, K] = Iab
p .
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2 The Associated Grössencharacter

On a number field L/Q, a Grössencharacter is defined as a continuous homomorphism ψ :
A∗

L → C∗ with the property that ψ(L∗) = 1. If β is a prime of L, then we say that a
Grössencharacter ψ : A∗

L → C∗ is unramified at β if ψ(O∗
β) = 1.

In this section, we want to give the definition of a Grössencharacter associated to an
elliptic curve with complex multiplication. We begin by giving a map which, with small
modifications, will be the desired Grössencharacter.

Theorem 4. Let E/L be an elliptic curve with complex multiplication by the ring of integers
OK of K, and assume that L ⊃ K. Let x ∈ A∗

L be an idele of L and let s = NL
Kx ∈ A∗

K.
Then there exists a unique α = αE/L(x) ∈ K∗ with the following two properties:

(i) αOK = (s), where (s) ⊂ K is the ideal of s.

(ii) For any fractional ideal a ⊂ K and any analytic isomorphism f : C/a → E(C), the
following diagram commutes:

K/a
αs−1

−→ K/a
↓ f ↓ f

E(Lab)
[x, L]−→ E(Lab)

Proof. For the proof of this theorem, we refer the reader to [2].

The above theorem gives us a well-defined homomorphism αE/L : A∗
L → K∗ ⊂ C∗.

However, αE/L(L∗) 6= 1, so αE/L is not a Grössencharacter. To make this more precise,
note that given β ∈ L∗ and xβ ∈ A∗

L to be its corresponding idele, then [xβ, L] = 1.
Thus, the above theorem tells us that α = αE/L(xβ) is the unique element of K∗ such that
αOK = NL

K((xβ))OK = NL
K(β)OK and such that if we multiply by αNL

Kx−1
β , it induces the

identity map on K/a. This unique α is precisely NL
Kβ which implies that:

αE/L(xβ) = NL
Kβ for all β ∈ L∗.

Using this information, we can start proving the following important result which will
give us the Grössencharacter that we want.

Theorem 5. Let E/L be an elliptic curve with complex multiplication by the ring of integers
OK of K. Assume that L ⊃ K and let αE/L : A∗

L → K∗ be the map described in (4). For any
idele s ∈ A∗

K, let s∞ ∈ C∗ be the component of s corresponding to the unique archimedean
absolute value on K. Define a map:

ψE/L : A∗
L → C∗, ψE/L(x) = αE/L(x)NL

K(x−1)∞.
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(i) ψE/L is a Grössencharacter of L;

(ii) Let β be a prime of L. Then ψE/L is unramified at β if and only if E has good reduction
at β.

Proof. (a) We saw already that if β ∈ L∗, then αE/L(xβ) = NL
Kβ. On the other hand,

from the definition of the norm map, we get NL
K(xβ)∞ =

∏
τ :L↪→Cτ |K=1 βτ = NL

Kβ. Hence,

ψE/L(xβ) = 1. Since this is true for all β, then we clearly have that ψE/L(L∗) = 1. Moreover,
it is clear that ψE/L is a homomorphism, so we are left to verify that it is also continuous on
A∗

L. That will prove that ψE/L is a Grössencharacter.
First, we verify that αE/L : A∗

L → C is continuous. Fix an integer m ≥ 3. It is proved
in [2] that L(E[m]) is a finite abelian extension of L. let Bm ⊂ A∗

L be the open subgroup
corresponding to L(E[m]), i.e., Bm is the subgroup such that the reciprocity map induces
an isomorphism:

A∗
L/Bm −→ Gal(L(E[m])/L)
x 7→ [x, L] |L(E[m])

Now consider the sets:

Wm = {s ∈ A∗
K : sp ∈ O∗

p and sp ≡ 1(mod mp) for all p},
and

Um = Bm ∩ {x ∈ A∗
l : NL

Kx ∈ Wm}.
Um is an open subgroup of finite index in A∗

L. Next, we are going to prove that αE/L(x) =
1 for all x ∈ Um. Take some x ∈ Um and let α = αE/L(x). Also, fix an analytic isomorphism
f : C/a −→ E(C) as the one described in (4). For t ∈ m−1a/a we have f(t) ∈ E[m] so:

f(t) = f(t)[x,L] since x ∈ Bm, so [x, L] fixes L(E[m])
= f(αNL

Kx−1t) from (4ii)
= f(αt) sincet ∈ m−1a/a and (NL

Kx)p ∈ 1 + mp for all p.

In conclusion, multiplication by α fixes m−1a/a which equivalently can be expressed as
(α − 1)m−1a ⊂ a. This implies that (α − 1)OK ⊂ mOK so α ∈ OK and α ≡ 1(mod mOK).
However, from (4i) we have that ordp α = ordp(N

L
Kx)p and the latter quantity is equal to 1

because the p-component of NL
Kx ∈ Wm is a unit. Since this holds for all primes p, we must

have that α is a unit, i.e. α ∈ O∗
K . However, since we showed above that α ≡ 1(mod mOK),

we conclude that the only possibility is that α = 1.
From the definition of ψE/L we then have that ψE/L(x) = NL

K(x−1)∞ for all x ∈ Um. This
clearly implies that ψE/L is continuous on Um, but since Um is an open subgroup of finite
index of A∗

L, ψE/L must be continuous on all of A∗
L which is what we wanted. Thus, ψE/L is

a Grössencharacter.
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(b) Let Iab
β ⊂ Gal(Lab/L) be the inertia group for β. If we embed O∗

β into A∗
L by taking:

O∗
β ↪→ A∗

L, u 7→ [..., 1, 1, u, 1, 1, ...]

with a u on the β-component, then the reciprocity map takes O∗
β to Iab

β , i.e [O∗
β, L] = Iab

β .
Now let m be an integer such that β - m. It is shown in [2] that in this case, E[m] ⊂

E(Lab) so we know that we have an action of Iab
β will act on E[m]. Our next goal is to

characterize when this action is trivial in terms of the Grössencharacter ψE/L. We have that:

Iab
β acts trivially on E[m] ⇐⇒ f(t)σ = f(t) for all σ ∈ Iab

β and all t ∈ m−1a/a

⇐⇒ f(t)[x,L] = f(t) for all x ∈ O∗
β and all t ∈ m−1a/a

⇐⇒ f(αE/L(x)(NL
Kx−1)t) = f(t) for all x ∈ O∗

β and all t ∈ m−1a/a

Note that ψE/L(x) = αE/L(x) for all x ∈ O∗
β since the archimedean components of

x ∈ O∗
β are all 1. Note furthermore that multiplication by NL

Kx−1 induces the identity map
on m−1a/a which follows from the fact β - m and the fact that if a is a fractional ideal and
c is an integral ideal of K, and if s ∈ A∗

K is an idele with the property that sp = 1 for all
primes p dividing c, then the multiplication by s map s : K/a → K/a induces the identity
map on c−1a/a (i.e. st = t for all t ∈ c−1a/a). This statement can be proved by using the
decomposition of c−1a/a into p-primary components. A detailed proof of this is given in [2].

Returning to our proof, we find that:

Iab
β acts trivially on E[m] ⇐⇒ f(ψE/L(x)t) = f(t) for all x ∈ O∗

β and all t ∈ m−1a/a
⇐⇒ ψE/L(x) ≡ 1(mod mOK) for all x ∈ O∗

β,
since f : m−1a/a −→ E[m].

Applying now the Néron-Shafarevich-Ogg criterion which says that Iab
β acts trivially on

E[m] for infinitely many m prime to β if and only if E has good reduction at β we obtain
the desired result:

E has good reduction at β ⇐⇒ there are infinitely many m with β - m
such that ψE/L(x) ≡ 1(mod mOK) for all x ∈ O∗

β

⇐⇒ ψE/L(x) = 1 for all x ∈ O∗
β

⇐⇒ ψE/L is unramified at β.

3 The Hecke L-series

Suppose that ψ : A∗
L → C∗ is a Grössencharacter on L, i.e. ψ is a continuous homomorphism

which is trivial on L∗. Let β be a prime of L at which ψ is unramified, i.e. ψ(O∗
β) = 1.

Then, define ψ(β) to be:
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ψ(β) = ψ(..., 1, 1, π, 1, 1, ...)

having 1′s everywhere and π on the β-component, where π is a uniformizer at β. Since
ψ is unramified at β, ψ(β) is well-defined independent of the choice of π. If ψ is ramified at
β, we set ψ(β) = 0. Now, we can make the following definition:

Definition 6. The Hecke L-series attached to the Grössencharacter ψ : A∗
L → C∗ is defined

by the Euler product:

L(s, ψ) =
∏

β

(1 − ψ(β)q−s
β )−1,

where the product is over all primes of L.

The Hecke L-series have the following important property whose proof we will not give.
It was first proved by Hecke and it was then reformulated and proved by Tate [4] using
Fourier analysis on the adele ring AL.

Theorem 7 (Hecke). Let L(s, ψ) be the Hecke L-series attached to the Grössencharacter
ψ. Then, L(s, ψ) has an analytic continuation to the entire complex plane and satisfies a
functional equation relating its values at s and N − s for some real number N = N(ψ).

4 The L-series Attached to a CM Elliptic Curve

Let L/Q be a number field and let E/L be an elliptic curve. For each prime β of L, define:

• Fβ = residue field of L at β;

• qβ = NL
Qβ = #Fβ.

Definition 8. If E has good reduction at β, we define local L-series of E at β to be:

Lβ(E/L, T ) = 1 − aβT + qβT 2

where aβ = qβ + 1 − #Ẽ(Fβ).
If E has bad reduction at β, we define the local L-series as follows:

Lβ(E/L, T ) =





1 − T if E has split multiplicative reduction at β
1 + T if E has non-split multiplicative reduction at β
1 if E has additive reduction at β

Definition 9. The (global) L-series attached to the elliptic curve E/L is defined by the Euler
product

L(E/L, s) =
∏

β

Lβ(E/L, q−s
β )−1

where the product is over all primes of L.
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Using the estimate |aβ| ≤ 2
√

qβ, one can show that this product converges and gives an
analytic function for all s for which Re(s) > 3

2
. It is conjectured however, that far more is

true.

Conjecture 10. Let E/L be an elliptic curve defined over a number field. The L-series
of E/L has an analytic continuation to the entire complex plane and satisfies a functional
equation relating its values at s and 2 − s.

For elliptic curves with complex multiplication, this conjecture can be verified by showing
that the global L-series can be written as a product of Hecke L-series with Grössencharacter,
for which we know from Hecke’s Theorem (7) that it has an analytic continuation to the
entire complex plane and that it satisfies a functional equation relating its values at s and
N − s for some real number N = N(ψ).

In order to be able to express L(E/L, s) in terms of Hecke L-series, we want to express

the number of points in Ẽ(Fβ) in terms of the Grössencharacter attached to E/L.

Proposition 11. Let E/L be an elliptic curve with complex multiplication by the ring of
integers OK of K and assume that L ⊂ K. Let β be a prime of L at which E has good
reduction, let Ẽ be the reduction of E modulo β and let φβ : Ẽ → Ẽ be the associated qβ-
power Frobenius map. Finally, let ψE/L : A∗

L → K∗ be the Grössencharacter attached to
E/L. Then, the following diagram commutes:

E
ψE/L(β)
−→ E

↓ ↓
Ẽ

φβ−→ Ẽ

where the vertical maps are reduction modulo β.

Proof. First note that from (5ii) we know that ψE/L is unramified at β, so ψE/L(β) is well-
defined. Second, since ψE/L(β) is the value of ψE/L at an idele which has 1’s in all its
archimedean components, then we have ψE/L(β) = αE/L(β) ∈ OK so we can talk about
[ψE/L(β)] as an endomorphism of E.

If we let x ∈ A∗
L to be an idele with a uniformizer on the β-component and with 1’s

everywhere else, then as remarked before, ψE/L(β) = ψE/L(x) = αE/L(x) ∈ OK and now
using the definition of αE/L from the commutative diagram from (4), we get that:

f(t)[x,L] = [ψE/L(x)]f(NL
Kx−1t) for all t ∈ K/a.

Now if we again fix some integer m with β - m, we know from the proof of theorem 5 that
NL

Kx−1t = t for all t ∈ m−1a/a so we get that f(t)[x,L] = [ψE/L(x)]f(t) for all t ∈ m−1a/a.
Now from theorem (3) we have that [x, L] = (β, Lab)/L and so if we reduce everything

modulo β, [x, L] reduces to the qβ-power Frobenius map. So,

φβ(f̃(t)) = ˜f(t)[x,L] = [ψ̃E/L(x)]f̃(t)
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for all t ∈ m−1a/a. Here, symbolizes reduction modulo β.
But now since we know that this holds true for any m prime to β, and since an en-

domorphism of Ẽ is determined completely by its action on the torsion, we conclude that

φβ = [ψ̃E/L(x)].

Corollary 12. With notation as in (11), we have:

• qβ = NL
Qβ = NK

Q (ψE/L(β));

• #Ẽ(Fβ) = NL
Qβ + 1 − ψE/L(β);

• aβ = ψE/L(β) + ψE/L(β).

Proof. (a) From [1] we know that NL
Kβ = deg φβ and from (11) we know that deg φβ =

deg[ ˜ψE/L(β)] = deg[ψE/L(β)]. The latter equality follows from the theory of the Hilbert class
field and in particular from Proposition 4.4 in [2]. Finally, we know that NK

Q (ψE/L(β)) =
deg[ψE/L(β)] and so we obtain the desire result: NL

Qβ = NK
Q (ψE/L(β)).

(b) From [1] we note that #Ẽ(Fβ) = # ker(1 − φβ) = deg(1 − φβ). From (11), the

latter quantity is equal to deg[1 − ψ̃E/L(β)] and again from Proposition 4.4 in [2] we have
that this latter quantity is equal to deg[1 − ψE/L(β)]. Finally, as before, this is equal to

NK
Q (1 − ψE/L(β)) = (1 − ψE/L(β))(1 − ψE/L(β)). Finally, from part (a), this is equal to

1 − ψE/L(β) − ψE/L(β) + NL
Qβ.

(c) Combining the first two parts with the definition of aβ, we obtain the desired result.

Theorem 13 (Deuring). Let E/L be an elliptic curve with complex multiplication by the
ring of integers OK of K.

(a) Assume that K is contained in L. Let ψE/L : A∗
L → K∗ be the Grössencharacter

attached to E/L. Then

L(E/L, s) = L(s, ψE/L)L(s, ψE/L).

(b) Suppose that K is not contained in L and let L′ = LK. Further, let psiE/L′ : A∗
L′ → K∗

be the Grössencharacter attached to E/L′. Then,

L(E/L, s) = L(s, ψE/L′).
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Sketch of Proof. (a) One can show that E has potential good reduction at every prime of L
and thus conclude that E has no multiplicative reduction. Thus, we have that:

Lβ(E/L, T ) =

{
1 − aβT + qβT 2 if E has good reduction at β
1 if E has bad reduction at β

Now if we assume that E has good reduction at β, then by the definition of Lβ and (12),

we have that: Lβ(E/L, T ) = 1−aβT +qβT 2 = 1−(ψE/L(β)+ψE/L(β))T +(NK
Q ψE/L(β))T 2 =

(1 − ψE/L(β)T )(1 − ψE/L(β)T ).
But, from (5b) we know that ψE/L is unramified at β if and only if E has good reduction

at β and the same holds for ψE/L. So, this implies that ψE/L(β) = ψE/L(β) = 0 if E has
bad reduction at β. So the formula for Lβ(E/L, T ) is also true for primes of bad reduction
because it reduces to Lβ(E/L, T ) = 1. So,

L(E/L, s) =
∏

β Lβ(E/L, q−s
β )−1

=
∏

β(1 − ψE/L(β)q−s
β )−1(1 − ψE/L(β)q−s

β )−1

= L(s, ψE/L)L(s, ψE/L).

(b) In order to prove this part, we start by assuming that E has good reduction at β.
Now if β splits in L′ as βOL′ = β′β′′, then one can show that qβ = qβ′ = qβ′′ and moreover
that aβ = ψE/L′(β′)+ψE/L′(β′′). If, on the other hand, β remains inert in L′, say βOL′ = β′,
then one can show that q2

β = qβ′ and that aβ = 0 and ψE/L′(β′) = −qβ.

Finally, one can show that if Ẽ is the reduction of E modulo β, then Ẽ is ordinary if β
splits in L′ and supersingular if β is inert or ramifies in L′.

Now let β′ be a prime of L′ lying over β. If β ramifies in L′, then E has bad reduction
at β and if β is unramified in L′, then E has good reduction at β if and only if E has good
reduction at β′.

Finally, one shows that that the local L-series of E at β is given by:

Lβ(E/L, T ) =





(1 − ψE/L′(β′)T )(1 − ψE/L′(β′′)T ) if βOL′ = β′β′′ splits in L′

1 − ψE/L′(β′)T if βOL′ = β′ is inert in L′

1 if βOL′ = β′2 ramifies in L′

And, ultimately, one gets that the global L-series of E/L is given by L(E/L, s) =
L(s, ψE/L′) which is the desired result.

Further analysis leads to the following stronger result.

Corollary 14. Let E/L be an elliptic curve with complex multiplication by the ring of
integers OK of K. The L-series of E admits an analytic continuation to the entire complex
plane and satisfies a functional equation relating its values at s and 2 − s. More precisely,
define a function Λ(E/L, s) as follows:
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(i) If K ⊂ L, let

Λ(E/L, s) = (NL
Q(DL/Qcψ))s((2π)−sΓ(s))[L:Q]L(E/L, s),

where cψ is the conductor of the Grössencharacter ψE/L, DL/Q is the different of L/Q
and Γ(s) =

∫ ∞

0
ts−1e−tdt is the usual Γ-function.

(ii) If K * L, let L′ = LK and

Λ(E/L, s) = (NL′

Q (DL′/Qc′ψ))s((2π)−sΓ(s))[L:Q]L(E/L, s),

where c′ψ is the conductor of the Grössencharacter ψE/L′.

Then Λ satisfies the functional equation

Λ(E/L, s) = wΛ(E/L, 2 − s),

where the quantity w = wE/L ∈ {±1} is called the sign of the functional equation of E/L.
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