
L-FUNCTIONS AND THE DENSITIES OF PRIMES

ANATOLY PREYGEL

Abstract. We present some of the easier to prove analytic properties of Dirichlet-Hecke
L-functions, including the Dedekind zeta functions. We use Artin reciprocity to show that
abelian Artin L-functions are Dirichlet-Hecke L-functions, and thus share these properties.
We proceed to show a decomposition formula for the Dedekind zeta function, use this to
show non-vanishing at s = 1 of L-series for non-principal ideal class characters, and to prove
the Chebotarev Density Theorem.

1. Introduction

1.1. Elementary Motivation. We begin with an elementary proof, the extension of which
may be viewed as a driving force for this expository paper:

Proposition 1.1.1 (Special Case of Dirichlet’s Theorem on Primes). For each fixed positive
integer n, there are infinitely many primes p satisfying p ≡ 1 (mod n).

Proof. Assume the contrary, and say that p1, . . . , pr is the complete list of such primes for
our fixed n.

Let Φk be the kth cyclotomic polynomial. That is:

Φk
def
=
∏

d|k

(1 − xk/d)µ(d),

where µ(d) is 0, 1,−1 according to whether d is divisible by a square, is the product of an
even number of primes, or of an odd number of primes, respectively.

Say q is a prime such that (k, q) = 1. Let K denote the splitting field of f = xk−1 over Fq.
Note that f ′ = kxk−1 is non-zero for q - k, and then f and f ′ have no common roots. Then
for d|k, (xd−1, xk−1) = (xd−1), and as f = xk−1 has distinct roots, xd−1 ‖ xk−1. Then,
counting multiplicities in the definition of Φk shows us that the roots of Φk are precisely the
elements of order exactly k.

So, if Φk has a root over Fp for p - k, then this root is an element of order k. By Lagrange’s
Theorem, this implies that k|

∣∣F×
p

∣∣ = p− 1. So, p ≡ 1 (mod k).
Now, let N = n

∏
pi. As ΦN has only finitely many roots, we may take k ∈ Z>0 such that

ΦN(kN) 6= 0. Then, ΦN(kN) has prime factors, and we may let q be any prime dividing it.
Note that ΦN(0) = 1, so ΦN(kN) ≡ 1 (mod k)N , and q is co-prime to kN and so to N . So,
q - N and kN is a root in Fq of ΦN . Thus, q ≡ 1 (mod N) and so q ≡ 1 (mod ), but q is
not one of the pi. This yields a contradiction, establishing our result. �

We offer an alternative interpretation of the idea of the above proof, using some standard
results of algebraic number theory. Let K = Q(ζn) be the nth cyclotomic field. Then,
OK = Z[ζn], and the primes which ramify in K all divide n. For p an unramified prime of
K, the map {ζn 7→ ζp

n} is the Frobenius of p. Now, the reduction of Φn in Fp[x] factors as
1
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i=1 f

e
i , where e = 1 (recall unramified) and deg fi = f is the order of the Frobenius. So,

Φn splits into linear factors if and only if the Frobenius is trivial. This occurs if and only if
ζp−1
n = 1, which occurs if and only if p ≡ 1 (mod n). So, our problem is equivalent to finding

many primes with trivial Frobenius. It turns out that the question of the distribution of
primes with a specified Frobenius is a fruitful generalization, and the goal of this paper will
be to develop the techniques to prove the Chebotarev Density Theorem.

The above proof is entirely algebraic, and is relatively elementary. However, it seems that
such algebraic methods only get us so far. Indeed, in 1837 Dirichlet brought in analytic
methods to prove the following result generalizing our above proposition:

Theorem 1.1.1 (Dirichlet’s Theorem on Primes in an Arithmetic Progression). Let a, b ∈ N
be such that (a, b) = 1. Then, there are infinitely many primes p satisfying p ≡ a (mod b).

To this day, results of this nature are handled with analytic machinery. We will begin by
developing sufficient tools to sketch a proof of this result, before extending them to allow us
to prove our desired generalization.

1.2. Characters and L-functions. In proving his theorem, Dirichlet introduced a class of
analytic objects tied to the rational number field: the Dirichlet L-series.

We assume the reader is familiar with basic representation theory of finite groups. Through-
out this paper, all representations will be over C. For an abelian group G, we will use the
word character to refer to a (continuous) homomorphism G → S1 ⊆ C× [note that for G
finite, these characters are precisely the one-dimensional representations under the identifi-
cation GL1(C) ↔ C×, for the image must be a torsion element]. We let Hom(G,S1) denote
the group of characters of G; we will denote the identity in Hom(G,S1) by χ0 which we will
call the principal character. We will prove some of the basic properties of this construction:

Proposition 1.2.1. For G a finite abelian group (written multiplicatively here). Then:

(a) G ' Hom(G,S1);
(b) G ∼= Hom(Hom(G,S1), S1) by the evaluation map;

(c)
∑

g∈G χ(g) =

{
|G| χ = χ0

0 otherwise
;

(d)
∑

χ∈Hom(G,S1) χ(g) =

{
|G| g = 1

0 otherwise
.

(e) For any g ∈ G, we have

∏

χ∈Hom(G,S1)

(1 − χ(g)t) =
(
1 − tord g

) |G|
ord g .

Proof. By the structure theorem for finite abelian groups, we may decompose G into cyclic
factors

G
∼

γ
-

r⊕

i=1

Z/niZ

with 1 < ni||G|.
2
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Let ζi be a primitive nth
i root of unity, and consider the map:

G - Hom(G,S1)

g - χg(a) =
∏

i

ζ
γ(a)iγ(g)i

i

We readily check that each χg is indeed a homomorphism G→ S1 (for it maps the generator

of the ith cyclic summand to ζ
γ(g)i

i ). Furthermore, every such homomorphism is of this form,
for it must map this generator to an element of order dividing ni, so to a power of ζi. So,
this map is surjective onto Hom(G,S1). We may explicitly check that it is a homomorphism.
Now, it suffices to prove injectivity. But indeed, χg = χ0 implies that χg is 1 on the generators
of the cyclic summands, which in turn implies ζi(γ(g)i) = 1, whence γ(g)i = 0, for each i,
and thus g = 1. This proves (a).

For (b), note that the evaluation map

G 3 g 7→ ̂̂g s.t. ̂̂g(χ) = χ(g)

is a homomorphism G→ Hom(Hom(G,S1), S1). For each g ∈ G distinct from id, there will
be some character with non-trivial value on G by the above characterization of Hom(G,S1),
so this map is an injection. By (a), we have that |G| = |Hom(Hom(G,S1), S1)|, so this map
must be an isomorphism.

For (c), note that the claim is trivial for χ = χ0. Then, if χ 6= χ0, then there exists a
g′ ∈ G such that χ(g′) 6= 1. Then

χ(g′)
∑

g∈G

χ(g) =
∑

g∈G

χ(g′g) =
∑

g′g∈G

χ(g′g) =
∑

g∈G

χ(g),

which implies our desired result.
Then, (d) follows from (b) and (c).
Now, let H = 〈g〉. We may take H to be one of our cyclic factors for G. Take it to be our

first cyclic factor, and then n1 = ord g. Then, by the above characterization, we see that:

∏

χ∈Hom(G,S1)

(1 − χ(g)t) =

n1∏

a1=1

n2∏

a2=1

· · ·
nr∏

ar=1

(
1 − ζa1

n1
t
)

=

(
n1∏

a1=1

(
1 − ζa1

n1
t
)
)n2···nr

= (1 − tn1)n2···nr

=
(
1 − tord g

) |G|
ord g .

This shows (e). We could also have established this by noting that G ∼= H ⊕ G/H so
Hom(G,S1) ∼= Hom(H,S1) ⊕ Hom(G/H, S1), and a similar product identity. �

Now, we will introduce Dirichlet’s L-series.
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Definition. Let N > 1 be an integer. Let χ be a character of (Z/NZ)×. We may extend χ
to a multiplicative function, which we also call χ, on Z by:

χ(k) =

{
χ(k̄) (k,N) = 1, k̄ = image of k in (Z/NZ)×

0 otherwise

We refer to both of these meanings of χ as the Dirichlet character. There shall be no
ambiguity, for it will always suffice to expand to a function on Z.

Then, the Dirichlet L-series for the Dirichlet character χ is:

L(s, χ)
def
=

∞∑

n=1

χ(n)

ns
=

∑

(n,N)=1

χ(n)

ns

Remark. Not worrying about convergence, the quick reader may immediately notice that the
multiplicative property of χ lets us write the above in a product form:

∏

p prime

(
1 − χ(p)p−s

)−1
.

Indeed, a Dirichlet series expansion and an Euler product expansion are two of the prop-
erties, along with a functional equation, defining L-series.

1.3. Convergence properties of Dirichlet series. We wish to prove some convergence
properties of the L(s, χ). We will consider a more general class of objects, in order to get
results that we can re-use later.

Definition. A Dirichlet series is a series of the form
∞∑

n=1

an

ns

with the an complex numbers and s a complex variable.

Lemma 1.3.1. If the Dirichlet series
∑

n
an

ns converges for some s = s0, then it converges
for any s with Re(s) > Re(s0), and converges uniformly on any compact subset of this region
(so, the series represents an analytic function on that half plane).

Moreover, if there exist constants C, σ > 0 such that |a1 + . . .+ ak| ≤ Ckσ for each k ≥ 1,
then the series converges for Re(s) > σ.

Proof. Let Pn(s) =
∑n

i=0 aii
−s.

For δ > 0, Re(s) ≥ Re(s0) + δ, i > 0 note that we have:
∣∣∣∣

1

is−s0
−

1

(i+ 1)s−s−0

∣∣∣∣ =

∣∣∣∣(s− s0)

∫ i+1

i

dx

xs−s0+1

∣∣∣∣ ≤ |s− s0|
1

iRe(s)−Re(s0)+1
≤

|s− s0|

i1+δ

Then, for m < n we have

|Pn(s) − Pm(s)| =

∣∣∣∣∣

n∑

i=m+1

ai

is0is−s0

∣∣∣∣∣

=

∣∣∣∣∣
Pn(s0)

ns−s0
−

Pm(s0)

(m+ 1)s−s0
+

n−1∑

i=m+1

Pi(s0)

[
1

is−s0
−

1

(i+ 1)s−s0

]∣∣∣∣∣
4
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and by the above:

≤

∣∣∣∣
1

(m+ 1)s−s0

∣∣∣∣

∣∣∣∣∣Pm(s0) − Pn(s0)

(
m+ 1

n

)s−s0

∣∣∣∣∣+
n−1∑

i=m+1

|Pi(s0)|
|s− s0|

i1+δ

Now, as Pn(s0) converges, we may take M s.t. M ≥ |Pn(s0| for all n. Then:

≤ 2M

∣∣∣∣
1

(m+ 1)δ

∣∣∣∣+M |s− s0|

∞∑

i=m+1

1

i1+δ

Now, on any compact set, |s−s0| is bounded, and the last sum is convergent by the integral
test, so taking m sufficiently large we see that the Pn converge uniformly on compact subsets
of Re(s) ≥ 1 + δ. Recall that the uniform-on-compacts limit of holomorphic functions on
a domain is holomorphic. Applying this to the partial sums of the Dirichlet series, this
completes the first part of the result. This afford us the freedom to be sloppy in declaring
that convergent Dirichlet series give analytic functions.

Now, let Sn = a1 + . . .+ an. Then, for n > m, δ > 0 and Re(s) ≥ σ + δ:

|Pn(s) − Pm(s)| =

∣∣∣∣∣
An

ns
−

Am

(m+ 1)s
+

n−1∑

i=m+1

Ak

[
1

is
−

1

(i+ 1)s

]∣∣∣∣∣

≤
C

nRe(σ)−s
+

C

(m+ 1)Re(σ)−s
+

n−1∑

i=m+1

C

[
1

is−σ
−

1

(i+ 1)s−σ

]

and by the above:

≤
C

nδ
+

C

(m+ 1)δ
+ C |s− σ|

n−1∑

i=m+1

1

i1+δ

This proves our result. �

1.4. Sketch of Proof of Theorem 1.1.1. We will use the following analytic results in this
proof:

(a) Convergence of L(s, χ) and ζK (Dedekind zeta) for Re(s) > 1, and for Re(s) > 0 for
χ 6= χ0.

(b) Existence and convergence of Euler product for L(s, χ) and ζK for Re(s) > 1.
(c) For χ 6= χ0, L(s, χ) is analytic at s = 1. L(s, χ0) and ζK all have simple poles at

s = 1.

We prove the first of these here. We prove more general version of the later two in the
sequel.

Let G = (Z/bZ)×. Then, for χ ∈ Hom(G,S1) not the principal character, we note that by

Prop. 1.2.1 the sums
∑k

n=1 an =
∑k

n=1 χ(k) are cyclic and so bounded. So, we may apply
Lemma 1.3.1 to L(s, χ) with σ = 0, to get that L(s, χ) is analytic for Re(s) > 0 and so at
s = 1. Applying Lemma 1.3.1 to L(s, χ0) with σ = 1 yields that it is analytic for Re(s) > 1.

5
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Also, using multiplicativity of χ and the Fundamental Theorem of Arithmetic, we may
prove the Euler product expansion for L(s, χ):

L(s, χ) =
∞∑

n=1

χ(n)

ns
=

∏

p prime

(
1 − χ(p)p−s

)−1
.

For p - b, let f(p) denote the order of the image of p in G. Then, by Prop. 1.2.1 we have

∏

χ∈Hom(G,S1)

L(s, χ) =
∏

p-b

(
1 − p−sf(p)

)−φ(b)/f(p)
.

Let K = Q(ζb). Define ζK =
∏

p (1 − Norm(p))−1, where the product is over finite primes
of K.

Now, note that the only rational primes ramified in K/Q are those dividing b, by a
discriminant argument. So, we may show that

ζK(s) =
∏

p

(
1 − p−sf(p)

)−φ(b)/f(p)
=

∏

χ∈Hom(G,S1)

L(s, χ)
∏

p|b

(
1 − p−sf(p)

)−φ(b)/f(p)
.

The last factors are analytic at s = 1, ζK and L(s, χ0) have simple poles at s = 1, and
the other factors are analytic there. So, the equality implies that these analytic factors are
non-zero. That is, L(1, χ) 6= 0 for χ 6= χ0.

Then, letting a−1 be the inverse of a in G, note that by Prop. 1.2.1 we have

∑

p≡a (mod b)

p−s =
1

|G|

∑

χ∈Hom(G,S1)

∑

p

χ(p)χ(a−1)p−s

Now, for functions f, g, we write f ∼ g if f − g may be analytically continued on some
neighborhood of s = 1.

Taking logarithms in the Euler product for L(s, χ) we get

log L(s, χ) =
∑

p

χ(p)p−s +
∑

p

∑

m≥2

1

m
χ(pm)p−sm

This last term is absolutely convergent in a neighborhood of s = 1 by comparison to ζ(2s),
which is analytic on Re(s) > 1

2
. So,

∑

p≡a (mod b)

p−s ∼
1

|G|

∑

χ∈Hom(G,S1)

χ(a−1) log L(s, χ)

We have that (s−1)L(s, χ0) is analytic and non-vanishing at s = 1 (we just kill the simple
pole), so log L(s, χ0) ∼ log 1

s−1
. Also, for χ 6= χ0 we have that L(s, χ) is analytic at s = 1.

Then
∑

p≡a (mod b)

p−s ∼
1

|G|
χ0(a

−1) log
1

s− 1
=

1

|G|
log

1

s− 1
.

If there were finitely many primes p ≡ a (mod b), then this sum would be bounded as
s→ 1+, but log 1

s−1
is not. This yields our desired result.

6
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Remark. There are other ways to establish the crucial fact that L(1, χ) 6= 0. The above
method closely mirrors the proof that we will follow below. Another common approach is
to split into the case of complex characters (that is, χ2 6= χ0) and real characters (that is,
χ2 = χ0). Such an approach may in fact be used to prove the general case that we wish to
use here; see for instance [Hei67].

1.5. Prerequisites and references. We assume that the reader has a reasonable familiar-
ity with basic complex analysis, the splitting of primes in number fields, basic commutative
algebra (incl. localization), and valuations. In addition, we will state and then use with-
out proof the fundamental results of class field theory. In addition, we will occasionally
make remarks hinting at the more general theory, specifically Großencharakters, analytic
continuation, and Artin L-series.

There are many excellent references on this material and the topics surrounding it. For a
historical account of class field theory see [Coh85]; for the modern cohomological treatment
see one of [Lan94], [Jan96] (lacks the idèlic formulation, the closest to the exposition of class
field theory given here), [Lan94] (no proofs for global theory), [SD01] (concise!), [Neu86]
(s slightly unusual cohomological treatment, without the Brauer group!), [Neu99] (as the
previous). For an analytic view on class field theory, including all the theory of L-functions
discussed herein and more, see [Gol71].

A full treatment of Dirichlet-Hecke L-functions (including a proper treatment of Großen-
charakters) may be found in [Gol71], [SD01] (concise!), or [Tat67] (the original source for
many of the arguments given in the preceding two). These sources also address the question
of analytic continuation of these L-functions to all of C, as does [Neu99] (with a different ap-
proach, using theta functions, from Hecke). The exposition of the analytic theory in [Neu86]
is simple, and is the closest to the exposition given here.

1.6. Notation. Unless otherwise stated, we will use the following notation throughout the
remainder of this document:
K will denote a number field.
By a prime of K we will mean either a non-zero prime ideal of OK (a “finite prime”), or a

real embedding K ↪→ R (a “real infinite prime”), or a conjugate pair of complex embeddings
K ↪→ C (a “complex infinite prime”). Equivalently, we may regard these as the equivalence
classes of valuations on K. We will use ν to denote a (not necessarily finite) prime of K, and
Kν will denote the completion of K with respect to the topology induced by the valuation
(along with the canonical inclusion K ↪→ Kν written x 7→ xν).

For an extension L/K of number fields, p a finite prime of K and P a prime lying above
it, we will denote by DP, IP the decomposition and inertia groups of P (if our extension

is abelian, we may write p in place of P). For p unramified, we will denote by
[

L/K
P

]
the

Frobenius corresponding to P and by
(

L/K
p

)
the Artin map of p, that is the conjugacy class

{
[

L/K
P

]
: P|p} (which we will regard as just an element for L/K abelian). If p is ramified,

we modify each of these to be IP-cosets. We define the Artin map on arbitrary ideals by
unique factorization into primes.

For functions f, g, we write f ∼ g if f − g may be analytically continued on some neigh-
borhood of s = 1.

7
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2. Congruence subgroups, class groups, and reciprocity

In order to generalize the notion of a Dirichlet character and series, we must have an
appropriate generalization of the group (Z/nZ)×. In the context of our proof-sketch above,
the field K = Q(ζn) was introduced. Indeed, the (Z/nZ)× may be viewed as the Galois
group Gal(K/Q).

Let us consider the phrasing of our goal in terms of Frobenius elements of Galois extensions.
Observe that for L/F/K a tower of Galois extensions, the restriction map induces a surjection
of decomposition groups DP → Dp, for P a prime of L and p = OF ∩p. So, to understand the
Frobenius elements of F we may look at the Frobenius elements of L. When our base field is
Q, the Kronecker-Weber theorem assures us that every abelian extension K/Q is contained
in some cyclotomic extension. Now, our characterization of the Frobenius in cyclotomic
extensions lets us reduce this study to the study of certain congruences defining the relevant
subgroup of the Galois group of this cyclotomic field.

Example. The above discussion is almost in reverse of how we got to the Frobenius statement
in the first place. Let us bring things back to that context for a quick example. Say we wanted
to look for primes p satisfying p ≡ ±1 (mod 7). Note that {±1} ⊂ (Z/7Z)× is a subgroup.
Now, we may realize the latter as Gal(K/Q) for K = Q(ζ7). Then, let H be the subgroup of
Gal(K/Q) corresponding to {±1}, and set L = KH = Q(ζ7+ζ

−1
7 ). Then, for p not ramified in

K (that is, not 7), we have that
(

K/Q
p

)
= {ζ7 7→ ζp

7}, and p ≡ ±1 (mod 7) ⇔
(

K/Q
p

)
∈ H ⇔

(
L/Q

p

)
= id. From this, p ≡ ±1 (mod 7) ⇔ p splits completely in L/Q. Finding the mini-

mal polynomial for a primitive element of L, and showing that the ring of integers is mono-
genic, we can relate this to polynomials: p ≡ ±1 (mod 7) ⇔ x3 + x2 − 2x− 1 splits in Fp[x],
a “reciprocity law!”

This picture over Q is the prototype for what follows.

2.1. Notation. Let IK denote the free abelian group generated by the finite primes of K.
For a set S of primes of K, let IS

K denote the free abelian group generated by the finite
primes of K excluding the elements of S. We let ι : K× → IK be the map given by
a 7→ aOK =

∏
i p

ei
i ∈ IK .

Define an modulus as a formal product of primes of K. We write x ≡ 1 (mod m) to mean
that:

• For each finite prime p | m we have ordp(x− 1) ≥ m for m > 0 such that pm ‖ m;
• For each real infinite prime ν | m we have xν > 0.

Denote Im
K

def
= IS

K where S = {p finite prime : p | m}.
Denote

Km def
= ι−1(Im

K) =
{a
b

: a, b ∈ OK , for each prime p ∈ S ordp a = ordp b = 0
}

and

Km
1

def
= {x ∈ Km : x ≡ 1 (mod m)}.

Finally, denote:

Pm
K

def
= ι(Km

1 ) ⊆ Im
K and ClmK

def
= Im

K/P
m
K .

8
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We call ClmK the ray class group of m. We will often drop the subscriptK from Im
K ,P

m
K ,ClmK .

If we drop the m, then it is assumed that m = 1.

2.2. Congruence subgroups. A congruence subgroup (defined mod. m) is a subgroup Hm

of Im
K containing Pm

K . Whenever we write a superscript modulus on a group, we take that to
mean that it is a congruence subgroup defined mod. m.

Proposition 2.2.1. Say m|n, then Im ⊇ In. Define Hn = Hm∩In. Then, Hn is a congruence
subgroup (defined mod. n) and:

(a) Hm = HnPm;
(b) the inclusion In ↪→ Im induces In/Hn ∼= Im/Hm.

Proof. [Jan96, Ch. V, §6] The general idea of the proof is to use the Chinese Remainder
Theorem to show that we may avoid given ideals in a suitable sense. �

So, if a congruence subgroup is defined mod. m, it is uniquely defined mod. all multiples of
m. Then, we may define an equivalence relation on congruence subgroups, with Hm1

1 ∼ Hm2
2

if there is some common multiple m of m1,m2 such that they have common restriction to Im

(that is, if Hm1
1 ∩ Im = Hm2

2 ∩ Im). Call such an equivalence class of congruence subgroups an
ideal group or by abuse of terminology a congruence subgroup. We will write H for an ideal
group, and then Hm for its realization mod. m.

By the above, the quotients Imi/Hmi
i for i = 1, 2 will be isomorphic. So, to each ideal group

we may associate an equivalence class of such quotients, which we will call the congruence
class group. We will sometimes write this as just I/H.

Proposition 2.2.2. Say Hm1
1 ∼ Hm2

2 . Let m be the greatest common divisor of m1 and m2.
Then, there is a congruence subgroup Hm such that Hm ∩ Imi = Hmi

i for i = 1, 2.

Proof. [Jan96, Ch. V, §6] �

Combining Prop. 2.2.1 and Prop. 2.2.2, we see that for any ideal group H there is a
minimal modulus (with respect to divisibility) f such that H may be realized mod. f. We
call this the conductor of H. Similarly, we have the notion of conductor of a congruence
class group I/H, defined as the conductor of H.

2.3. Finiteness of congruence class groups. Now, we claim that each congruence class
group is finite. If we have Pm ⊆ Hm ⊆ Im, then we may regard Im/Hm as a subgroup of
Im/Pm = Clm. So, it suffices to show that the ray class groups are finite:

Proposition 2.3.1. Clm is finite

Proof. Note that

[Im : Pm
K ] = [Im : ι(Km

1 )] = [Im : ι(Km)][ι(Km) : ι(Km
1 )].

Note that ι(Km) = Im ∩ P1. So, by the above, Im/ι(Km) ∼= I1 ∩ P1 = ClK . So, the first
term is just the class number, which is finite.

The second factor is a divisor of [Km : Km
1 ], so it suffices to show that this quantity is

finite. Say m =
∏r

i=1 mi where mi = νni
i with the νi distinct. Then, consider the reduction

map
Km

Km
1

-
r∏

i=1

Kmi

Kmi
1

.

9
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Note that the kernel of this map is the set of elements in each Kmi
1 , which is precisely

Km
1 for the constraints imposed by each mi are independent and in total are precisely the

constraints imposed by m. So, the map is injective.
By writing out the conditions for something to map to a prescribed element of the

codomain and applying the Weak Approximation Theorem (a weak form of the equivalent
of the Chinese Remainder Theorem for valuations), we see that the map is surjective.

So, it suffices to prove that each term in the product is finite. If m is a complex place, the
quotient is trivial; if it a real place, the quotient has order 2.

If m = pn is a finite place, then

Km =
{a
b

: a, b ∈ OK , p - a, b
}

= (OK)×p ,

where the subscript denotes localization.
Then, Km

1 = 1 + pn(OK)p.
So, the quotient is

(OK)×p
1 + pn(OK)p

∼=

(
(OK)p

pn(OK)p

)×

∼=

(
OK

pn

)×

p

Now, OK

pn is finite, so this last group is finite. This proves our claim. �

2.4. Artin reciprocity. In the following sections we will want to invoke class field theory.
So, we will briefly review a statement of the important results, without proof.

Theorem 2.4.1 (Artin Reciprocity Theorem). For L/K an abelian extension of number
fields, there is a modulus m divisible by all the ramified primes of L/K and a congruence
subgroup Hm such that the following is an exact sequence

1 - Hm ⊂ - Im
K

(
L/K
·

)

- Gal(L/K) - 1.

Explicitly, we have Hm = Pm
K · NormL/K (Im

L).

When the conditions of the previous theorem hold, we say that L is the class field for K
of the congruence class group Im

K/H
m. Furthermore, we say that m is an admissible modulus

for L/K and for the corresponding congruence class group I/H. We define the conductor of
L/K to be the minimal (with respect to divisibility) modulus f such that f is an admissible
modulus for L/K (equivalently, the conductor of I/H). We have the following result:

Proposition 2.4.1. Let f be the conductor of L/K. Then, the primes dividing f are precisely
the ramified primes of L/K.

In addition to the reciprocity theorem, there is also a correspondence going the other way:

Theorem 2.4.2 (Existence Theorem). For any congruence subgroup Pm
K ⊆ Hm ⊆ Im

K, there
is a unique abelian extension L/K such that L is the class field for K of the congruence class
group Im

K/H
m. [Equivalently, such that Hm = Pm

K · NormL/K (Im
L).]

These two theorems provide a correspondence between objects outside of K, specifically
the abelian extensions, and objects inside K, specifically the congruence subgroups.

10
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Remark. Let us look at the situation over Q in this context. The abelian extensions over
Q correspond to congruence subgroups, which in turn correspond to subgroups of the ray
class groups, here (Z/mZ)×. Call the class field corresponding to a ray class group a ray
class field. Then, for any abelian extension K/Q, we have the conductor m. We may assume
that ∞ | m and m = m∞, in which case we get that the ray class field for m is Q(ζm).
So, the notion of admissible modulus and conductor correspond in this setting to finding a
cyclotomic extension containing K (almost: the case where ∞ - m leads to the ray class field
being the maximal totally real subfield of the cyclotomic extension, to keep the real infinite
prime of Q from splitting).

3. Dirichlet-Hecke L-functions

3.1. Definitions. Now, we may consider the group of characters of ClmK , which is a finite
abelian group by Prop. 2.3.1.

For χ ∈ Hom(ClmK , S
1) we may view χ as a function on Im

K whose kernel contains Pm
K , and

then as a multiplicative function on IK by setting it to 0 on the ideals not coprime to m.
We will also denote this map IK → C by χ. As before, we denote the identity element by
χ0 and call it the principal character. We call these the generalized Dirichlet characters or
ideal class characters, and we may define the corresponding Dirichlet-Hecke L-series :

L(m, s, χ) =
∑

a

χ(a)

Norm(a)−s
,

where the sum is over all integral ideals of OK (or equivalently, over those ideals coprime to
m).

Note that we do not indicate an order for the summation. For now, whenever we give a
sum over primes we assume it is taken as a Dirichlet series, that is that the sum if to be
taken over ideals in order of increasing norm (as we write out in 3.2.1). Later we will prove
absolute convergence results and this will become largely irrelevant.

Example. Set K = Q, m = m∞. Note that OK = Z is a PID. Then, each ideal (a) ⊆ Im has
two generators, ±a. Mapping the positive generator (note ∞|m) to its image in (Z/mZ)×

we get a surjective homomorphism, with kernel equal to the set of things congruent to 1
(mod m), which is precisely the set of things congruent to 1 (mod p`) for p` ‖ m.

So, ClmK
∼= (Z/mZ)×. So, we get the classical Dirichlet characters and their Dirichlet

L-series as special cases.

Example. Let m = 1 and χ = χ0 be the principal character. Then,

L(m, s, χ0) =
∑

a

Norm(a)−s def
= ζK(s)

This is the so-called Dedekind zeta function.

For a modulus m let us define ideal class zeta functions :

ζ(s, c) =
∑

a∈c

Norm(a)−s,

where c ∈ ClmK is an ideal class (viewed as a coset of Pm
K in Im

K).
11



L-FUNCTIONS AND THE DENSITIES OF PRIMES ANATOLY PREYGEL

Note that for an ideal class character χ of modulus m

L(m, s, χ) =
∑

c∈Clm

χ(c)ζ(s, c)

as formal series (and on their common domain of convergence — which will be the intersec-
tions of the domains of convergence of the ideal class zeta functions).

Remark. The characters and L-series introduced in this section are generally called general-
ized Dirichlet characters and L-series. There is a wider class of characters and L-series, the
Hecke Großencharakters and their L-series, which maintain all of the interesting properties
of the class described here. They may be thought of as characters of the idèle class group, or
alternatively as generalized Dirichlet characters with an “infinite part.” There is a discussion
of the relationship between these two classes of characters in [Neu99] and [Hei67].

3.2. Convergence properties. Now, we look at the convergence properties of these L-
series.

Proposition 3.2.1. Let χ be an ideal class character for the modulus m of the field K.
Then:

(a) L(m, s, χ) converges absolutely on Re(s) > 1, and uniformly on Re(s) > 1+ δ for any
δ > 0;

(b) For Re(s) > 1 we have the convergent Euler product identity:

L(m, s, χ) =
∏

p-m

(
1 − Norm(p)−sχ(p)

)−1

Noting that we set χ(p) = 0 if p is not coprime to m, we may take the product over
only those ideals that are.

Proof. We write L(m, s, χ) as a Dirichlet series:

L(m, s, χ) =
∞∑

n=1

ann
−s where an =

∑

Norm(a)=n

χ(a)

Now, we claim that each ideal class of ClK can contain at most one ideal of a given
norm. Indeed, say I, J are in the same ideal class. Then, I = αJ for some α ∈ K×. Then,
Norm(I) = |Norm(α)|Norm(J), so Norm(I) = Norm(J) implies that |Norm(α)| = 1. Then,
α is a unit in OK , so I = J . This proves our claim.

Then, |an| ≤ |{a : Norm(a) = n}| ≤ |ClK |.
So, for δ > 0 and Re(s) > 1 + δ we have:

∣∣ann
−s
∣∣ = |an|n

−Re(s) ≤ ClK n−(1+δ)

Then, L(m, s, χ) converges uniformly and absolutely on Re(s) > 1 + δ by comparison to
ClK

∑
n n

−(1+δ) (which converges by the integral test). This proves (i).
Now, note that for s > 1 we have the absolutely convergent expansion:

(
1 − p−s

)−1
=

∞∑

m=0

p−sm

12
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Then, say p1, . . . , pr are the prime ideals satisfying Norm(p) ≤ N . By unique factorization
of ideals and multiplicativity of χ we have

∏

Norm(p)≤N

(
1 − Norm(p)−sχ(p)

)−1
=

∑

a=p
k1
1 ···pkr

r

χ(a) Norm(a)−s

=
∑

Norm(a)≤N

χ(a) Norm(a)−s +
∑

Norm(a)>N

a=p
k1
1 ···p

kr
r

χ(a) Norm(a)−s.

So, ∣∣∣∣∣∣

∏

Norm(p)≤N

(
1 − Norm(p)−sχ(p)

)−1
− L(m, s, χ)

∣∣∣∣∣∣
≤

∑

Norm(a)>N

∣∣χ(a) Norm(a)−s
∣∣

The absolute convergence of L(m, s, χ) on the region in (i) thus imply thus the equality in
(ii).

Finally, we’ll check that the Euler product converges as a product (that is, its logarithm
converges as a sum): Note that

−
∑

p

p log
(
1 − Norm(p)−sχ(p)

)
=
∑

p

∑

m≥1

1

m
Norm(p)−msχ(pm).

This converges absolutely on Re(s) > 1 by comparison to L(m, s, χ). Exponentiating, we
get that Euler product converges as an infinite product (that is, has an non-zero limit) on
Re(s) > 1. �

Now, we look at some (simple) analytic continuation properties.

Proposition 3.2.2. Let ζ = ζQ be the Riemann zeta function. Then, ζ may be analytically
continued to Re(s) > 0, except for a simple pole at s = 1 with residue 1.

Proof. Let

ψr(n) =

{
1 − r r|n

1 otherwise

Then, define

ζr(s)
def
=
∑

n

ψr(n)n−s.

Now, ζr is a Dirichlet series, with partial sums bounded by r − 1, so by Lemma 1.3.1 it
has abscissa of convergence at most 0 and so it is analytic on Re(s) > 0.

Now, note that we have the equality of formal series:

ζ(s) = ζr(s) +
r

rs
ζs

So, we may continue ζ to Re(s) > 0 by setting:

ζ(s) =
ζr(s)

1 − r1−s

The numerator is analytic on Re(s) > 0 for each r, and the denominator vanishes only
when 1 = r1−s. By the uniqueness of meromorphic continuation, the continuations for
different r must agree. So, for s to be a pole, we must have 1 = r1−s for each r = 2, 3, . . ..

13
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This implies s = 1. This gives our desired continuation. Note that ζ2(1) = ln 2, so the order
of the pole at s = 1 is the order of vanishing of the denominator. Expanding out the Taylor
series, we see that it is of order 1.

So, (s− 1)ζ(s) is analytic at s = 1, and to compute ress=1 ζ(s) = lims→1(s− 1)ζ(s) we can
compute the limit for s→ 1+ real.

But, for s > 1 a positive real:

1

s− 1
=

∫ ∞

1

dt

ts
≤ ζ(s) ≤ 1 +

∫ ∞

1

dt

ts
= 1 +

1

s− 1

So, the residue is indeed 1. �

Remark. We do not need, thus do not prove, the following functional equation for ζ:

ζ(1 − s) = 2(2π)−s cos(
1

2
sπ)Γ(s)ζ(s)

Along with the above, this lets us analytically continue ζ to the whole complex plane
except for the pole at s = 1.

In the preceding we used only the finiteness of the class group. We can get better conver-
gence results by using the above and looking at the ideal class zeta functions by estimating
the distribution of norms in the ideal classes.

We state without proof a result of this nature:

Proposition 3.2.3. Let c ∈ ClmK be an ideal class. Let

S(c, n) = |{a ∈ c :| : Norm(a) ≤ n}.

Then, S(c, n) = κmn+O(n1− 1
N ) where N = [K : Q] and

κm =
2r+s reg(m)πs

ωm Norm(m) |∆K |
1
2

where r, s are the number of real and complex primes of K, ωm the number of roots of unity
in O×

K ∩Km
1 , reg(m) the regulator of m, ∆K the discriminant of OK.

Proof. See [Jan96, Ch. IV, §2] or [Lan94, Ch. VI, §3]. �

This allows us to get:

Proposition 3.2.4. Let K,m, χ be as in Prop. 3.2.1, c, κm be as in Prop. 3.2.3, and let
N = [K : Q]. Then:

(a) ζ(s, c) may be analytically continued to the region Re(s) > 1− 1
N

except for the simple
pole at s = 1 with residue κm.

(b) If χ = χ0, then L(m, s, χ) may be analytically continued to the region Re(s) > 1 − 1
N

except for the simple pole at s = 1 with residue |ClmK |κm.
(c) ζK(s) may be analytically continued to the region Re(s) > 1− 1

N
except for the simple

pole at s = 1 with residue |ClK |κ1

(d) If χ 6= χ0, then L(m, s, χ) converges on Re(s) > 1 − 1
N

, and is analytic in that half
plane.

14
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Proof. Let f(s) = ζ(s, c) − κmζQ(s) be an equality of Dirichlet series. Then, f is given by a
Dirichlet series with coefficients ai such that

∣∣∣∣∣

k∑

i=1

ai

∣∣∣∣∣ = |S(c, k) − κmk| ,

which by Prop. 3.2.3 is O(k1− 1
N ).

By Lemma 1.3.1, f is analytic on Re(s) > 1 − 1
N

. By Prop. 3.2.2, ζQ may be analytically
continued to Re(s) > 0 except for a simple pole at s = 1 with residue 1. So, setting
ζ(s, c) = f(s) + κmζQ(s) gives a continuation of ζ(s, c) to Re(s) > 1 − 1

N
. Furthermore,

ress=1 ζ(s, c) = ress=1 f(s) + κm ress=1 ζQ(s) = κm

This proves (a).
Now, note that

L(m, s, χ0) =
∑

c∈Clm

ζ(s, c).

With (a), this gives the desired continuation. Also, the residue is just the sum of the
residues, which is |ClmK |κm.

Setting m = 1 we get L(m, s, χ0) = ζK(s), giving us (c).
Now, recall that we have

L(m, s, χ) =
∑

c∈ClmK

χ(c)ζ(s, c)

This is a Dirichlet series with coefficients ai such that

k∑

i=1

ai =
∑

c∈Clm

χ(c)S(c, k)

=
∑

c∈Clm

χ(c)
(
κmk +O(k1− 1

1−N )
)

= O(k1− 1
1−N + kκm

∑

c∈Clm

χ(c)

for χ 6= χ0, we may use Prop. 1.2.1 to write this as:

= O(k1− 1
1−N )

So, Lemma 1.3.1 implies (d). �

4. L-series and Galois groups

4.1. Conductors of characters. For a modulus m and a character χ ∈ Hom(ClmK , S
1), let

the conductor fχ of χ be the conductor of kerχ viewed as a subgroup of Im
K containing Pm

K ,
or equivalently the conductor of Im

K/ kerχ.

Proposition 4.1.1. Let m, χ, fχ be as above. Then, fχ is equal to the least modulus n such

that χ factors through ClnK. Also, there is a unique χ̃ ∈ Hom(Cl
fχ
K , S

1) such that χ factors
through χ̃.

15
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Proof. Let Hm = kerχ ⊆ Im
K ; note that it is a congruence subgroup. As P

fχ
K ⊆ H fχ and by

Prop. 2.2.1 we have the maps

I
fχ
K/P

fχ
K

- I
fχ
K/H

fχ - Im
K/H

m

which induce

Hom(Cl
fχ
K , S

1) � Hom(I
fχ
K/H

fχ , S1) � Hom(Im
K/H

m, S1).

Now, χ factors through Im
K/H

m, and so under this map it factors through Cl
fχ
K . Furthermore,

χ̃ is defined by this, giving uniqueness.
Say χ factors through ClnK for some n | m:

ClmK
χ - S1

@
@

@
@

@R �
�

�
�

�
χ′

�

ClnK
Then, kerχ = In

K ∩ kerχ′. Set Hn = kerχ′, we see that Hn realizes kerχ mod. n, and
so fχ | n by the minimality of the conductor and Prop. 2.2.2. So, fχ is minimal with this
property. �

We say that a character χ ∈ Hom(Clm, S1) is primitive if m = fχ. To every character χ
there corresponds a unique primitive character, the χ̃ of Prop. 4.1.1; we will continue to use
χ̃ to refer to the primitive character corresponding to χ.

Example. For any modulus m and χ0 ∈ Hom(ClmK , S
1) the principal character, we have

fχ0 = 1 and χ̃0 is the principal character in Hom(ClK , S
1).

Let us compare the Dirichlet-Hecke series of χ and χ̃.

Proposition 4.1.2. Say χ ∈ Hom(Clm, S1) with conductor f. Let F be the fixed field in L

of
(

L/K
ker χ

)
(that is, the image of kerχ under the Artin map). Then, for Re(s) > 1:

L(f, s, χ̃) = L(m, s, χ)
∏

p|m
p-f

(
1 − χ̃(p) Norm(p)−s

)−1

=
∏

p unr.

in F/K

(
1 − χ̃(p) Norm(p)−s

)−1

Proof. The first equality follows at once from writing out the Euler products on both sides.
Let L/K be the class field of Clm. By Prop. 4.1.1 the conductor of χ is equal to the

conductor of Im/ kerχ, so by Prop. 2.4.1 the primes dividing fχ are precisely the ramified
primes of the class field of Im/ kerχ. Artin Reciprocity together with the Galois correspon-
dence imply that F is the class field of Im/ kerχ. So, the primes dividing fχ are precisely the
ramified primes of F . The second equality follows. �

Using Artin Reciprocity, we may treat a generalized Dirichlet character as a character on
a certain abelian Galois group and vice versa. The class of Artin characters and L-functions
further generalizes this notion.

16



ANATOLY PREYGEL L-FUNCTIONS AND THE DENSITIES OF PRIMES

4.2. Artin L-functions. Let L/K be a Galois extension of number fields, with Galois
group G = Gal(L/K). Then, we may consider an irreducible finite dimension complex
representation of G, ρ : G→ Aut(V ).

Let p be a finite prime of L/K. Then, for a prime P lying over p,
[

L/K
P

]
gives a coset in G

of the inertia group IP. Then, ρ
[

L/K
P

]
is a linear map on V IP . Note that the characteristic

polynomial of this map is unchanged by conjugation, and so is unchanged by replacing P

with any other prime τPτ−1 lying over p. Then, the quantity

det

(
id−ρ

[
L/K

P

]∣∣∣∣
V

IP

)

is also independent of the choice of prime P lying over p.
So, we may define the Artin L-function for ρ by the Euler product:

L(L/K, s, ρ) =
∏

p

det

(
id−ρ

[
L/K

P

]∣∣∣∣
V

IP

)−1

As ρ
[

L/K
P

]
has finite order we may conclude that it is diagonalizable, with root of unity

eigenvalues. Taking logarithms, and writing this in terms of the eigenvalues, we may explic-
itly establish convergence properties. We will not do this, because the only class which we
are interested in will be shown in Corollary 4.2.1 to be equivalent to certain Dirichlet-Hecke
L-functions, whose convergence properties we have already considered.

Note that sometimes the Artin L-functions are defined without the factors for the ramified
primes (e.g. in [Hei67]). However, it seems better to include these factors. Various functorial
properties of these L-functions with respect to change of representation are true in this form,
for example how the L-function behaves under induction of characters. Also, this form allows
the Artin L-functions to actually generalize the Dirichlet L-functions, as we shall see:

Proposition 4.2.1. Let L/K be an abelian extension of number fields, and ρ an irreducible,
so one dimensional, representation of G = Gal(L/K). As ρ is one dimensional, view it as
an element of Hom(G,S1) under the identification S1 ⊂ C× ↔ GL1(C). Let F be the fixed
field in L of ker ρ. Then:

L(L/K, s, ρ) =
∏

p unr.

in F/K

(
1 − ρ

(
L/K

p

))−1

(That each term in the product is well defined is part of the conclusion.)

Proof. Galois theory gives us the short exact sequence

1 - Gal(L/F ) ⊂- Gal(L/K)
res- Gal(F/K).

So, for F = Lker ρ we have that ρ factors through Gal(F/K).
Note that V = C for our representation, so for a prime P of L lying over p we have

V IP =

{
C ρ(IP) = {id}

0 otherwise
17
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Then, we may write

det

(
id−ρ

[
L/K

P

]∣∣∣∣
V

IP

)
=

{
1 − ρ

(
L/K

p

)
IP ⊆ ker ρ

1 otherwise

Note that the IP are conjugate, and ker ρ is a normal subgroup. So, this quantity is indeed
well defined with respect to different choices of primes lying over p. (In fact, we knew this
a priori, for the LHS is well defined with respect to different choices of primes lying over p.)

Also, we have

IP ⊆ ker ρ⇔ F = Lker ρ ⊆ LIP

⇔ p unr. in F/K.

This proves our result. �

Corollary 4.2.1. Let L/K, ρ, F be as in Prop. 4.2.1. Under the Artin map, ρ induces a
character χ ∈ Hom(ClmK , S

1) for some m. Let fχ be the conductor of χ, and χ̃ the corre-
sponding primitive character. Then:

L(L/K, s, ρ) = L(fχ, s, χ̃)

Proof. By Theorem 2.4.1 the Artin map induces Gal(L/K) ∼= Im
K/H

m for some m and con-
gruence subgroup Hm. So, under the Artin map ρ induces a character χ ∈ Hom(ClmK , S

1).
Then, by Prop. 4.1.2, noting that the F there matches the F here, we have that

L(fχ, s, χ̃) =
∏

p unr.
in F/K

(1 − χ̃(p))−1 .

By Prop. 4.2.1 we have that

L(L/K, s, χ) =
∏

p unr.
in F/K

(
1 − ρ

(
L/K

p

))−1

.

Note that ker ρ ⊇ Gal(L/F ) by construction so we may define ρ′ ∈ Hom(Gal(F/K), S1)
such that ρ′ restricts to ρ on Gal(L/K). Now, note that under the Artin map ρ′ induces

χ′ ∈ Hom(Cl
fχ
K , S

1) (for fχ is the conductor of L/F by comments in the proof of Prop. 4.1.2).
Note that χ′ is defined by

χ′(p) = ρ′
(
F/K

p

)
= ρ

(
L/K

p

)
.

Then, by the uniqueness claim from Prop. 4.1.1 we must have χ̃ = χ′. This proves our
result. �

4.3. Extension of zeta functions, non-vanishing of L-functions. We are now ready to
move forward towards the crucial part of our proof, showing how zeta functions extend under
extension of field and using this to show the non-vanishing of the L-series corresponding to
non-principal characters at s = 1.
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Proposition 4.3.1. Let L/K be an abelian extension of number fields. Then on their
common domain of definition

ζL(s) =
∏

ρ

L(L/K, s, ρ)

=
∏

χ

L(fχ, s, χ̃)

= ζK(s)
∏

χ6=χ0

L(fχ, s, χ̃)

where the first product is over all irreducible representations (equivalently characters) of G =
Gal(L/K), the second is over the corresponding (in the sense of Corollary 4.2.1) Dirichlet
characters χ, and the final is over all such characters which are not the the principal character
(equivalently, which do not come from the trivial representation).

Proof. Let p,P denote primes of K,L respectively. Let e(p), f(p), g(p) be such that p =(
P1 · · ·Pg(p)

)e(p)
(so then, f(p) is the inertial degree of any Pi over p), and note that their

product is N = [L : K]. Then:

ζL(s) =
∏

P

(
1 − Norm(P)−s

)−1

=
∏

p

(
1 − Norm(p)−sf(p)

)−g(p)

Now, by Prop. 4.2.1 we have

∏

ρ

L(L/K, s, ρ) =
∏

ρ

∏

p unr.

in Lker ρ/K

(
1 − ρ

(
L/K

p

)
Norm(p)−s

)−1

=
∏

p

∏

ρ(IP)=0

(
1 − ρ

(
L/K

p

)
Norm(p)−s

)−1

Now, we note that the irreducible representations of G are one dimensional, and are thus just
the characters on G. Furthermore, the characters satisfying χ(IP) = 0 correspond exactly to

characters of G/IP. The image of
(

L/K
p

)
in this quotient will have order equal to the order

of the Frobenius in the residue field extension, that is f(p). Noting that |G/IP| = f(p)g(p),
and applying Prop. 1.2.1 we get that our previous product is equal to

=
∏

p

(
1 − Norm(p)−sf(p)

)−g(p)
.

This proves the first equality in the statement. The second equality follows by Corol-
lary 4.2.1. The final equality follows by noting that for χ equal to the principal character,
we have fχ = 1, and L(fχ, s, χ̃) = ζK(s). �

Proposition 4.3.2. Let K,m be as above. Then L(m, 1, χ) 6= 0 for χ 6= χ0.
19



L-FUNCTIONS AND THE DENSITIES OF PRIMES ANATOLY PREYGEL

Proof. Let L/K be the ray class field mod. m. Then, by Prop. 4.3.1

ζL(s) = ζK(s)
∏

χ6=χ0

L(fχ, s, χ̃).

By Prop. 3.2.4, all quantities may be continued to a neighborhood of s = 1, so this equality
must hold there.

Also, by Prop. 3.2.4, ζL and ζK have simple poles at s = 1, so the product must have
neither a pole nor a zero at s = 1. But, by Prop. 3.2.4 the L(fχ, s, χ̃) are analytic there. So,
no terms of the product have a pole there and so none can vanish there. �

Remark. Note that we could have developed all of the results we need without introducing
Artin L-functions, sticking to Dirichlet-Hecke L-functions arising from primitive characters.
Class field theory would still be crucial to the argument, arising in Prop. 4.1.2.

The advantage lies in exposing ties to more general theory. From Corollary 4.2.1 we get
that all abelian Artin L-functions are Dirichlet-Hecke L-functions, and so share their analyt-
ical properties. Hecke and Tate showed that these extend analytically to all of C, except for
a pole at s = 1 for the principal character (which corresponds to the trivial representation).
Then, we may develop a general theory for the functorial properties of Artin L-functions
under change of representation, such as direct sum and inducing a representation from a
subgroup (which would yield Prop. 4.3.1 by letting the subgroup be {id} ⊆ Gal(L/K)).
Then, a result of Brauer shows that the character of any Galois representation is a Z-linear
combination of the characters of abelian characters, giving an arbitrary L-function as a quo-
tient of products of abelian L-series, which implies that it can be meromorphically extended
to C. Of course, Artin’s Conjecture, that they may in fact be analytically extended (except
for s = 1 if it contains the trivial representation), remains quite open.

5. Dirichlet density and the Chebotarev Density Theorem

5.1. Density.

Definition. Let S ⊆ mSpec(OK) be a set of finite primes of K. Then, the Dirichlet density
of S is given by

δ(S)
def
= lim

s→1+

∑
p∈S Norm(p)−s

∑
p Norm(p)−s

,

where the sum in the denominator is taken over all of mSpec(OK).

We note that the denominator is just ζK(s), which converges for Re(s) > 1 by Prop. 3.2.1,
and the numerator converges by comparison to it. So, our limit has a chance of being mean-
ingful. Note that we take the limit as s → 1+ to avoid having to worry about continuation
to to the left of Re(s) = 1 (although by Prop. 3.2.4 we can do this for the denominator).

We can in fact say more:

Proposition 5.1.1. For S any set of finite primes of K, if δ(S) exists then:

(a) 0 ≤ δ(S) ≤ 1;
(b)

δ(S) = lim
s→1+

∑
p∈S Norm(p)−s

− log(s− 1)
;
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Proof. Note that the fraction in our limit is always non-negative and is bounded above by
1. This yields (a).

Using the Euler product for ζK , we have that for Re(s) > 1:

log ζK(s) =
∑

p

− log(1 − Norm(p)−s)

Expanding this latter in a power series, and re-grouping terms:

=
∑

p

Norm(p)−s +
∑

p

∑

m≥2

1

m
Norm(p)−sm.

Now, we may bound 1
m

by 1
2
, sum the result geometric series, and bounding the Norm

from below by 2 to get

∑

p

∑

m≥2

∣∣∣∣
1

m
Norm(p)−sm

∣∣∣∣ ≤
∑

p

1

2
2 Norm(p)−2Re(s) ≤ ζK(2 Re(s)).

Then, as ζK(s) converges for Re(s) ≥ 1, we have that our left hand term does so for
Re(s) > 1/2. Viewing it as a Dirichlet series, we see that it gives an analytic function there,
and in particular in a neighborhood around s = 1. So,

∑

p

Norm(p)−s ∼ log ζK(s) ∼ log
1

s− 1
.

The last relation follows for ζK(s) has a simple pole at s − 1, so (s − 1)ζK(s) is analytic
and non-zero around s = 1. Then, log(s − 1)ζK(s) = log(s − 1) + log ζK(s) is analytic at
s = 1, and thus bounded near there.

Noting that

lim
s→1+

log
1

s− 1
= +∞ so lim

s→1+

log 1
s−1∑

p Norm(p)−s
= 1

we get (b):

δ(S) = lim
s→1+

∑
p∈S Norm(p)−s

− log(s− 1)
. �

Now, as the denominator gets arbitrary large as s→ 1+, changing S in ways which changes
the numerator by a bounded amount does not affect δ(S). More precisely:

Proposition 5.1.2. Let S, S ′ be two sets of (finite) primes of K. Say

∆(S, S ′, s) =
∑

p∈S

Norm(p)−s −
∑

p∈S′

Norm(p)−s

is bounded for s ∈ (1, 1 + ε) for some ε > 0. Then, δ(S) = δ(S ′).
This is true, in particular in the following cases:

(a) If S and S ′ differ by a finite number of elements;
(b) If S and S = S ′ ∩ A, where A is the set of primes having (inertial) degree 1.

21



L-FUNCTIONS AND THE DENSITIES OF PRIMES ANATOLY PREYGEL

Proof. The first statement follows by the comments before the statement of this proposition.
Now, if S and S ′ differ by a finite number of elements, then

∆(S, S ′, s) =
∑

p∈S\S′

Norm(p)−s −
∑

p∈S′\S

Norm(p)−s

has only finite many terms and so is analytic at s = 1 and bounded there, so we may apply
the first part of our claim.

Also,

|∆(S, S ′, s)| ≤
∑

p/∈A

Norm(p)−s.

Now, for each rational prime p, there are at most [K : Q] primes lying over it and so at
most that many of them not in A. Furthermore, each of those that are not in A have norm
at least p2, so: ∑

p/∈A

Norm(p)−s ≤ [K : Q]
∑

p

p−2s ≤ [K : Q]ζ(2s)

Now, ζ(2s) is analytic on Re(s) > 1/2 and in particular at s = 1, and so bounded in a
neighborhood around 1. So, we may apply the first part of our claim. �

5.2. Comparison to natural density. Now, we called the above concept a density. How-
ever, there is a more intuitive notion of density:

Definition. Let S be as above. For a set T of primes of K, define

πK(T, n)
def
= #{p ∈ T : Norm(p) ≤ n}.

If T is omitted, then we assume T = mSpec(OK). Then, the natural density of S is given
by

δnat(S)
def
= lim

n→∞

πK(S, n)

πK(n)
.

While we will not need to use any of this, it is worthwhile to consider the relationship
between these two notions of density.

The following justifies calling the δ(S) a “density”:

Proposition 5.2.1. Let S be as above. If δnat(S) exists, then δ(S) exists and the two are
equal.

Proof. See [Gol71, §14-1]. �

Note that the other direction is not true. Let K = Q and

S = {p prime : p has leading decimal digit 1}.

Then, using the Prime Number Theorem, it is possible to show that δ(S) = log10 2 while
δnat(S) fails to exist (as mentioned in [Ser73]).

Remark. Note that all the results which we prove below for Dirichlet density are also true for
natural density. The proofs require sharper analytic information and generalize the prime
number theorem. See [Gol71].
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5.3. Density of Frobenius in abelian extensions. We proceed to prove a generalized
version of the argument we gave for Theorem 1.1.1, with the crucial ingredient of the non-
vanishing of L(1, χ) for χ 6= χ0 provided by Prop. 4.3.2.

Proposition 5.3.1. Let K be a number field, m a modulus, and Hm a congruence subgroup
group. If c is a coset of Im/Hm, then the set S(c) of prime ideals in c has density δ(S(c)) =

1
[Im:Hm]

.

Proof. Let G = Im/Hm.
Note that by Prop. 1.2.1

∑

p∈c

Norm(p)−s =
1

|G|

∑

p

∑

χ∈Hom(G,S1)

χ(p)χ(c−1) Norm(p)−s

=
1

|G|

∑

χ∈Hom(G,S1)

χ(c−1)
∑

p

χ(p) Norm(p)−s.

Then, taking logarithms in the Euler product formula of Prop. 3.2.1, and expanding the
power series for log 1

1−t
, we have, for Re(s) > 1:

log L(m, s, χ) =
∑

p

χ(p) Norm(p)−s +
∑

p

∑

m≥2

1

m
χ(pm) Norm(p)−sm.

We have that
∑

p

∑

m≥2

∣∣∣∣
1

m
χ(pm) Norm(p)−sm

∣∣∣∣ ≤
∑

p

∑

m≥2

1

m
Norm(p)−Re(s)m ≤ [K : Q]ζQ(2 Re(s))

and as ζQ(2s) converges on Re(s) > 1/2+ δ, our LHS does as well and so defines an analytic
function there. So:

log L(m, s, χ) ∼
∑

p

χ(p) Norm(p)−s.

Then, we note that for χ 6= χ0 we have that L(m, s, χ) is analytic at s = 1 and L(m, 1, χ) 6=
0 (Prop. 3.2.4, Prop. 4.3.2), so log L(m, s, χ) is analytic in a neighborhood of s = 1. So,

∑

p∈c

Norm(p)−s ∼
1

|G|

∑

χ∈Hom(G,S1)

χ(c−1) log L(m, s, χ) ∼
1

|G|
L(m, s, χ0).

Now, we note that L(m, s, χ0) has a simple pole at s = 1 (Prop. 3.2.4), and so

log L(m, s, χ0) ∼ log
1

s− 1
.

Then, we have
∑

p∈c

Norm(p)−s = −
log(s− 1)

|G|
+ g(s)

for g bounded in a neighborhood of s = 1.
Then,

δ(S) = lim
s→1+

∑
p∈c Norm(p)−s

− log(s− 1)
= lim

s→1+

(
1

|G|
−

g(s)

log(s− 1)

)
=

1

|G|
,
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where the last equality follows as g is analytic at s = 1 thus bounded in a neighborhood of
it, while − log(s− 1) gets arbitrarily large. �

Corollary 5.3.1. Let L/K be an abelian extension of number fields, with Galois group
G = Gal(L/K). Let σ ∈ G. Let

S = {p unramified finite prime of K :

(
L/K

p

)
= σ}.

Then, δ(S) = 1
|G|

.

Proof. We know that L/K is the class field for some congruence divisor class group I/H ∼= G
with conductor f.

Then, Theorem 2.4.1 and Prop. 2.4.1 tells us that S is the set of primes in some coset
c ∈ If/H f, up to a finite number of primes dividing f.

Then, by Prop. 5.3.1 we have that

δ(S) =
1

[If : H f]
=

1

|I/H|
=

1

|G|
. �

5.4. Reduction of Chebotarev Density Theorem. Now, we may reduce the Chebotarev
Density Theorem to the abelian case. In conjunction with the previous section, this will prove
it.

We follow a proof essentially from [Mac68] though now widespread (e.g. in [Gol71, Neu86,
Jan96, Neu99]).

Theorem 5.4.1 (Chebotarev Density Theorem). Let L/K be a Galois extension of number
fields, with Galois group G = Gal(L/K). Let σ ∈ G, and cσ be the conjugacy class of σ. Let

S = {p finite prime of K :

(
L/K

p

)
= cσ}.

Then, δ(S) = |cσ |
|G|

.

Proof. Now, let H = 〈σ〉. Let LH be the fixed field of H.
Let S ′ = {p ∈ S : p unramified in L/K}.

Let T = {P prime of LH over p ∈ S ′ :
(

L/LH

P

)
= σ, fLH/K(P ) = eLH/K(P ) = 1} (L/LH is

abelian, so the Artin map will indeed yield a single element).

Let U = {P prime of L over p ∈ S ′ :
[

L/K
P

]
= σ}.

Consider the map U → T given by P 7→ P ∩ OLH . We readily see that its image does lie
in T . for P must be unramified and the inertial degrees for P and P ∩ OLH will both be
|H|. Furthermore, as H is the decomposition group of P, we have no splitting from LH to
L, so it is injective. Finally, we note that it is surjective, for given a prime P of LH , there
will be a prime P of L lying over it; the only things that could prevent P from being in U
are ramification from K to LH , or change of Frobenius – the first is prevented by requiring
eLH/K(P ) = 1, the second is prevented by requiring fLH/K(P ) = 1.

Then, by Prop. 5.1.2 we may ignore the finitely many ramified primes and the primes of
degree > 1 (over Q, so certainly over K), Prop. 5.3.1 gives us that δ(T ) = 1

|H|
.

Now, consider the map U → S ′ given by P 7→ P ∩ OK . It is of course surjective. Now,
how many elements map to the same p ∈ S ′? Say P is one pre-image, then τP maps to
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it as well if and only if τστ−1 = σ ⇔ τ ∈ ZH , and this counts each pre-image |DP| = |H|
times. So, there are |ZH |/|H| such pre-images. Furthermore, note that by basic group theory

|ZH | = |G|
|cσ |

. So:

δ(S) = δ(S ′) = δ(T )
|H|

|ZH |
=

1

|H|

|H|

|ZH |
=

|cσ|

|G|
�

Remark. We may now recover Dirichlet’s Theorem as a corollary. Simply let K = Q, L =
Q(ζn), and use the standard isomorphism Gal(L/K) ∼= (Z/nZ)×. Then, for an unramified

prime p,
[

L/K
p

]
corresponds to p in (Z/nZ)×, so letting σ correspond to a ∈ (Z/nZ)×, we

get infinitely many primes p with p ≡ a (mod n).

Remark. For a Galois extension L/K, we say that a finite prime p of K splits completely if
it does not ramify and the primes lying over it have inertial degree 1, so those unramified
primes with Artin symbol equal to identity. By the above, we have that the density of those
primes which split completely is 1/[L : K].

The elementary proof opening this paper was a special case of this, corresponding to
K = Q and L = Q(ζn).
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