
SAGE: Software for Algebra and Geometry
Experimentation

William Stein

July 12, 2006: CNTA

Turn on my recorder and thank the organizers!

William Stein SAGE: Software for Algebra and Geometry Experimentation

The SAGE Mailing List on Feb 2, 2006

Dear SAGE community.

My name is Tiziano and I’m from Italy. I’m writing
this mail first of all because I would like to thank
you all for SAGE. It’s something the world was really
missing.

[Every free computer algebra system I’ve tried has]
“reinvented many times the wheel without being able
to build the car.”

William Stein SAGE: Software for Algebra and Geometry Experimentation

PART I: SAGE – Background: Why bother
when we already have Magma? Isn’t it
enough for everything we’ll ever need?

PART II: SAGE – Status Report and Tour

William Stein SAGE: Software for Algebra and Geometry Experimentation

Mathematics Software Timeline

1960s-now 1970s-now 1980s-now 1990s-now 2005-now
Maxima Mathematica Magma Singular SAGE

Maple GAP Macaulay2
Axiom PARI

William Stein SAGE: Software for Algebra and Geometry Experimentation

What is SAGE?

William Stein SAGE: Software for Algebra and Geometry Experimentation

What is SAGE?

I started SAGE in January 2005, and it has since mushroomed.
There are now dozens of contributors all over the world, and an
active mailing list.

1. Completely free and open source distribution of math
software for Windows, OS X, and Linux. (All under GPL
compatible licenses.)

2. A new computer algebra system: Uses a mainstream
language (unlike Magma, GAP, Mathematica, Maple, etc.)

3. A new way to use your software: use your favorite
(commercial or free) mathematics software together.

Strong number-theoretic bias since I’m a number theorist.

William Stein SAGE: Software for Algebra and Geometry Experimentation

1. Does Open Source Matter for Math
Research?

“You can read Sylow’s Theorem and its proof in Huppert’s book in the
library [...] then you can use Sylow’s Theorem for the rest of your life free
of charge, but for many computer algebra systems license fees have to be
paid regularly [...]. You press buttons and you get answers in the same
way as you get the bright pictures from your television set but you cannot
control how they were made in either case.

With this situation two of the most basic rules of conduct in
mathematics are violated: In mathematics information is passed on
free of charge and everything is laid open for checking. Not applying
these rules to computer algebra systems that are made for mathematical
research [...] means moving in a most undesirable direction. Most
important: Can we expect somebody to believe a result of a program
that he is not allowed to see? ”

– J. Neubüser in 1993 (he started GAP in 1986).

William Stein SAGE: Software for Algebra and Geometry Experimentation

2. SAGE: A New Computer Algebra System

algebras edu interfaces modular schemes
categories ext lfunctions modules sets
coding functions libs monoids structure
crypto geometry matrix plot tests
databases groups misc rings

$ cat */*.py */*/*.py */*/*/*.py */*.pyx */*/*.pyx |sort|uniq|wc -l
73451 # unique lines of human-written source code

$ cat */*.py */*/*.py */*/*/*.py */*.pyx */*/*.pyx |wc -l
142402

$ cat */*.py */*/*.py */*.pyx */*/*.pyx |sort|grep "sage: " | wc -l
11123 <-------- EXAMPLE INPUT LINES!

William Stein SAGE: Software for Algebra and Geometry Experimentation

Python: A Mainstream Language

I Completely free open source language.
I Guido van Rossum released first Python in 1991.
I A “gluing language”, i.e., designed to be easy to use other

libraries and other programs.
I VAST range of libraries: web servers, 2d and 3d graphics,

numerical analysis, etc.
I Code: Very easy to learn, read and explore.
I IPython: Excellent command line.
I SAGE programs can be written in Python. And Python can

be used as a C/C++ library, so SAGE can also be.

William Stein SAGE: Software for Algebra and Geometry Experimentation

Pyrex: Compiled Python-like language

1. Written by Greg Ewing of New Zealand.

2. Code converted to C code that is compiled by a C compiler.
All non-C memory management done automatically.

3. Very easy to read.

4. Easy to use both C/C++ code and libraries and Python code
from Pyrex.

5. Time-critical SAGE code gets implemented in Pyrex, which
is (as fast as) C code, but easier to read (e.g., since all
variables and scopes are explicit).

6. Analogue of PARI’s brilliant gp2c.

William Stein SAGE: Software for Algebra and Geometry Experimentation

3. Cooperation:
“Everything Under One Roof” (Stoll)

(Blue – included with SAGE):

I GAP – groups, discrete math
I Singular – polynomial computation
I PARI and GP – number theory
I Maxima – symbolic manipulation
I mwrank, ec, simon, sea – elliptic curves
I GMP-ECM, gfan, sympow, NTL, genus2reduction, polymake,

lcalc (Rubinstein), Dokchitser (L-series); and much more!
I Macaulay2 – commutative algebra
I KANT/KASH – sophisticated algebraic number theory
I Magma – I really like Magma!
I Maple – symbolic, educational
I Mathematica – symbolic, numerical, educational
I Octave – numerical analysis

William Stein SAGE: Software for Algebra and Geometry Experimentation

Status Report

1. SAGE can do much already. ICM satellite conference has a
list of 15 problems that they invited authors of computer
algebra systems to solve. Last I checked, SAGE was the only
one that could solve all of them.

2. Growing pains: SAGE has bugs and annoying issues; these
do get steadily resolved over time, especially as more and
more people use SAGE.

3. Gotchas: Using a mainstraim language (Python) instead of a
custom language – The pros far outweight the cons, but there
are definite cons.

4. Installation: Binary install not easy enough yet; cause is lack
of sufficiently stable releases. Next stable release: November.

5. Optimization: Some new code is still slower than the
non-free counterpart. This primarily affects new algorithms
implemented for SAGE, e.g., a PARI or GAP program called
from SAGE is no slower than in PARI or GAP.

William Stein SAGE: Software for Algebra and Geometry Experimentation

Longterm GOALS for SAGE

I Create the best software environment for all types of serious
mathematics research computation: BUILD THE CAR.
(I personally focus on number theory.)

I Build a large user base.

I Build a large developer base (with substantial input from
undergraduates, who are the best programmers).

I Do things not done well enough in other free mathematics
software before, e.g.:

I Web browser graphical user interface
I Integrated support for distributed computation
I Database support, saving and loading individual objects
I Exact linear algebra

I Start a SAGE Foundation.

I Longterm target audience: undergraduates, grad students,
both pure and applied mathematicians.

William Stein SAGE: Software for Algebra and Geometry Experimentation

SAGE Workshops

I February 2006 (past): SAGE Days 1 in San Diego.
I July 2006: SIMUW 2-week workshop for high school on the

BSD conjecture that made extensive use of SAGE.
I August 2006: MSRI grad student Workshop
I October 6–10, 2006: SAGE Days 2 in Seattle.

William Stein SAGE: Software for Algebra and Geometry Experimentation

William Stein SAGE: Software for Algebra and Geometry Experimentation

SAGE Developers

I I’ve hired a team of five undergrads to work on SAGE.
I Some SAGE developers: David Joyner, Tom Boothby,

Martin Albrecht, Alex Clemesha, David Kohel, Josh
Kantor, Bobby Moretti, Gary Zablackis, Gonzalo Tornaria,
Emily Kirkman, Yi Qiang, Ifti Burhanuddin, John Cremona,
Didier Deshommes, Naqi Jaffery, Kiran Kedlaya, David Roe,
David Kirkby, Jon Hanke, Gregg Musiker, Fernando Perez,
Kyle Schalm, Steven Sivek, Jaap Spies, Justin Walker, Mark
Watkins, Joe Wetherell

I Authorship is very explicit whenever possible. Try it – send
me an example for the documentation and your name will be
in the SAGE source code and docs.

William Stein SAGE: Software for Algebra and Geometry Experimentation

PART II: SAGE – Status Report and Tour

I Documentation: tutorial, install guide, constructions,
reference manual, programming guide.

I Download: Source code; binaries for Linux, Windows, OS X

I Mailing lists: Support, Devel, Announce, Forum, DARCS.

I Home for Software: genus2reduction, lcalc, Hanke, sympow,
Simon’s 2-descent, SEA, etc.; no need to rewrite your package
in another language, e.g., if you love C++ or PARI use it!

I SAGE Notebook: Flexible Web-browser based graphical user
interface for SAGE

I Databases: Cremona, Sloane, Jones, Stein-Watkins, etc.

I Elliptic Curves: algorithms, graphs, etc.

I Using PARI, GAP, Magma, etc. from SAGE

I Modular Forms: much written; need optimization and testing

William Stein SAGE: Software for Algebra and Geometry Experimentation

Documentation

I Tutorial – 98 pages, written mainly by David Joyner with
many contributors. Done. If you want to learn SAGE, sit
down and spend 2–3 hours with this.

I Install guide – 20 pages. Done.

I Constructions – 103 pages, by David Joyner, answers dozens
of questions like “How do a make a [[blank]] in SAGE?” Done.

I Reference manual – 1258 pages; partly .tex files and partly
generated from source code files (literate programming).
Needs many more examples and intro text.

I Programming guide – 65 pages; needs more, especially
regarding style.

William Stein SAGE: Software for Algebra and Geometry Experimentation

Downloading SAGE

I Show the web page.

William Stein SAGE: Software for Algebra and Geometry Experimentation

DARCS

I An excellent mature distributed revision control system that
Gonzalo Tornario convinced us to use.

I SAGE makes very extensive use of DARCS.

I Makes my life vastly easier.

I I still can’t keep up with the volume of quality code I’m
getting though!

William Stein SAGE: Software for Algebra and Geometry Experimentation

SAGE Command Line

I SAGE uses IPython, which was written by Fernando Perez,
who is a computational physicist at University of Colorado.

I By far the best command line I’ve ever used for any program.

I Persistent history, completion, introspection, interactive
debugger, etc.

I Under active development and moving forward.

William Stein SAGE: Software for Algebra and Geometry Experimentation

SAGE Notebook

I Writing a GUI – why reinvent the wheel? Web browsers do
90% of the work already.

I Alex Clemesha, Tom Boothby, and I wrote this from scratch
last month.

I Fills a gap in open source software – until now there was no
GUI for most open source math software. Can be started in
Magma/PARI/etc. mode.

I Web browser based, which adds flexibility – several people can
interact with the same session remotely, etc.

I Very usable right now, though we have many ideas for new
features to add.

I Can queue up calculations; use multiple worksheets at once;
save/load objects, worksheets, etc.

I Try it any time: http://sage.math.washington.edu:8100

William Stein SAGE: Software for Algebra and Geometry Experimentation

Databases

I Cremona’s elliptic curves

I Jones’s global number fields

I Stein-Watkins (over 100 million elliptic curves)

I Sloane’s integer sequences

I Conway Polynomials

I Etc...

William Stein SAGE: Software for Algebra and Geometry Experimentation

Elliptic Curves

I Birch and Swinnerton-Dyer related functions.

I MWRANK – SAGE provides an interpreter interface

I L(E , s)

I Plots

William Stein SAGE: Software for Algebra and Geometry Experimentation

Using PARI, GAP, Magma, etc. from SAGE
sage: n = -2007

sage: print n.factor()

-1 * 3^2 * 223

sage: print factor(n)

-1 * 3^2 * 223

sage: n.factor(algorithm="kash")

-1 * 3^2 * 223

sage: gap(n).FactorsInt()

[-3, 3, 223]

sage: pari(n).factor()

[-1, 1; 3, 2; 223, 1]

sage: gp(n).factor()

[-1, 1; 3, 2; 223, 1]

sage: maxima(n).factor()

-3^2*223

sage: kash(n).Factorization()

[<3, 2>, <223, 1>], extended by:

ext1 := -1,

ext2 := Unassign

sage: magma(n).Factorization(nvals = 2)

([<3, 2>, <223, 1>], -1)

sage: maple(n).ifactor()

-‘‘(3)^2*‘‘(223)

sage: mathematica(n).FactorInteger()

{{-1, 1}, {3, 2}, {223, 1}}

...

magma> n := -2007;

magma> F, s := Factorization(-2007);

magma> print F, s

[<3, 2>, <223, 1>]

-1

sage: magma(’F’)

[<3, 2>, <223, 1>]

William Stein SAGE: Software for Algebra and Geometry Experimentation

Saving and Loading Objects
Most objects in SAGE can easily be loaded and saved in a
compressed format. (This is a standard feature of Python!)
sage: R.<x,y> = PolynomialRing(QQ,2)

sage: f = y^2 + y - x^3 - 17/3*x + 2/3

sage: f.save(’f’)

sage: load(’f’)

2/3 + y + y^2 - 17/3*x - x^3

sage: A = MatrixSpace(QQ,50).random_element()

sage: A.save(’amat’)

sage: load(’amat’)

[2 -1 2 2 2 -2 -1 -2 2 2 -2 1 -1 -1 2 -2 1 -1 -1 -1 1 -1 1 -1 2 1 1 -1 -1 2 -1 -1 -2

1 -2 -1 1 2 -2 2 2 -1 -2 1 -1 1 -2 2 2 -1]

...

sage: M = ModularSymbols(Gamma1(13),2); M

Modular Symbols space of dimension 15 for Gamma_1(13) of weight 2 with

sign 0 and over Rational Field

sage: M == loads(dumps(M))

True

sage: D = M.decomposition(2)

sage: D

[

Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 15 for Gamma_1(13) of

weight 2 with sign 0 and over Rational Field,

...]

sage: D.save(’D’)

sage: load(’D’)

[

Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 15 for Gamma_1(13) of

weight 2 with sign 0 and over Rational Field, ...

]

William Stein SAGE: Software for Algebra and Geometry Experimentation

Some Algebraic Number Theory

This examples makes lots of use of the PARI C library and GAP.

sage: V = NumberField(x^2+17).composite_fields(NumberField(x^3-2))

sage: print V

sage: K = V[0]

[Number Field in a with defining polynomial x^6 + 51*x^4 - 4*x^3 + 867*x^2 + 204*x + 4917]

sage: G = K.galois_group()

sage: G

Transitive group number 3 of degree 6

sage: G.order()

12

sage: G.conjugacy_classes_representatives()

[(), (2,6)(3,5), (1,2)(3,6)(4,5), (1,2,3,4,5,6), (1,3,5)(2,4,6), (1,4)(2,5)(3,6)]

sage: gg = gap(G)

sage: gg.NormalSubgroups()

[Group(()), Group([(1,4)(2,5)(3,6)]), Group([(1,3,5)(2,4,6)]),

Group([(1,3,5)(2,4,6), (1,2)(3,6)(4,5)]),

Group([(1,3,5)(2,4,6), (2,6)(3,5)]),

Group([(1,2,3,4,5,6), (1,3,5)(2,4,6)]), D(6) = S(3)[x]2]

sage: K.class_group()

Multiplicative Abelian Group isomorphic to C4

William Stein SAGE: Software for Algebra and Geometry Experimentation

Not Just For Number Theory... E.g., Toric Geometry

sage: P.<x,y,z,w> = ProjectiveSpace(3,QQ)
sage: C = P.subscheme([y^2-x*z, z^2-y*w, x*w-y*z])
sage: len(C.irreducible_components()) # twisted cubic
1
sage: J = C.defining_ideal()
sage: G = J.groebner_fan()
sage: len(G.reduced_groebner_bases())
8
sage: G.fvector()
(1, 8, 8)
sage: f = prod(J.gens()) # \/-- newton polytope
sage: NP = polymake.convex_hull(f.exponents())
sage: NP.facets()
[(3/2, 5/2, -1, 0), (3, 1, -1, 0), (1, 0, 0, 0),
(-3/2, 2, 1, 0), (3, -1, 4, 0), (-3, 1, 5, 0)]

William Stein SAGE: Software for Algebra and Geometry Experimentation

Thanks

William Stein SAGE: Software for Algebra and Geometry Experimentation

