Ranks of Elliptic Curves

William Stein (http://modular.ucsd.edu/talks)
December 5, 2005, UW Colloquium

The Pythagorean Theorem

b

Pythagoras
Approx 569-475BC

$(3,4,5)$
$(5,12,13)$
$(7,24,25)$
$(9,40,41)$
$(11,60,61)$
$(13,84,85)$
$(15,8,17)$
$(21,20,29)$
$(33,56,65)$
$(35,12,37)$
$(39,80,89)$
$(45,28,53)$
$(55,48,73)$
$(63,16,65)$
$(65,72,97)$
$(77,36,85)$
\vdots

Pythagorean Triples

Triples of integers a, b, c such that

$$
a^{2}+b^{2}=c^{2}
$$

Enumerating Pythagorean Triples

$$
\begin{aligned}
& \text { Slope }=t=\frac{y}{x+1} \\
& x=\frac{1-t^{2}}{1+t^{2}} \\
& y=\frac{2 t}{1+t^{2}}
\end{aligned}
$$

If $t=\frac{r}{s}$, then

$$
a=s^{2}-r^{2}, \quad b=2 r s, \quad c=s^{2}+r^{2}
$$

is a Pythagorean triple, and all primitive unordered triples arise in this way. We can solve two-variable quadratic equations...

What About Two-variable Cubic

 . ∞ Equations?

EXAMPLES

$$
y^{2}+y=x^{3}-x
$$

$$
x^{3}+y^{3}=z^{3} \text { (homogeneous) }
$$

$$
y^{2}=x^{3}+a x+b
$$

Elliptic curve: a (smooth) plane cubic curve with a rational point (possibly "at infinity").

The Secant Process

Obtain a third (rational!) solution from two (rational) solutions.

Fermat?

The Tangent Process

New rational point from a single rational point.

Iterate the Tangent Process

$(0,0)$
$(1,-1)$
$(2,-3)$
$\left(\frac{21}{25},-\frac{56}{125}\right)$
$\left(\frac{480106}{4225}, \frac{332513754}{274625}\right)$

$\left(\frac{53139223644814624290821}{1870098771536627436025},-\frac{12282540069555885821741113162699381}{80871745605559864852893980186125}\right)$

The Group Operation

$$
\begin{aligned}
& \bullet \oplus= \\
& (-1,0) \oplus(0,-1)=(2,2)
\end{aligned}
$$

The set of rational points on E forms an abelian group.

$$
y^{2}+y=x^{3}-x
$$

SAGE: Software for Algebra and Geometry Experimentation

```
| SAGE Version 0.9.14, Build Date: 2005-11-30-1208
| Distributed under the terms of the GNU General Public License
| For help type <object>?, <object>??, %magic, or help
sage: E = EllipticCurve([0,0,+1,-1,0])
sage: P = E([-1,0])
sage: Q = E([0,-1])
sage: P + Q
_12 = (2, 2)
sage: 10*P
_13 = (79799551268268089761/62586636021357187216,
    259255210055384395482322830865/495133617181351428873673516736)
sage: 20*P
_14 = (6665547951889309353261044759022620712500833069573155172068981085866
4307580428417/643061559258268806525959495029241218302419520304210587182452
64927903618004613696, -552778094921902030486132995818218079777182648541176
519285977042191243811391781509197595695401401321981053319854835427903/5156
78261274970050690720243326795935102918476455278851661194453945419125879781
902089109063686544638388734206391398176256)
```

Help wanted! http://modular.ucsd.edu/sage

The First 150 Multiples of (0,0)

(The bluer the point, the bigger the multiple.)

Fact: The group $E(\mathbb{Q})$ is generated by $(0,0)$.

In contrast, $y^{2}+y=x^{3}-x^{2}$ has only 5 rational solutions!

What is going on here?

Mordell's Theorem

Theorem (Mordell). The group $E(\mathbb{Q})$ of rational points on an elliptic curve is a finitely generated abelian group:

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \oplus T,
$$

with T finite.

Mazur classified the possibilities for T. It is conjectured that r can be arbitrary, but the biggest r ever found is (probably) 24.

The Simplest Solution Can Be Huge

Simplest solution to $y^{2}=x^{3}+7823$:
$x=\frac{2263582143321421502100209233517777}{143560497706190989485475151904721}$
$y=\frac{186398152584623305624837551485596770028144776655756}{1720094998106353355821008525938727950159777043481}$

Found by Michael Stoll in 2002.

Student: Ifti Burhanuddin computing statistics about how big.

The Central Question

When does an elliptic curve have infinitely many solutions?

Conjectures Proliferated

The subject of this lecture is rather a special one. I want to describe some computations undertaken by myself and SwinnertonDyer on EDSAC, by which we have calculated the zeta-functions of certain elliptic curves. As a result of these computations [...] conjectures have proliferated. [...] though the associated theory is both abstract and technically complicated, the objects about which I intend to talk are usually simply defined and often machine computable; experimentally we have detected certain relations between different invariants, but we have been unable to approach proofs of these relations, which must lie very deep.'

- Birch 1965

Counting Solutions Modulo p

$$
N_{p}=\# \text { of solutions }(\bmod p)
$$

$$
y^{2}+y=x^{3}-x \quad(\bmod 7)
$$

$N(7)=9$

The Error Term

Let

$$
a_{p}=p+1-N_{p}
$$

Hasse proved that

$$
\left|a_{p}\right| \leq 2 \sqrt{p}
$$

$$
\begin{gathered}
a_{2}=-2, \quad a_{3}=-3, \quad a_{5}=-2, \quad a_{7}=-1, \quad a_{11}=-5, \quad a_{13}=-2 \\
a_{17}=0, \quad a_{19}=0, \quad a_{23}=2, \quad a_{29}=6, \quad \ldots
\end{gathered}
$$

Counting Points on Elliptic Curves over Finite Fields

Birch and Swinnerton-Dyer's Guess

If an elliptic curve E has positive rank, then perhaps N_{p} is on average larger than p, for many primes p. Maybe

$$
f_{E}(x)=\prod_{p \leq x} \frac{p}{N_{p}} \rightarrow 0 \text { as } x \rightarrow \infty
$$

exactly when E has infinitely many solutions?

Swinnerton-Dyer

Compute $f_{E}(x)=\prod_{p \leq x} \frac{p}{N_{p}}$

```
sage: E = EllipticCurve([0,0,1, -1,0])
sage: E.Np(7)
9
sage: def f(x): return mul([p/E.Np(p) for p in primes(x)])
sage: f(3)
    6/35
sage: f(20)
    2717/69120
sage: f(20)*1.0
    0.039308449074074076
sage: def f(x): return mul([float(p / E.Np(p)) for p in primes(x)])
sage: sage: f(10000)
    0.012692560835552851
sage: f(20000)
    0.013677015955706331
sage: f(100000)
    0.010276462823395276
```


Graphs of $f_{E}(x)=\Pi_{p \leq x} \frac{p}{N_{p}}$

The following are log-scale graphs of $f_{E}(x)$:

Something Better: The L-Function

Theorem (Wiles et al., Hecke) This function extends to a holomorphic function on the whole complex plane:

$$
L(E, s)=\prod_{p \nmid N}\left(\frac{1}{1-a_{p} \cdot p^{-s}+p \cdot p^{-2 s}}\right) \cdot \prod_{p \mid N}\left(\frac{1}{1-a_{p} \cdot p^{-s}}\right)
$$

Note that formally, $L(E, 1)=$

$$
\prod_{p \nmid N}\left(\frac{1}{1-a_{p} \cdot p^{-1}+p \cdot p^{-2}}\right) \cdot *=\prod_{p \nmid N}\left(\frac{p}{p-a_{p}+1}\right) \cdot *=\prod_{p \nmid N} \frac{p}{N_{p}} \cdot *
$$

Real Graph of the L-Series of $y^{2}+y=x^{3}-x$

More Graphs of Elliptic Curve L-functions

The Birch and Swinnerton-Dyer Conjecture

Conjecture: Let E be any elliptic curve over \mathbb{Q}. Then E has infinity many solutions if and only if $L(E, 1)=0$. (More precisely, the order of vanishing of $L(E, s)$ as $s=1$ equals the rank of $E(\mathbb{Q})$.)

The Kolyvagin, Gross-Zagier, Kato Theorem

Theorem 1: If $L(E, 1) \neq 0$ then E has only finitely many solutions. If $L(E, 1)=0$ but $L^{\prime}(E, 1) \neq 0$, then $E(\mathbb{Q})$ has rank 1 .

Ranks of Elliptic Curves

Order elliptic curves by conductor.

Folklore Conjecture: 100\% of elliptic curves satisfy the hypothesis of Theorem 1, i.e., have $\operatorname{ord}_{s=1} L(E, s) \leq 1$. Moreover the average rank is $1 / 2$.

Should we believe this folklore conjecture?

Joint work with: Barry Mazur, Mark Watkins, Baur Bektemirov

Genus

Question Suppose C is an algebraic curve with a rational point. How likely is it that C will have infinitely many rational points?

- Genus 0 - probability 1 (e.g., Pythagorean triples)
- Genus 1 - probability $1 / 2$??? (elliptic curves)
- Genus ≥ 2 - probability 0 (Faltings's theorem)

A Story

1. The minimalist conjecture. As above, it has long been a folk conjecture that the average rank of elliptic curves is $1 / 2$.
2. Refined heuristics for special families. For $y^{2}=x^{3}-d^{2} x$, prediction that number of those with even parity and infinitely many rational points is asymptotic to

$$
\begin{equation*}
F(D)=c \cdot D^{3 / 4} \log (D)^{11 / 8} \tag{1}
\end{equation*}
$$

3. A random matrix heuristic.
4. Contrary (?) numerical data.

Manjul Bhargava

A new non-minimalist theorem for number fields.

Theorem (Bhargava). When ordered by absolute discriminant, a positive proportion (approximately 0.09356) of quartic fields have associated Galois group D_{4}. The remaining approximately 0.90644 of quartic fields have Galois group S_{4}.

Goldfeld's Conjecture

Family E_{d} of quadratic twists, e.g., $y^{2}=x^{3}-d^{2} x$.

Conjecture. The average rank of the curves E_{d} is $\frac{1}{2}$, in the sense that

$$
\lim _{D \rightarrow \infty} \frac{\sum_{|d|<D} \operatorname{rank}\left(E_{d}\right)}{\#\{d:|d|<D\}}=\frac{1}{2} .
$$

(Here the integers d are squarefree.)

Random Matrix Theory Heuristic (Watkins)

Conjecture:

- Number of curves of even rank ≥ 2 up to conductor X is

$$
\sim X^{19 / 24} \exp \left(c_{1} \sqrt{\log X}\right) .
$$

- Number $C(X)$ of elliptic curves of conductor up to X is

$$
X^{5 / 6} \exp \left(c_{2} \sqrt{\log X} / \log (\log (X))\right) \ll C(X) \ll X^{5 / 6} \exp \left(c_{3} \sqrt{\log X}\right) .
$$

Note that $19 / 24 \sim 0.792$ and $5 / 6 \sim 0.833$.

Brumer-McGuinness Rank Distribution

Rank	0	1	2	3	4	5
Proportion	0.300	0.461	0.198	0.038	0.003	0.000

Average Rank: 0.982

Rank Distribution of Cremona's Database (Conductor ≤ 120000)

Rank	0	1	2	3
Proportion	0.404	0.505	0.090	0.001

Average Rank: 0.688

The Stein-Watkins Database

Any E / \mathbb{Q} is given by exactly one equation of the form

$$
\begin{equation*}
y^{2}=x^{3}-27 c_{4} x-54 c_{6}, \tag{2}
\end{equation*}
$$

with $c_{4}, c_{6}, \Delta=\left(c_{4}^{3}-c_{6}^{2}\right) / 1728 \in \mathbb{Z}$ and for which there is no prime p with $p^{4} \mid c_{4}$ and $p^{12} \mid \Delta$.

Stein-Watkins Database: All E / \mathbb{Q} with $\left|c_{4}\right|<1.44 \cdot 10^{12},|\Delta|<$ 10^{12} and composite conductor $<10^{8}$ or prime conductor $<10^{10}$. Plus all quadratic twists and isogenous curves.

Type	Number
Curves with conductor $\leq 10^{8}$	136832795
Curves with square-free conductor $\leq 10^{8}$	21841534
Curves with prime conductor $\leq 10^{10}$	11378911
Curves with prime conductor $\leq 10^{8}$	312435

Rank Distribution Among All Curves of Conductor $\leq 10^{8}$

Rank	0	1	2	3	≥ 4
Proportion	0.336	0.482	0.163	0.019	0.000

Average Rank: 0.865

Rank Distribution for Prime Conductor $\leq 10^{10}$

Rank	0	1	2	3	≥ 4
Proportion	0.309	0.462	0.188	0.037	0.004

Average Rank: 0.964

Rank Distribution For 154248 Random Curves With Prime Discriminant Near 10^{14}

Rank	0	1	2	3	≥ 4
Proportion $\Delta>0$	0.319	0.467	0.176	0.034	0.004
Proportion $\Delta<0$	0.343	0.475	0.154	0.025	0.002

Average Ranks: 0.869, 0.938

Average Ranks - Summary

Cremona's curves of conductor ≤ 120000	0.688
All Stein-Watkins curves of conductor $\leq 10^{8}$	0.865
Brumer-McGuinness's curves of prime conductor $\leq 10^{8}$	0.982
Stein-Watkins curves of prime conductor $\leq 10^{10}$	0.964
Stein-Watkins; prime conductor near 10^{14} with $\Delta<0$	0.869
Stein-Watkins; prime conductor near 10^{14} with $\Delta>0$	0.938

