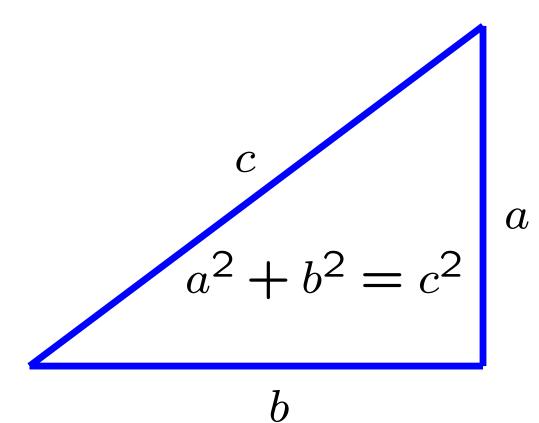
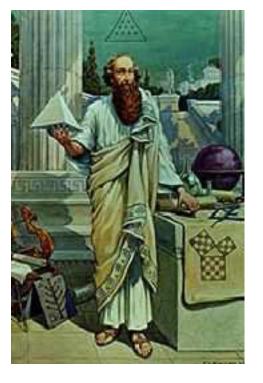
Solving Cubic Equations: An Introduction to the Birch and Swinnerton-Dyer Conjecture

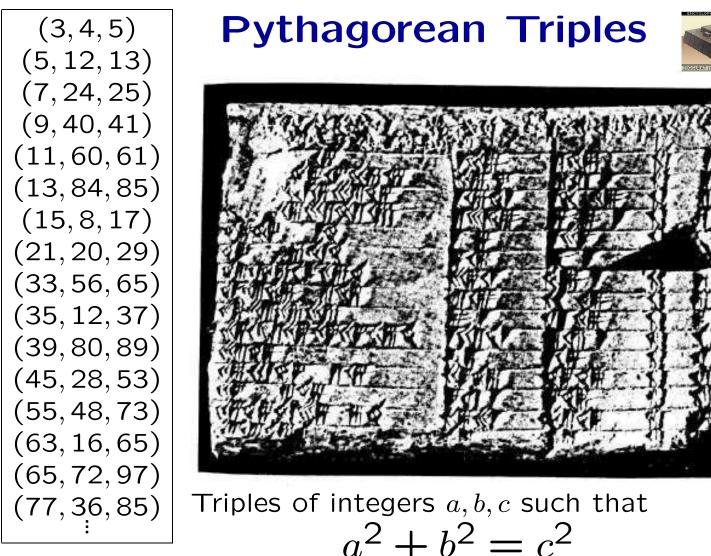
William Stein (http://modular.ucsd.edu/talks) December 1, 2005, UCLA Colloquium

The Pythagorean Theorem

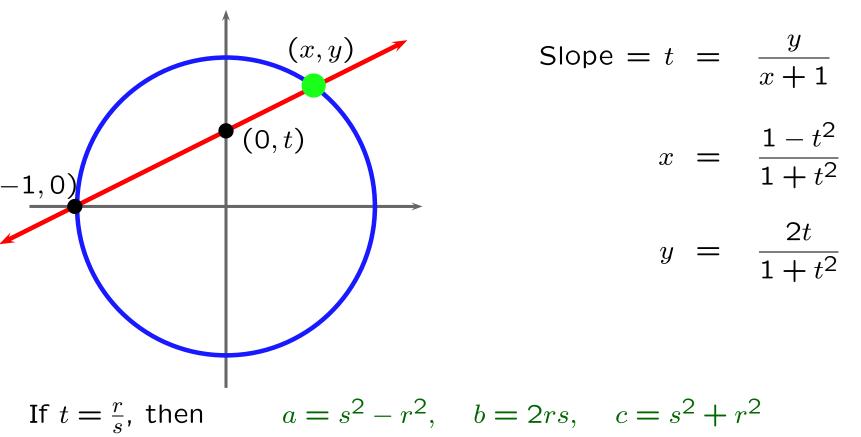




Pythagoras Approx 569–475BC



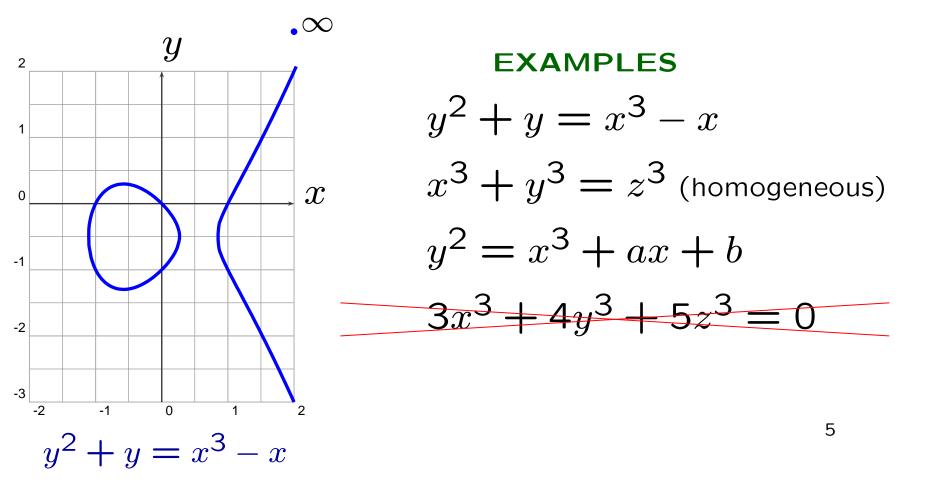
Enumerating Pythagorean Triples



is a Pythagorean triple, and all primitive unordered triples arise in this way. We can solve two-variable quadratic equations.

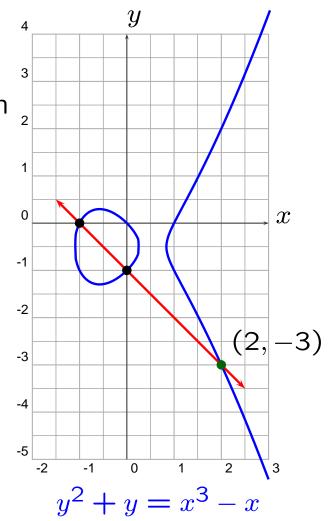
What About Two-variable Cubic Equations?

Elliptic curve: a (smooth) plane **cubic curve** with a rational point (possibly "at infinity").



The Secant Process

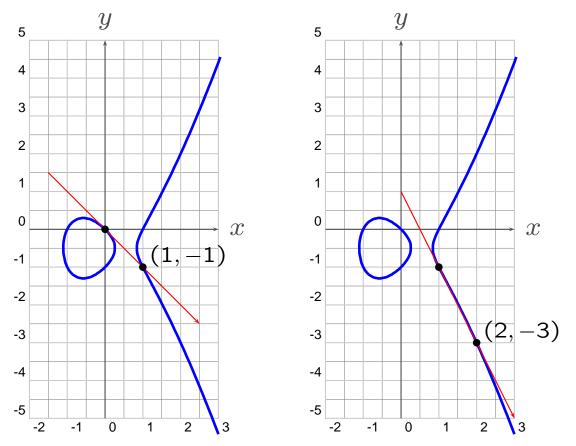
Dbtain a third ³ rational!) solution from ² wo (rational) solutions.

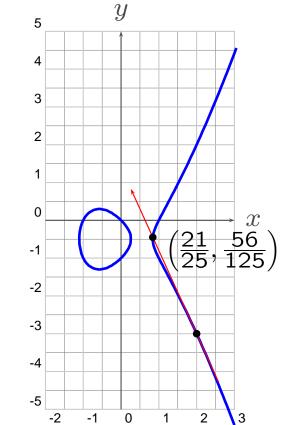


Fermat?

The Tangent Process

New rational point from a single rational point.





7

Iterate the Tangent Process

(0, 0)

(1, -1)

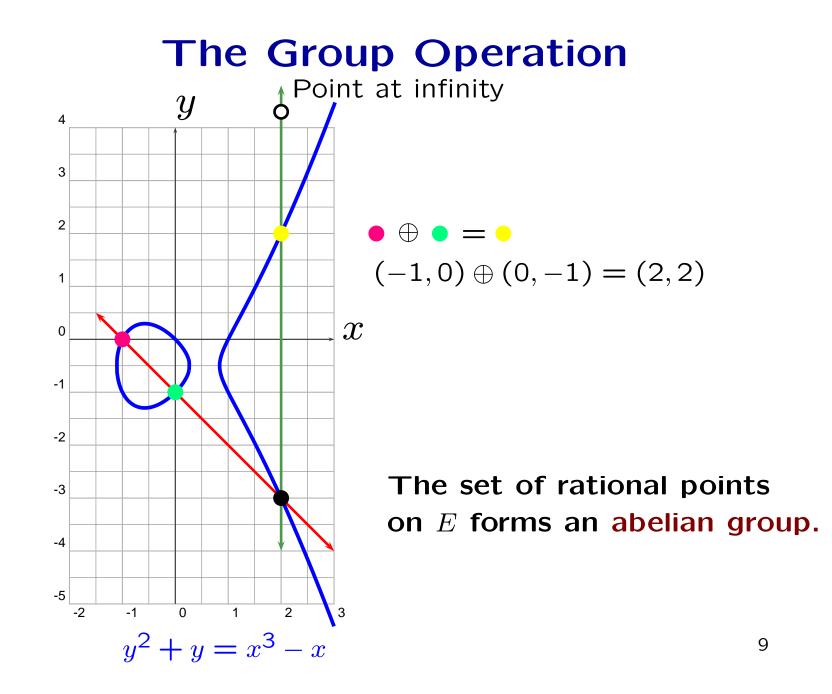
(2, -3)

 $\left(\frac{\frac{21}{25}, -\frac{56}{125}}{\frac{480106}{4225}, \frac{332513754}{274625}}\right)$

Fermat

 $\left(\frac{53139223644814624290821}{1870098771536627436025}, -\frac{12282540069555885821741113162699381}{80871745605559864852893980186125}
ight)$

8

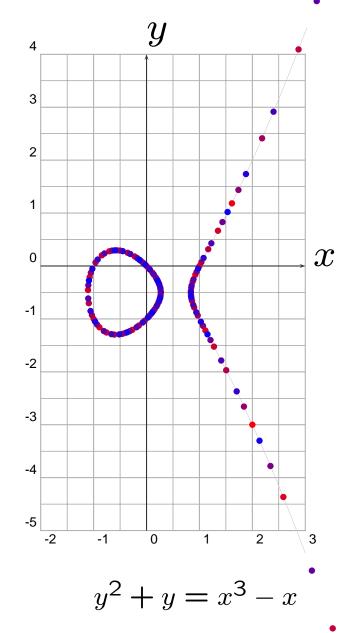


SAGE: Software for Algebra and Geometry Experimentation

```
SAGE Version 0.7.8, Export Date: 2005-10-05-1650
 Distributed under the terms of the GNU General Public License (GPL)
 IPython shell -- for help type <object>?, <object>??, %magic, or help
sage: E = EllipticCurve([0,0,1,-1,0])
sage: E
     Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E([0,0])
sage: 2*P
      (1, 0)
sage: 10*P
      (161/16, -2065/64)
sage: 20*P
      (683916417/264517696, -18784454671297/4302115807744)
sage: 50*P
      (24854671723753819921380822649312751965653209957505606561/
               29418784545883822188243570198416287437001335203340988816,
      -65343698144990446428357439135977881124804221113554492507243553294512904673973173265/
       159564798621271700005828929931002008441744804573070282618997694000714045237979692864)
```

```
Help wanted! http://modular.ucsd.edu/sage
```

The First 150 Multiples of (0,0)



(The bluer the point, the bigger the multiple.)

Fact: The group $E(\mathbb{Q})$ is generated by (0,0).

In contrast, $y^2 + y = x^3 - x^2$ has only 5 rational solutions!

What is going on here?

Mordell's Theorem

Theorem (Mordell). The group $E(\mathbb{Q})$ of rational points on an elliptic curve is a **finitely generated abelian group**:

$E(\mathbb{Q})\cong\mathbb{Z}^r\oplus T,$

with T finite.

Mazur classified the possibilities for T. It is conjectured that r can be arbitrary, but the biggest r ever found is (probably) 24.

The Simplest Solution Can Be Huge

Simplest solution to $y^2 = x^3 + 7823$:

$x = \frac{2263582143321421502100209233517777}{1}$

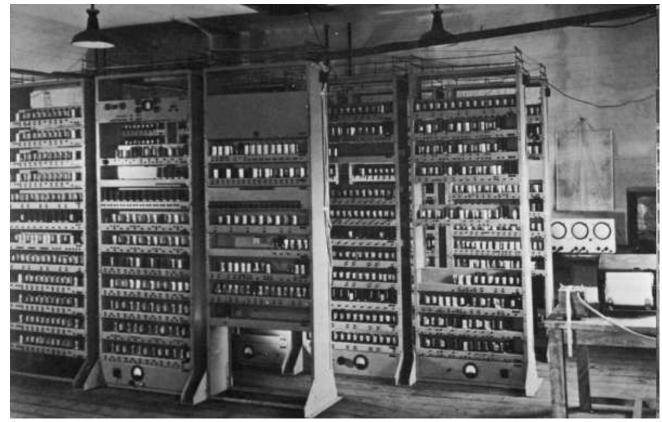
143560497706190989485475151904721

 $y = \frac{186398152584623305624837551485596770028144776655756}{1720094998106353355821008525938727950159777043481}$

(Found by Michael Stoll in 2002.)

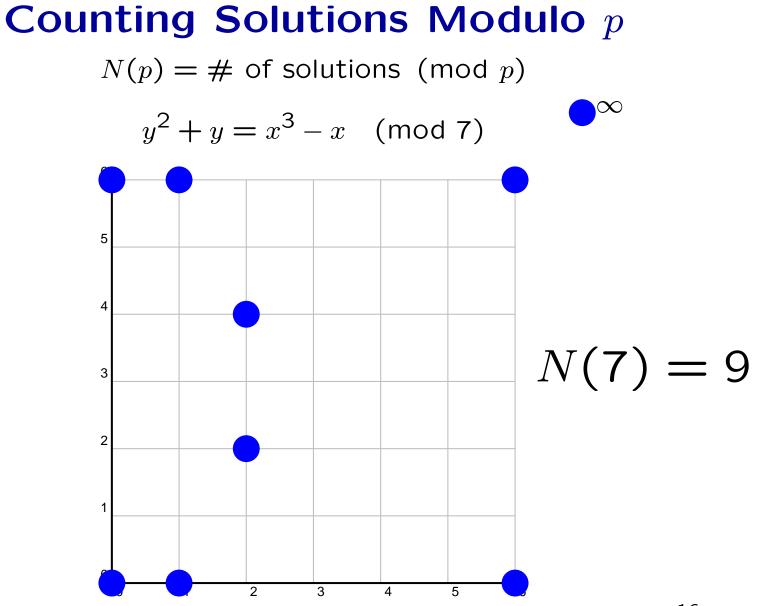
The Central Question

When does an elliptic curve have infinitely many solutions?



Conjectures Proliferated

"The subject of this lecture is rather a special one. I want to describe some computations undertaken by myself and Swinnerton-Dyer on EDSAC, by which we have calculated the zeta-functions of certain elliptic curves. As a result of these computations we have found an analogue for an elliptic curve of the Tamagawa number of an algebraic group; and conjectures have proliferated. [...] though the associated theory is both abstract and technically complicated, the objects about which I intend to talk are usually simply defined and often machine computable; experimentally we have detected certain relations between different invariants, but we have been unable to approach proofs of these – Birch 1965 relations, which must lie very deep."



The Error Term

 $a_p = p + 1 - N(p).$

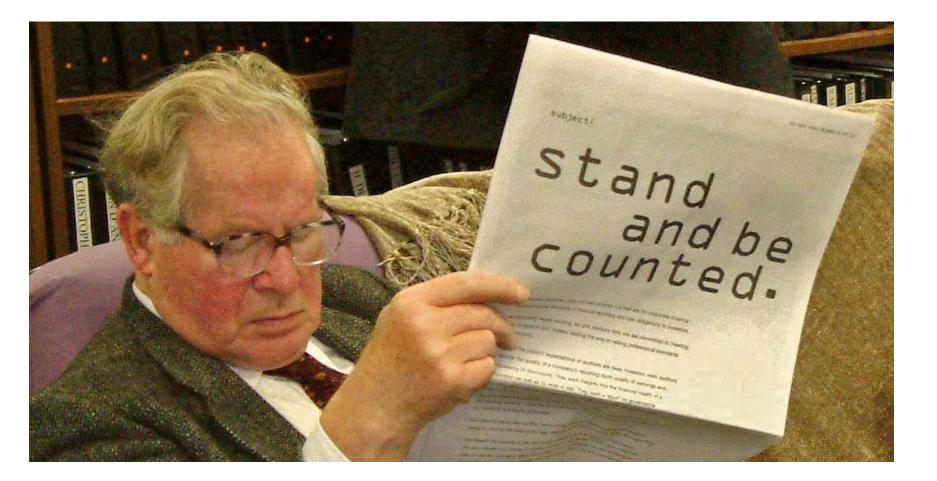
Hasse proved that

Let

 $|a_p| \leq 2\sqrt{p}.$

 $a_2 = -2, \quad a_3 = -3, \quad a_5 = -2, \quad a_7 = -1, \quad a_{11} = -5, \quad a_{13} = -2,$ $a_{17} = 0, \quad a_{19} = 0, \quad a_{23} = 2, \quad a_{29} = 6, \quad \dots$

Stand and Be Counted



Swinnerton-Dyer

Birch and Swinnerton-Dyer's Guess

If an elliptic curve E has positive rank, then perhaps N(p) is on average larger than p, for many primes p. Maybe

$$f_E(x) = \prod_{p \le x} \frac{p}{N(p)} \to 0 \text{ as } x \to \infty$$

exactly when E has infinitely many solutions?

Swinnerton-Dyer

Compute
$$f_E(x) = \prod_{p < x} \frac{p}{N(p)}$$

```
sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.Np(7)
9
sage: def f(x): return mul([p / E.Np(p) for p in primes(x)])
   . . . :
sage: f(3)
      6/35
sage: f(20)
      2717/69120
sage: f(20)*1.0
      0.039308449074074076
sage: def f(x): return mul([float(p / E.Np(p)) for p in primes(x)])
sage: sage: f(10000)
      0.012692560835552851
sage: f(20000)
      0.013677015955706331
sage: f(100000)
      0.010276462823395276
```


The following are log-scale graphs $\phi f_{\Lambda} f_E(x)$: 681B: $y^2 + xy = x^3 + x^2 - 1154x - 15345$ (Shaf.-Tate group order 9) 33A: $y^2 + xy = x^3 + x^2 - 11x$ 37B: $y^2 + y = x^3 + x^2 - 23x - 50$ \bigvee 14A: $y^2 + xy + y = x^3 + 4x - 6$ ~ 11 A: $y^2 + y = x^3 - x^2 - 10x - 20$ 37A: $y^2 + y = x^3 - x$ 389A: $y^2 + y = x^3 + x^2 - 2x$ 5077A: $y^2 + y = x^3 + x^2 - 2x$ e^{4} $e^{5} e^{6}$ $e^{\mathbf{3}}$ e^0 e^2 e^1

Graphs of $f_E(x) = \prod_{p \le x} \frac{p}{N(p)}$

Something Better: The *L*-Function

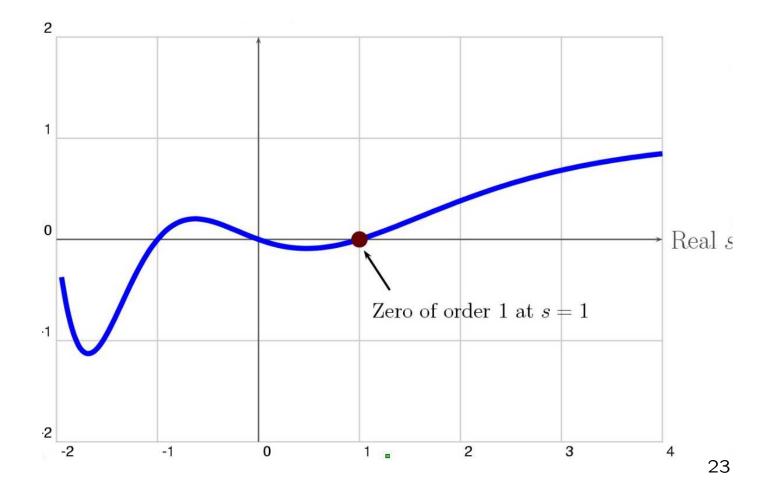
Theorem (Wiles et al., Hecke) This function extends to a holomorphic function on the whole complex plane:

$$L(E,s) = \prod_{p \nmid \Delta} \left(\frac{1}{1 - a_p \cdot p^{-s} + p \cdot p^{-2s}} \right).$$

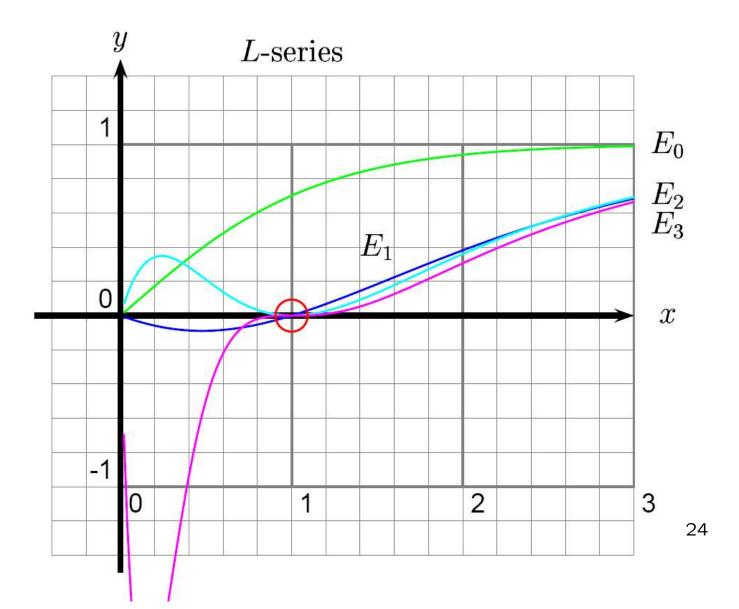
Note that *formally*,

$$L(E,1) = \prod_{p \nmid \Delta} \left(\frac{1}{1 - a_p \cdot p^{-1} + p \cdot p^{-2}} \right) = \prod_{p \nmid \Delta} \left(\frac{p}{p - a_p + 1} \right) = \prod_{p \nmid \Delta} \frac{p}{N_p}$$

Real Graph of the *L*-Series of $y^2 + y = x^3 - x$



More Graphs of Elliptic Curve L-functions



The Birch and Swinnerton-Dyer Conjecture

Conjecture: Let *E* be any elliptic curve over \mathbb{Q} . Then *E* has infinity many solutions if and only if L(E, 1) = 0. (More precisely, the order of vanishing of L(E, s) as s = 1 equals the rank of $E(\mathbb{Q})$.)

The Kolyvagin, Gross-Zagier, Kato Theorem

Theorem 1: If $L(E, 1) \neq 0$ then *E* has only finitely many solutions. If L(E, 1) = 0 but $L'(E, 1) \neq 0$, then $E(\mathbb{Q})$ has rank 1.

Ranks of Elliptic Curves

Order elliptic curves by conductor.

Folklore Conjecture: 100% of elliptic curves satisfy the hypothesis of Theorem 1, i.e., have $\operatorname{ord}_{s=1} L(E,s) \leq 1$. Moreover the average rank is 1/2.

Should we believe this folklore conjecture?

Joint work with: Barry Mazur, Mark Watkins, Baur Bektemirov

Genus

Question Suppose C is an algebraic curve with a rational point. How likely is it that C will have infinitely many rational points?

- Genus 0 probability 1 (e.g., Pythagorean triples)
- Genus 1 probability 1/2??? (elliptic curves)
- Genus $\geq 2 \text{probability 0 (Faltings's theorem)}$

A Story

- 1. The minimalist conjecture. As above, it has long been a folk conjecture that the average rank of elliptic curves is 1/2.
- 2. Refined heuristics for special families. For $y^2 = x^3 d^2x$, prediction that number of those with even parity and infinitely many rational points is asymptotic to

$$F(D) = c \cdot D^{3/4} \log(D)^{11/8}$$
(1)

- 3. A random matrix heuristic.
- 4. Contrary numerical data.

Manjul Bhargava

A new **non-minimalist theorem** for number fields.

Theorem. When ordered by absolute discriminant, a positive proportion (approximately 0.09356) of quartic fields have associated Galois group D_4 . The remaining approximately 0.90644 of quartic fields have Galois group S_4 .

Goldfeld's Conjecture

Family E_d of quadratic twists, e.g., $y^2 = x^3 - d^2x$.

Conjecture. The average rank of the curves E_d is $\frac{1}{2}$, in the sense that

$$\lim_{D \to \infty} \frac{\sum_{|d| < D} \operatorname{rank}(E_d)}{\#\{d : |d| < D\}} = \frac{1}{2}.$$

(Here the integers d are squarefree.)

Random Matrix Theory Heuristic (Watkins)

Conjecture:

• Number of curves of even rank \geq 2 up to conductor X is

 $\sim X^{19/24} \exp(c_1 \sqrt{\log X}).$

• Number of elliptic curves of conductor up to \boldsymbol{X} is

 $\sim X^{5/6} \exp(c_2 \sqrt{\log X}).$

Note that $19/24 \sim 0.792$ and $5/6 \sim 0.833$.

Brumer-McGuinness Rank Distribution

Rank	0	1	2	3	4	5
Proportion	0.300	0.461	0.198	0.038	0.003	0.000

Rank Distribution of Cremona's Database (Conductor ≤ 120000)

Rank	0	1	2	3
Proportion	0.404	0.505	0.090	0.001

The Stein-Watkins Database

Any E/\mathbb{Q} is given by exactly one equation of the form

$$y^2 = x^3 - 27c_4x - 54c_6, \tag{2}$$

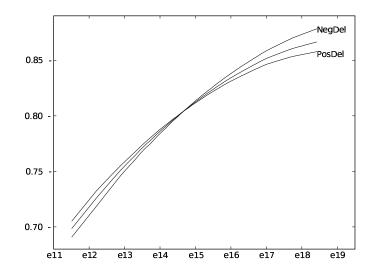
with $c_4, c_6, \Delta = (c_4^3 - c_6^2)/1728 \in \mathbb{Z}$ and for which there is no prime p with $p^4 | c_4$ and $p^{12} | \Delta$.

Stein-Watkins Database: All E/\mathbb{Q} with $|c_4| < 1.44 \cdot 10^{12}$, $|\Delta| < 10^{12}$ and composite conductor $< 10^8$ or prime conductor $< 10^{10}$. Plus all quadratic twists and isogenous curves.

Туре	Number
Curves with conductor $\leq 10^8$	136832795
Curves with square-free conductor $\leq 10^8$	21841534
Curves with prime conductor $\leq 10^{10}$	11378911
Curves with prime conductor $\leq 10^8$	312435

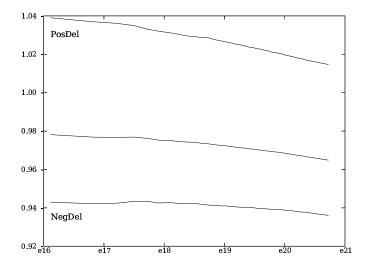
Rank Distribution Among All Curves of Conductor $\leq 10^8$

Rank	0	1	2	3	≥ 4
Proportion	0.336	0.482	0.163	0.019	0.000



Rank Distribution for Prime Conductor $\leq 10^{10}$

Rank	0	1	2	3	≥ 4
Proportion	0.309	0.462	0.188	0.037	0.004



Rank Distribution For About 150000 Random Curves With Prime Discriminant Near 10¹⁴

Rank	0	1	2	3	<u>≥ 4</u>
Proportion	0.332	0.471	0.164	0.029	0.003