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The Manin Constant, Congruence Primes,

and the Modular Degree

Amod Agashe Kenneth Ribet William A. Stein

Abstract.

We obtain relations between the modular degree and congruence mod-
ulus of elliptic curves, and answer a question raised in a paper of Frey
and Müller about whether or not the congruence number and mod-
ular degree of elliptic curves are equal; they are not, but we prove a
theorem relating them and make a conjecture. We also prove results
and make conjectures about Manin constants of quotients of J1(N)
of arbitrary dimension. For optimal elliptic curves E, we give a new
condition under which the Manin constant of E is odd.

1 Introduction

Let E be an elliptic curve over Q. By [BCDT01], we may view E as a quotient
of the modular Jacobian J0(N), where N is the conductor of E. After possibly
replacing E by an isogenous curve, we may assume that the kernel of the map
J0(N) → E is connected, i.e., that E is an optimal quotient of J0(N).

The pullback of a minimal differential on E is a multiple c of some normal-
ized new cuspidal eigenform fE ∈ S2(Γ0(N)). The absolute value of c is the
Manin constant cE of E. Manin conjectured that cE = 1. In Section 2.1, we
summarize results about cE , then extend techniques of Abbes and Ullmo [AU96]
to show that 2 - cE under certain hypothesis.

The congruence number rE of E is the largest integer such that there
is a nonzero element of S2(Γ0(N)) that is orthogonal to fE and congruent
to fE modulo rE. The modular degree mE is the degree of the composite map
X0(N) → J0(N) → E. Section 2.2 is about relations between rE and mE. For
example, mE | rE. In [FM99, Q. 4.4], Frey and Müller asked whether rE = mE.
We give examples in which rE 6= mE, then conjecture that for any prime p,
ordp(rE/mE) ≤ 1

2 ordp(N). We prove this conjecture when ordp(N) ≤ 1.
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We generalize the Manin constant, congruence primes, and modular degree
to optimal quotients of J0(N) and J1(N) of any dimension associated to ideals
of the Hecke algebra. Section 3 is concerned with the congruence number and
the modular degree and Section 4 with the Manin constant. We also conjecture
that the Manin constant is 1 for newform quotients of J0(N) and J1(N).

Acknowledgment. The authors are grateful to A. Abbes, R. Coleman,
B. Conrad, E. de Shalit, B. Edixhoven, L. Merel, and R. Taylor for several
discussions and advice regarding this paper. They would also like to thank
J. Cremona for explaining his computations involving the Manin constant.

2 Optimal Elliptic Curve Quotients

Let N be a positive integer and let X0(N) be the modular curve over Q that
classifies isomorphism classes of elliptic curves with a cyclic subgroup of or-
der N . The Hecke algebra T of level N is the subring of the ring of endo-
morphisms of J0(N) = Jac(X0(N)) generated by the Hecke operators Tn for
all n ≥ 1. Let f be a newform of weight 2 for Γ0(N) with integer Fourier
coefficients, and let If be kernel of the homomorphism T → Z[. . . , an(f), . . .]
that sends Tn to an. Then the quotient E = J0(N)/IfJ0(N) is an elliptic
curve over Q. We call E the optimal quotient associated to f . Composing
the embedding X0(N) ↪→ J0(N) that sends ∞ to 0 with the quotient map
J0(N) → E, we obtain a surjective morphism of curves φE : X0(N) → E.

Definition 2.1 (Modular Degree). The modular degree mE of E is the
degree of φE.

2.1 The Manin Constant

Let EZ denote the Néron model of E over Z (see, e.g., [Sil92, App. C, §15],
[Sil94] and [BLR90]). Let ω be a generator for the rank one Z-module
of invariant differential one forms on EZ. The pullback of ω to X0(N)
is a differential φ∗

Eω on X0(N). The newform f defines another differen-
tial 2πif(z)dz = f(q)dq/q on X0(N). Because the action of Hecke operators is
compatible with the map X0(N) → E, [AL70] implies that φ∗

Eω = c ·2πif(z)dz
for some c ∈ Q∗ (see also [Man72, §5]).

Definition 2.2 (Manin Constant). The Manin constant cE of E is the
absolute value of c, where c is as above.

The Manin constant plays a role in the Birch and Swinnerton-Dyer conjec-
ture (see Section 4.1), and its integrality is important to Cremona’s computa-
tions of elliptic curves (see [Cre97, pg. 45]).

The following conjecture is implicit in [Man72, §5].

Conjecture 2.3 (Manin). cE = 1.

Significant progress has been made towards this conjecture. In the following
list of theorems, p denotes a prime and N denotes the conductor of E.
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Theorem 2.4 (Edixhoven [Edi91, Prop. 2]). cE is an integer.

Edixhoven proved this using an integral q-expansion map, whose existence
and properties follow from results in [KM85]. We generalize his argument to
quotients of arbitrary dimension in Section 4.1.

Theorem 2.5 (Mazur, [Maz78, Cor. 4.1]). If p | cE, then p2 | 4N .

Mazur proved this by applying theorems of Raynaud about exactness of
sequences of differentials, then using the “q-expansion principle” in character-
istic p and a property of the Atkin-Lehner involution. We generalize Mazur’s
argument in Section 4.1.

The following two results refine the above results at p = 2.

Theorem 2.6 (Raynaud [AU96, Prop. 3.1]). If 4 | cE, then 4 | N .

Theorem 2.7 (Abbes-Ullmo [AU96, Thm. A]). If p | cE, then p | N .

We generalize Theorem 2.6 in Section 4.1. However, it is not clear if one
can generalize Theorem 2.7 to dimension greater than 1 (see Remark 4.16). It
would be fantastic if the theorem could be generalized, since it would imply
that for newform quotients Af of J0(N), with N odd and square free, that
the Manin constant is 1, which would be useful for computations regarding the
Birch and Swinnerton-Dyer conjecture.

B. Edixhoven also has unpublished results (see [Edi89]) which assert that
the only primes that can divide cE are 2, 3, 5, and 7; he also gives bounds that
are independent of E on the valuations of cE at 2, 3, 5, and 7. His arguments
rely on construction of certain stable integral models for X0(p

2).
Cremona verified computationally that the Manin constant is 1 for every

elliptic curve of conductor up to at least 10000. Cremona computes lattice
invariants c4 and c6 from a rational newform f , and verifies in each case that c4

and c6 are the invariants of a minimal Weierstrass equation, to conclude that
the Manin constant for the corresponding elliptic curve is 1.

Definition 2.8 (Congruence Number). The congruence number rE of E
is the largest integer r such that there exists a cusp form g ∈ S2(Γ0(N)) that
has integer Fourier coefficients, is orthogonal to f with respect to the Petersson
inner product, and satisfies g ≡ f (mod r). The congruence primes of E are
the primes that divide rE.

To the above list we add the following theorem. Our proof builds on the
techniques of [AU96].

Theorem 2.9. If p | cE then p2 | N or p | mE.

This theorem is a special case of Theorem 4.13 below, which we prove
in Section 4.4. In fact, Theorem 4.13 asserts that if p | cE then p2 | N
or p | rE. However, Theorem 2.10 implies that when ordp(N) = 1 then
ordp(rE) = ordp(mE). In view of Theorem 2.5, our new contribution is that
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if mE is odd and ord2(N) = 1, then cE is odd. This hypothesis is very
stringent—of the 125357 optimal elliptic curve quotients of conductor ≤ 30000,
only 31 of them satisfy the hypothesis. In the notation of [Cre97], they are

14A, 46A, 142C, 206A, 302B, 398A, 974C, 1006B, 1454A, 1646A, 1934A, 2606A,
2638B, 3118B, 3214B, 3758D, 4078A, 7054A, 7246C, 11182B, 12398B, 12686C,
13646B, 13934B, 14702C, 16334B, 18254A, 21134A, 21326A, 22318A, 26126A.

It is unknown if there are infinitely many elliptic curves that satisfy our
hypothesis. The third author conjectured in [SW04, Conj. 4.2] that there are
infinitely many elliptic curves (of prime conductor) with odd modular degree.

2.2 Congruence Primes and the Modular Degree

Congruence primes have been studied by Doi, Hida, Ribet, Mazur and others
(e.g., see [Rib83, §1]), and played an important role in Wiles’s work [Wil95] on
Fermat’s last theorem. Frey and Mai-Murty have observed that an appropriate
asymptotic bound on the modular degree is equivalent to the abc-conjecture
(see [Fre97, p.544] and [Mur99, p.180]). Thus results that relate congruence
primes and the modular degree are of great interest.

Theorem 2.10. Let E be an elliptic curve over Q of conductor N , with modular
degree mE and congruence modulus rE. Then mE | rE and if ordp(N) ≤ 1 then
ordp(rE) = ordp(mE).

The divisibility mE | rE was first discussed in [Zag85, Th. 3], where it
is attributed to Ribet; however in [Zag85] the divisibility was mistakenly
written in the opposite direction. For some other expositions of the proof,
see [AU96, Lem 3.2] and [CK04]. We generalize this divisibility in Proposi-
tion 3.11. The second part of Theorem 2.10, i.e., that if ordp(N) = 1 then
ordp(rE) = ordp(mE), follows from the more general Theorem 3.5 below. Note
that [AU96, Prop. 3.3–3.4] implies the weaker statement that if p - N then
ordp(rE) = ordp(mE), since Prop. 3.3 implies

ordp(rE) − ordp(mE) = ordp(#C) − ordp(cE) − ordp(#D),

and by Prop. 3.4 ordp(#C) = 0.
Frey and Müller [FM99, Ques. 4.4] asked whether rE = mE in general. After

implementing an algorithm to compute rE in MAGMA, we quickly found that
the answer is no. The first 16 countexamples occur at levels

54, 64, 72, 80, 88, 92, 96, 99, 108, 112, 120, 124, 126, 128, 135, 144.

For example, the elliptic curve 54B1 of [Cre97], with equation y2 + xy + y =
x3 − x2 + x − 1, has rE = 6 and mE = 2. To see explicitly that 3 | rE, observe
that the newform corresponding to E is f = q + q2 + q4 − 3q5 − q7 + · · · and
the newform corresponding to X0(27) if g = q − 2q4 − q7 + · · · , so g(q) + g(q2)
is congruent to f modulo 3. To prove this congruence, we checked it for 18
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Fourier coefficients, where the precision 18 was determined using [Stu87]. In
accord with Theorem 2.10, since ord3(rE) 6= ord3(cE), we have ord3(54) ≥ 2.

In our computations, there appears to be no absolute bound on the p that
occur. For example, for the curve 242B of conductor N = 2 · 112 we have

mE = 24 6= rE = 24 · 11.

We propose the following replacement for Question 4.4 of [FM99]:

Conjecture 2.11. Let E be an optimal elliptic curve of conductor N and p
be any prime. Then

ordp

(

rE

mE

)

≤ 1

2
ordp(N).

In particular, for p ≥ 5, the conjecture simply asserts that

ordp

(

rE

mE

)

≤ 1,

because ordp(N) ≤ 2 for any p ≥ 5. As evidence, we verified Conjecture 2.11
for every optimal elliptic curve quotient of J0(N), with N ≤ 539.

3 Quotients of arbitrary dimension: generalization of the con-
gruence number and the modular degree

Let Γ be either Γ0(N) or Γ1(N), for N ≥ 4, let X be the modular curve over Q

associated to Γ, and let J be the Jacobian of X. Let I be a saturated ideal of the
corresponding Hecke algebra T, so T/I is torsion free. Then A = AI = J/IJ
is an optimal quotient of J since IJ is an abelian subvariety.

Definition 3.1 (Newform quotient). If f ∈ S2(Γ) and If = ker(T →
Z[. . . , an(f), . . .]), then A = Af = J/IfJ is the newform quotient associated
to f . It is an abelian variety over Q of dimension to the degree of the field
Q(. . . , an(f), . . .).

In Section 3.1, we generalize the notions of the congruence number and the
modular degree to quotients A = AI , and state a theorem relating the two,
which we prove in Sections 3.2–3.3.

3.1 The congruence number and the modular degree

If C is an abelian variety, let C∨ denote the dual of C. Let φ2 denote the
quotient map J → A. There is a canonical principal polarization θ : J ∼= J∨

arising from the theta divisor Dualizing φ2, we obtain a map φ∨
2 : A∨ → J∨,

which we compose with θ−1 : J∨ ∼= J to obtain a map φ1 : A∨ → J .
Since φ2 is a surjection, by [Lan83, §VI.3, Prop 3], ker(φ∨

2 ) is finite. Since
ker(φ2) is connected, ker(φ∨

2 ) is trivial, so φ∨
2 and φ1 are injections. Let φ be

the composition

φ : A∨ φ1−→ J
φ2−→ A.
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Proposition 3.2. The map φ is a polarization.

Proof. Let i be the injection φ∨
2 : A∨ → J∨, and let Θ denote the theta divisor.

From the definition of the polarization attached to an ample divisor, we see
that the map φ is induced by the pullback i∗(Θ) of the theta divisor. The
theta divisor is effective, and hence so is i∗(Θ). By [Mum70, §6, Application 1,
p. 60], kerφ is finite. Since the dimensions of A and A∨ are the same, φ is an
isogeny. Moreover, since Θ is ample, some power of it is very ample. Then the
pullback of this very ample power by i is again very ample, and hence a power
of i∗(Θ) is very ample, so i∗(Θ) is ample (by [Har77, II.7.6]).

The exponent of a finite group G is the smallest positive integer n such that
every element of G has order dividing n.

Definition 3.3. The modular exponent of A is the exponent of the kernel of
the isogeny φ, and the modular number of A is the degree of φ.

We denote the modular exponent of A by ñA and the modular number by
nA. When A is an elliptic curve, the modular exponent is equal to the modular
degree of A, and the modular number is the square of the modular degree (see,
e.g., [AU96, p. 278]).

If R is a subring of C, let S2(Γ;R) denote the subgroup of S2(Γ) consisting
of cups forms whose Fourier expansions at the cusp ∞ have coefficients in R.
Let W (I) = S2(Γ;Z)[I]⊥ denote the orthogonal complement of S2(Γ;Z)[I] in
S2(Γ;Z) with respect to the Petersson inner product.

Definition 3.4. The exponent of the quotient group

S2(Γ;Z)

S2(Γ;Z)[I] + W (I)
(1)

is the congruence exponent r̃A of A and its order is the congruence number rA.

Our definition of rA generalizes the definition in Section 2.2 when A is an
elliptic curve (see [AU96, p. 276]), and the following generalizes Theorem 2.10:

Theorem 3.5. If f ∈ S2(C) is a newform, then

(a) We have ñAf
| r̃Af

, and

(b) If p2 - N , then ordp(r̃Af
) = ordp(ñAf

).

Remark 3.6. When Af is an elliptic curve, Theorem 3.5 implies that the
modular degree divides the congruence number, i.e.,

√
nAf

| rAf
. In general,

the divisibility nAf
| r2

Af
need not hold. For example, there is a newform of

degree 24 in S2(Γ0(431)) such that

nAf
= (211 · 6947)2 - rAf

= (210 · 6947)2.

Note that 431 is prime and mod 2 multiplicity one fails for J0(431) (see [Kil02]).
The following Magma session illustrates how to verify the above assertion

about nAf
and rAf

. The commands were implemented by the second author,
and are parts of Magma V2.11 or greater.
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> A := ModularSymbols("431F");

> Factorization(ModularDegree(A));

[ <2, 11>, <6947, 1> ]

> Factorization(CongruenceModulus(A));

[ <2, 10>, <6947, 1> ]

3.2 Proof of Theorem 3.5 (a)

The polarization of J induced by the theta divisor need not be Hecke equiv-
ariant, because if T is a Hecke operator on J , then on J∨ it acts as WNTWN ,
where WN is the Atkin-Lehner involution (see e.g., [DI95, Remark 10.2.2]).
However, on Jnew, the action of the Hecke operators commutes with that
of WN . If the quotient map J → A factors through Jnew, then the Hecke
action on A∨ induced by the embedding A∨ → J∨ and the action on A∨ in-
duced by φ1 : A∨ → J are the same. Hence for such quotients we may identify
A∨ with φ1(A

∨) as modules over T.
Recall that f is a newform, If = AnnT(f), J = J0(N), Let B = IfJ , so

that A∨ + B = J , and J/B ∼= A. The following lemma is well known, but we
prove it here for the convenience of the reader.

Lemma 3.7. Hom(A∨, B) = 0.

Proof. If there were a nonzero element of Hom(A∨, B), then for all `, the Tate
module Tate`(A

∨) = Q ⊗ lim←−n
A∨[`n] would be a factor of Tate`(B). One

could then extract almost all prime-indexed coefficients of the corresponding
eigenforms from the Tate modules, which would violate multiplicity one (see
[Li75, Cor. 3, pg. 300]).

Let T1 be the image of T in End(A∨), and let T2 be the image of T in
End(B). We have the following commutative diagram with exact rows:

0 // T //

²²

T1 ⊕ T2
//

²²

T1 ⊕ T2

T

²²

// 0

0 // End(J) // End(A∨) ⊕ End(B) // End(A∨) ⊕ End(B)

End(J)
// 0.

(2)
Let

e = (1, 0) ∈ T1 ⊕ T2,

and let e1 and e2 denote the images of e in the groups (T1 ⊕ T2)/T and
(End(A∨) ⊕ End(B))/End(J), respectively. It follows from Lemma 3.7 that
the two quotient groups on the right hand side of (2) are finite, so e1 and e2

have finite order. Note that the order of e2 is a divisor of the order of e1, which
is the crucial ingredient in the proof of Proposition 3.11 below.
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The denominator of any ϕ ∈ End(J) ⊗ Q is the smallest positive integer n
such that nϕ ∈ End(J).

Let πA∨ , πB ∈ End(J)⊗Q be projection onto A∨ and B, respectively. Note
that the denominator of πA∨ equals the denominator of πB, since πA∨+πB = 1J ,
so that πB = 1J − πA∨ .

Lemma 3.8. The element e2 ∈ (End(A∨)⊕End(B))/End(J) defined above has
order ñA.

Proof. Let n be the order of e2, so n is the denominator of πA∨ , which, as
mentioned above, is also the denominator of πB. We want to show that n is
equal to ñA, the exponent of A∨ ∩ B.

Let iA∨ and iB be the embeddings of A∨ and B into J , respectively. Then

ϕ = (nπA∨ , nπB) ∈ Hom(J,A∨ × B)

and ϕ ◦ (iA∨ + iB) = [n]A∨×B. We have an exact sequence

0 → A∨ ∩ B
x7→(x,−x)−−−−−−→ A∨ × B

iA∨+iB−−−−−→ J → 0.

Let ∆ be the image of A∨ ∩ B. Then by exactness,

[n]∆ = (ϕ ◦ (iA∨ + iB))(∆) = ϕ ◦ ((iA∨ + iB)(∆)) = ϕ({0}) = {0},

so n is a multiple of the exponent ñA of A∨ ∩ B.
To show the opposite divisibility, consider the commutative diagram

0 // A∨ ∩ B
x7→(x,−x)

//

[ñA]

²²

A∨ × B

([ñA],0)

²²

// J //

ψ

²²

0

0 // A∨ ∩ B
x7→(x,−x)

// A∨ × B // J // 0,

where the middle vertical map is (a, b) 7→ (ñAa, 0) and the map ψ exists because
[ñA](A∨ ∩ B) = 0. But ψ = ñAπA∨ in End(J) ⊗ Q. This shows that ñAπA∨ ∈
End(J), i.e., that ñA is a multiple of the denominator n of πA∨ .

Lemma 3.9. The group (T1 ⊕T2)/T is isomorphic to the quotient (1) in Def-
inition 3.4, so rA = #((T1 ⊕ T2)/T) and r̃A is the exponent of (T1 ⊕ T2)/T.
More precisely, Ext1((T1⊕T2)/T,Z) is isomorphic as a T-module to the quo-
tient (1).

Proof. Apply the Hom(−,Z) functor to the first row of (2) to obtain a three-
term exact sequence

0 → Hom(T1 ⊕ T2,Z) → Hom(T,Z) → Ext1((T1 ⊕ T2)/T,Z) → 0. (3)
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The term Ext1(T1 ⊕ T2,Z) is 0 is because Ext1(M,Z) = 0 for any finitely
generated free abelian group. Also, Hom((T1 ⊕ T2)/T,Z) = 0 since (T1 ⊕
T2)/T is torsion. There is a T-equivariant bilinear pairing T×S2(Z) → Z given
by (t, g) 7→ a1(t(g)), which is perfect by [AU96, Lemma 2.1] (see also [Rib83,
Theorem 2.2]). Using this pairing, we transform (3) into an exact sequence

0 → S2(Z)[If ] ⊕ W (If ) → S2(Z) → Ext1((T1 ⊕ T2)/T,Z) → 0

of T modules. Here we use that Hom(T2,Z) is the unique saturated Hecke-
stable complement of S2(Z)[If ] in S2(Z), hence must equal S2(Z)[If ]⊥ =
W (If ). Finally note that if G is any finite abelian group, then Ext1(G,Z) ≈ G
as groups, to get the desired result.

Lemma 3.10. The element e1 ∈ (T1 ⊕ T2)/T has order r̃A.

Proof. By Lemma 3.9, the lemma is equivalent to the assertion that the order r
of e1 equals the exponent of M = (T1 ⊕ T2)/T. Since e1 is an element of M ,
the exponent of M is divisible by r.

To obtain the reverse divisibility, consider an element x of M . Let (a, b) ∈
T1 ⊕ T2 be such that its image in M is x. By definition of e1 and r, we
have (r, 0) ∈ T, and since 1 = (1, 1) ∈ T, we also have (0, r) ∈ T. Thus
(Tr, 0) and (0,Tr) are both subsets of T (i.e., in the image of T under the
map T → T1 ⊕ T2), so r(a, b) = (ra, rb) = (ra, 0) + (0, rb) ∈ T. This implies
that the order of x divides r. Since this is true for every x ∈ M , we conclude
that the exponent of M divides r.

Proposition 3.11. If f ∈ S2(C) is a newform, then ñAf
| r̃Af

.

Proof. Since e2 is the image of e1 under the right-most vertical homomorphism
in (2), the order of e2 divides that of e1. Now apply Lemmas 3.8 and 3.10.

This finishes the proof of the first statement in Theorem 3.5.

3.3 Proof of the Theorem 3.5 (b)

Write N = pM with p prime and p - M . (Note: The argument below also
works if p = 1, which addresses the case when no prime exactly divides N .)
Let T = Z[. . . , Tn, . . .] be the subring of End(J0(N)) generated by the Hecke
operators Tn for all n ≥ 1. Let T′ be the saturation of T in End(J0(N)), so

T′ = (T ⊗ Q) ∩ End(J0(N)),

where the intersection is taken inside End(J0(N)) ⊗ Q. The quotient T′/T is
a finitely generated abelian group because both T and End(J0(N)) are finitely
generated over Z.

Suppose for the moment that N = 1, so p = pM . In [Maz77], Mazur proves
that T = T′. He combines this result with the equality

T ⊗ Q = End(J0(p)) ⊗ Q

of [Rib75] or [Rib81], to deduce that T = End(J0(p)).
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3.3.1 Multiplicity One

Mazur’s argument (see [Maz77, pg. 95]) is quite general; it relies on a multiplic-
ity 1 statement for spaces of differentials in positive characteristic (see [Maz77,
Prop. 9.3, pg. 94]). His method shows in the general case (where M is no longer
constrained to be 1) that SuppT(T′/T) contains no maximal ideal m of T for
which his space H0(X0(pM)F`

,Ω)[m] has dimension ≤ 1. (Here ` is the residue
characteristic of m.) In other words, multiplicity one for H0(X0(pM)F`

,Ω)[m]
implies that T and T′ agree at m. We record this fact as a lemma.

Lemma 3.12. Suppose m is a maximal ideal of T of residue characteristic `
and that

dimT/m
H0(X0(pM)F`

,Ω)[m] ≤ 1.

Then m is not in the support of T/T′.

There is quite a bit of literature on the question of multiplicity 1 for
H0(X0(pM)F`

,Ω)[m]. The easiest case is that ` is prime to the level pM .

Lemma 3.13. If ` - pM , then ` - #(T/T′).

Proof. The standard q-expansion argument of [Maz77] proves that

dimT/m
H0(X0(pM)F`

,Ω)[m] ≤ 1

for all m | `. Now apply Lemma 3.12

In the context of Mazur’s paper, where p = pM , we see from Lemma 3.13
that T and T′ agree away from p. At p, we can still use the q-expansion
principle because of the arguments in [Maz77, Ch.II §4]. Thus in this case
T = T′, as we asserted above.

The question of multiplicity 1 at p for H0(X0(pM)F`
,Ω)[m] is discussed in

[MR91], where the authors establish multiplicity 1 for maximal ideals m | p for
which the associated mod p Galois representation is irreducible and not p-old.
(A representation is p-old if it arises from S2(Γ0(M)).)

Lemma 3.14 (Wiles). If m is an ordinary prime of T of characteristic ` and
ord`(pM) = 1, then m is not in the support of T′/T.

Proof. This follows from [Wil95, Lem. 2.2, pg. 485], which proves, under a suit-
able hypothesis, that H0(X0(pM)Fp

,Ω)[m] is 1-dimensional if m is a maximal
ideal of T that divides p. The “suitable hypothesis” is that m is ordinary, in
the sense that Tp 6∈ m. (Note that Tp is often denoted Up in this context.) It
follows from Wiles’s lemma that T′ = T locally at m whenever m is an ordinary
prime whose residue characteristic exactly divides the level (which is pM here).
We make a few further comments about the proof of this lemma.

1. Wiles considers X1(M,p) instead of X0(pM), which means that he is
using Γ1(M)-structure instead of Γ0(M)-structure. This surely has no
relevance to the issue at hand.
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2. Wiles assumes (on page 480) that p is an odd prime, but again this
assumption is not relevant to our question.

3. The condition that m is ordinary does not appear explicitly in the state-
ment of the lemma; instead it is a reigning assumption in the context of
his discussion.

4. We see by example that Wiles’s “ordinary” assumption is less stringent
than the assumption in [MR91]; note that [MR91] rule out cases where
m is both old and new at p, whereas Wiles is happy to include such
cases. (On the other hand, Wiles’s assumption is certainly nonempty,
since it rules out maximal ideals m that arise from non-ordinary forms of
level N .) Here is an example with p = 2 and N = 11: There is a unique
newform f =

∑

anqn of level 11, and T = Z[T2] ⊂ End(J0(22)), where
T 2

2 − a2T2 + 2 = 0. Since a2 = −2, we have T ∼= Z[
√
−1]. We can choose

the square root of −1 to be T2 + 1. Then T2 is a generator of the unique
maximal ideal m of T with residue characteristic 2.

We now summarize the conclusions we can make from the lemmas so
far. Wiles’s lemma and the standard q-expansion argument (Lemma 3.13 and
Lemma 3.14) imply that T and T′ agree locally at each rational prime that
is prime to the level pM , and also at each maximal ideal m dividing p that is
ordinary, in the sense that Tp 6∈ m. A more palatable description of the situ-
ation involves considering the Hecke algebra T and its saturation T′ at some
level N ≥ 1. Then T = T′ locally at each maximal ideal m that is either prime
to N or that satisfies the following supplemental hypothesis: the residue char-
acteristic of m divides N only to the first power and m is ordinary. In Mazur’s
original context, the level N is prime. Moreover, we have T 2

N = 1 because there
are no forms of level 1. Accordingly, each m dividing N is ordinary, and we
recover Mazur’s equality T = T′ in this special case.

3.3.2 Degrees and Congruences

Let e ∈ T ⊗ Q be as in Section 3.2. Let A ⊂ J0(pM) be the image of e (note
that we denoted this image by A∨ in Section 3.2). For t ∈ T, let tA be the
restriction of t to A, and let tB be the image of t in End(B). Let TA be the
subgroup of End(A) consisting of the various tA, and define TB similarly. As
before, we obtain an injection j : T ↪→ TA ×TB with finite cokernel. Because
j is an injection, we refer to the maps πA : T → TA and πB : T → TB, given
by t 7→ tA and t 7→ tB, respectively, as “projections”.

Definition 3.15 (Congruence Ideal). The congruence ideal associated with
the projector e is I = πA(ker(πB)) ⊂ TA.

Viewing TA as TA × {0}, we may view TA as a subgroup of T⊗Q. Also,
we may view T as embedded in TA × TB , via the map j.
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Lemma 3.16. We have I = TA ∩ T.

A larger ideal of TA is J = AnnTA
(A ∩ B); it consists of restrictions to A

of Hecke operators that vanish on A ∩ B.

Lemma 3.17. We have I ⊂ J .

Proof. The image in TA of an operator that vanishes on B also vanishes on
A ∩ B.

Lemma 3.18. We have J = TA ∩ End(J0(pM)) = TA ∩ T′.

Proof. This is elementary; it is an analogue of Lemma 3.16.

Proposition 3.19. There is a natural inclusion J/I ↪→ T′/T of T-modules.

Proof. Consider the map T → T ⊗ Q given by t 7→ te. This homomorphism
factors through TA and yields an injection ιA : TA ↪→ T ⊗ Q. Symmetrically,
we also obtain ιB : TB ↪→ T ⊗ Q. The map (tA, tB) 7→ ιA(tA) + ιB(tB) is an
injection TA × TB ↪→ T ⊗ Q. The composite of this map with the inclusion
j : T ↪→ TA × TB defined above is the natural map T ↪→ T ⊗ Q. We thus
have a sequence of inclusions

T ↪→ TA × TB ↪→ T ⊗ Q ⊂ End(J0(pM)) ⊗ Q.

By Lemma 3.16 and Lemma 3.18, we have I = TA∩T and J = TA∩T′. Thus
I = J ∩ T, where the intersection is taken inside T′. Thus

J/I = J/(J ∩ T) ∼= (J + T)/T ↪→ T′/T.

Corollary 3.20. If m is a maximal ideal not in SuppT(T′/T), then m is not
in the support of J/I, i.e., if T and T′ agree locally at m, then I and J also
agree locally at m.

Note that the Hecke algebra T acts on J/I through its quotient TA, since
the action of T on I and on J factors through this quotient.

Now we specialize to the case where A is ordinary at p, in the sense that the
image of Tp in TA, which we denote Tp,A, is invertible modulo every maximal
ideal of TA that divides p. This case occurs when A is a subvariety of the
p-new subvariety of J0(pM), since the square of Tp,A is the identity. If m | p
is a maximal ideal of T that arises by pullback from a maximal ideal of TA,
then m is ordinary in the sense used above. When A is ordinary at p, it follows
from Lemma 3.14 and Proposition 3.19 that I = J locally at p. The reason
is simple: regarding I and J as TA-modules, we realize that we need to test
that I = J at maximal ideals of TA that divide p. These ideals correspond to
maximal ideals m | p of T that are automatically ordinary, so we have I = J
locally at m because of Lemma 3.14. By Lemma 3.13, we have T = T′ locally
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at primes away from the level pM . Thus we conclude that I = J locally at all
primes ` - pM and also at p, a prime that divides the level pM exactly once.

Suppose, finally, that A is the abelian variety associated to a newform f of
level pM . The ideal I ⊂ TA measures congruences between f and the space of
forms in S2(Γ0(pM)) that are orthogonal to the space generated by f . Also,
A ∩ B is the kernel in A of the map “multiplication by the modular degree”.
In this case, the inclusion I ⊂ J corresponds to the divisibility ñAf

| r̃Af
,

and we have equality at primes at which I = J locally. We conclude that the
congruence exponent and the modular exponent agree both at p and at primes
not dividing pM , which completes our proof of Theorem 3.5.

Remark 3.21. The ring

R = End(J0(pM)) ∩ (TA × TB)

is often of interest, where the intersection is taken in End(J0(pM)) ⊗ Q. We
proved above that there is a natural inclusion J/I ↪→ T′/T. This inclusion
yields an isomorphism J/I

∼−→ R/T. Indeed, if (tA, uB) is an endomorphism of
J0(pM), where t, u ∈ T, then (tA, uB) − u = (tA, 0) is an element of J . The
ideals I and J are equal to the extent that the rings T and R coincide. Even
when T′ is bigger than T, its subring R may be not far from T.

4 Quotients of arbitrary dimension: generalization of the Manin
Constant

Let the notation be as in the beginning of Section 3. Let Jold denote the
abelian subvariety of J generated by the images of the degeneracy maps from
levels that properly divide N (e.g., see [Maz78, §2(b)]) and let Jnew denote the
quotient of J by Jold.

In Section 4.1, we generalize the notion of the Manin constant to quotients A
as above, and conjecture that this constant is 1 for newform quotients of J0(N)
and J1(N). In Section 4.2, we show that the (generalized) Manin constant is an
integer. In the next two sections, we give generalizations of some of the results
from Section 2 to quotients A that factor through J0(N)new. In Section 4.3,
we show that if the level N is squarefree and A is a factor of J0(N)new, then
the Manin constant is a power of 2, whose exponent is bounded above by the
dimension of A if A is a newform quotient. In Section 4.4, we prove that if
A is a newform quotient of J0(N) and the level is squarefree, then the Manin
constant is coprime to the congruence number.

4.1 The definition of the generalized Manin constant and a con-
jecture

As in Section 3.1, if R is a subring of C, let S2(R) = S2(Γ;R) denote the
T-submodule of S2(Γ;C) consisting of modular cuspforms whose Fourier ex-
pansions at ∞ have coefficients in R. Note that S2(R) ∼= S2(Z) ⊗ R.
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If A is an abelian variety over Q and n is a positive integer, let AZ[1/n] denote
the Néron model of A over Z[1/n]. On a Néron model, the global differentials
are the same as the group of invariant differentials, so the group H0(AZ,Ω1

AZ/Z)

is free of rank d, where d = dim(A) and Ω1
AZ/Z is the sheaf of differentials on

the Néron model AZ of A. Let D be a generator of
∧d

H0(AZ,Ω1
AZ/Z).

The real volume ΩA of A is the volume of A(R) with respect to the measure
given by D. This quantity is of interest because it appears in the Birch and
Swinnerton-Dyer conjecture, which expresses the ratio L(A, 1)/ΩA in terms of
certain arithmetic invariants of A (see [Lan91, Chap. III, §5] and [AS05]). Let
g1, . . . , gd be a Z-basis of S2(Z)[I], and for j = 1, . . . , d, let

ω′
j = 2πigj(z)dz ∈ H0(X,ΩX/Q) = H0(J,ΩJ/Q)

(where we use the standard map X → J that sends the cusp ∞ to 0). As before,
let φ2 denote the quotient map J → A. Then φ∗

2 induces an isomorphism
H0(A,ΩA/Q) → ⊕

j Qw′
j . For j = 1, . . . , d, let ωj = (φ∗

2)
−1ω′

j .
In calculations (see [AS05]), or while proving formulas regarding the ratio

mentioned above (see [Aga99, §2]), instead of working with ΩA, it is easier to
work with the volume Ω′

A of A(R) with respect to the measure given by ∧jωj .
There exists c ∈ Q∗ such that D = c · ∧jωj . The absolute value of c depends
only on I, and is independent of other choices made above.

Definition 4.1. Let A be an optimal quotient of J attached to an ideal I of
the Hecke algebra, as above. The Manin constant cA of the optimal quotient A
is the absolute value of the constant c defined above.

If A has dimension one, then cA is as in Definition 2.2. The constant c as de-
fined above was considered by Gross [Gro82, (2.5) on p. 222] and Lang [Lan91,
III.5, p.95], although they did not explicitly state its relation to the usual
Manin constant (for elliptic curves). The constant cA was defined for a partic-
ular quotient A in [Aga99], where it was called the generalized Manin constant.
In [CES03] it is called the Manin index.

If one works with the easier-to-compute volume Ω′
A instead of ΩA, it is

necessary to obtain information about cA in order to make conclusions regarding
the Birch and Swinnerton-Dyer conjecture, since ΩA = cA · ΩA′ . This is our
motivation for studying the Manin constant. Cremona’s method for proving
that cA = 1 for a specific elliptic curve, i.e., computing c4 and c6 and checking
that they are invariants of a minimal Weierstrass model, is of little use when A
has dimension greater than one, since there is no simple analogue of the minimal
Weierstrass model for general A.

Note that the Manin constants cA might not equal 1, especially if A is not
a quotient of Jnew (see Remark 4.10). At the same time, if A is a newform
quotient and the level N is squarefree, then Theorems 4.11, 4.12, and 4.13
suggest that the Manin constant is 1 for such quotients.

In the case when the level is not square free, computations of [FpS+01]
involving Jacobians of genus 2 curves that are quotients of J0(N)new show that
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cA = 1 in 28 case of 2-dimensional newform quotients. These include quotients
having the following non-square-free levels:

32 · 7, 32 · 13, 53, 33 · 5, 3 · 72, 52 · 7, 22 · 47, 33 · 7.

The above observations are evidence for the following conjecture, which
generalizes Conjecture 2.3 of Manin:

Conjecture 4.2. If f is a newform on Γ0(N) or Γ1(N), then cAf
= 1.

Remark 4.3. The above conjecture does not hold if all we know is that
J0(N) → A factors through J0(N)new. Adam Joyce [Joy03] found an optimal
quotient of J0(431)new whose Manin constant is 2 (this example is motivated
by [Kil02]); note that this optimal quotient is not attached to a single newform.

4.2 Integrality of the Manin constant

We continue to use the notation introduced so far in Section 4. In this section
we prove Theorem 4.7, which asserts that the (generalized) Manin constant is
an integer, which generalizes Thm. 2.4 of Edixhoven (see also [CES03, §6.1.2]
for a similar argument). The proof is itself a generalization of that of [Edi91,
Prop. 2]. The main idea is to construct an injective map on H0(A,Ω1

A/Q) using

“q-expansions”, then show that the image of H0(AZ,Ω1
AZ/Z) under this map is

contained in the image of ⊕jZωj . We assume that N > 4, which is harmless,
since J1(N) has dimension 0 for N ≤ 10.

Using the standard immersion X ↪→ J sending ∞ to 0, we have maps

X ↪→ J → A. (4)

If X = X1(N), then we obtain a map X1(N) → A. If X = X0(N), then
composing with the standard map X1(N) → X0(N) we get a map X1(N) → A.
In either case, denote the resulting map X1(N) → A by φA.

Consider the model Xµ(N) over Z for X1(N) whose affine points
parametrize isomorphism classes of pairs (E, i), where E is an elliptic curve
and i : µN ↪→ Ereg is an immersion, as in [Kat76] (see also [DI95, §9.3.6,
p. 80]). Since Xµ(N) is smooth over Z (by [Kat76, §II.2.5]), the Néron map-
ping property implies that there is a map

Xµ(N) → AZ,

which we again denote by φA.
The Tate curve Eq over Z[[q]] with the canonical immersion of µN gives a

map (see, e.g., [DI95, p. 112])

τ : SpecZ[[q]] → Xµ(N). (5)

Pulling back differentials, gives a map

H0
(

Xµ(N),Ω1
Xµ(N)/Z

)

−→ H0
(

SpecZ[[q]],Ω1
Z[[q]]/Z

)

.
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Now H0(SpecZ[[q]],Ω1
Z[[q]]/Z) is free of rank one over Z[[q]] with generator dq,

so we get a map

H0
(

Xµ(N),Ω1
Xµ(N)/Z

)

−→ Z[[q]].

Let q-exp denote the composite

H0
(

Xµ(N),Ω1
Xµ(N)/Z

)

−→ Z[[q]]
q·−→ Z[[q]],

where the second map is multiplication by q.
Next, we relate q-exp to the usual Fourier-expansion over C. Since Xµ(N)⊗

C ∼= X1(N)C, the Tate curve over C (see [DR73, VII.4.2]) gives a map

τC : SpecC[[q]] → X1(N)C,

which is the base extension of (5) and which identifies q with the local parameter
e2πiz on X1(N)C at the cusp ∞. As above, pulling back differentials, gives a
map

H0
(

X1(N)C,Ω1
X1(N)/C

)

−→ C[[q]].

Let F -exp denote the composite

H0
(

X1(N)C,Ω1
X1(N)/C

)

−→ C[[q]]
q·−→ C[[q]],

where the second map is multiplication by q.
We obtain a commutative diagram

H0(AZ,Ω1
AZ/Z)

φ∗

A //

²²

H0(Xµ(N),Ω1
Xµ(N)/Z)

q-exp
//

²²

Z[[q]]

²²
H0(AC,Ω1

AC/C)
φ∗

A⊗C
// H0(X1(N)C,Ω1

X1(N)/C)
F -exp

// C[[q]]

(6)

in which the first and last vertical maps are injections.
The relation of F -exp to the Fourier expansion of cusp forms is given by

the following lemma. Let ψ be the isomorphism

ψ : S2(Γ1(N),C)
∼=→ H0(X1(N)C,Ω1

X1(N)/C)

given by f(z) 7→ 2πif(z)dz.

Lemma 4.4. Let f ∈ S2(Γ1(N),C), and let {an} be the coefficients of the
Fourier expansion of f . Then F -exp(ψ(f)) =

∑

n anqn.

Proof. If f ∈ S2(Γ1(N),C), and its Fourier series is
∑

n ane2πizn, then ψ(f) =
2πi

∑

n ane2πizndz. Since τC identifies q with the local parameter e2πiz, we see
that the pullback of ψ(f) via τC to H0(SpecC[[q]],Ω1

C[[q]]/C) is
∑

n anqn−1dq.

So F -exp(ψ(f)) =
∑

n anqn.
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Lemma 4.5. The group q-exp
(

φ∗
A

(

H0(AZ,Ω1
AZ/Z)

))

is a subgroup of

F -exp(ψ(S2(Γ1(N),Z)[I])).

Proof. If x ∈ H0(Xµ(N),Ω1
Xµ(N)/Z) maps to y ∈ H0(X1(N)C,Ω1

X1(N)/C), then

by the commutativity of the right half of the commutative diagram above and
by Lemma 4.4, the Fourier expansion of ψ−1(y) ∈ S2(Γ1(N),C) is the same as
q-exp(x), i.e., has integral Fourier coefficients; hence ψ−1(y) ∈ S2(Γ1(N),Z).
This gives an injection

q-exp
(

H0(Xµ(N),Ω1
Xµ(N)/Z)

)

↪→ F -exp(ψ(S2(Γ1(N),Z))).

Now the lemma follows from the fact that φ∗
A(H0(AZ,Ω1

AZ/Z))[I] = 0.

Proposition 4.6. We have H0(AZ,Ω1
AZ

) ⊆ ⊕jZωj, considered as subgroups
of H0(A,Ω1

A/Q).

Proof. Let φ denote the composite

H0(AC,Ω1
AC/C)

φ∗

A⊗C−→ H0(X1(N)C,Ω1
X1(N)/C)

F -exp−→ C[[q]].

Now φ∗
A is injective: if X = X1(N), this follows by considering pullbacks along

the sequence of maps in (4); if X = X0(N), then a similar argument works,
noting that the pullback of differentials along X1(N) → X0(N) is injective.
Also, F -exp is injective since the Fourier expansion map is injective. Thus φ is
injective.

By Lemma 4.5 and diagram (6), we have φ(H0(AZ,Ω1
AZ/Z)) ⊆ φ(⊕jZωj).

As φ is injective, H0(AZ,Ω1
AZ

) ⊆
⊕

j Zωj .

We obtain the following theorem as a corollary of Proposition 4.6:

Theorem 4.7. The Manin constant cA is an integer.

We finish this section with a few remarks.

Remark 4.8. The quotient

⊕jZωj

H0(AZ,Ω1
AZ

)
∼= ψ(S2(Γ1(N),Z))

φ∗
A(H0(AZ,Ω1

AZ
))

∼= F -exp(ψ(S2(Γ1(N),Z)[I]))

q-exp
(

φ∗
A

(

H0(AZ,Ω1
AZ

)
))

is in fact a module over T, and hence one may in general be interested in its
module structure, as opposed to just the Manin constant, which is its order.

Remark 4.9. The reason we used the model Xµ(N) was that we needed a
smooth model over Z so that we can use the Néron mapping property to define
a q-expansion map over Z that agreed with the usual one over C. When A is
a quotient of J0(N), (i.e., when J = J0(N)), we could use a model for X0(N)
in the proof above, as we describe now.
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By [KM85, 6.6.1], the moduli problem [Γ0(N)] ([KM85, 3.4]) is rela-
tively representable and finite. The moduli problem [Γ0(N)] is also regular
(by [KM85, 6.6.1] again), and hence normal, and so the associated coarse mod-
uli scheme M([Γ0(N)]) is normal (by [KM85, 8.1.2]). So one can use [KM85,
§8.6] to compactify it; call the resulting compactification M0(N). Let M0(N)0

be the open part of M0(N) where the projection to SpecZ is smooth. For
the case where J = J0(N), we could have used M0(N)0 instead of Xµ(N) for
proving integrality of the Manin constant. This is what was done in the proof
of Prop. 2 in [Edi91], but some of the details were skipped, which we mention
two paragraphs below.

Note that q-expansion maps over Z or Z[1/m] (where m is the largest square
that divides N) on differentials on certain models of X0(N) have been con-
structed in several places in the literature (e.g., [Maz78, p.141], [AU96, p.271]),
and the usual reference given is [DR73]. However, this seems inadequate, since
in [DR73], one has to invert N to get a moduli-theoretic interpretation at the
cusps. And in [KM85], while the models are over Z, they do not give a mod-
uli interpretation at the cusps. We now indicate how the construction of a
q-expansion map over Z for differentials on M0(N)0 can be justified (this is
probably well-known to experts).

One method, communicated to us by B. Edixhoven, is as follows: Consider
the Tate curve Tate(q) over Z((q)) as in [KM85, p.258] along with its canon-
ical subgroup µN . This gives us an element of M0(N)(Z((q))) as in [KM85,
§8.11]. One then verifies that this element extends uniquely to an element
of M0(N)(Z[[q]]). Thus we get a map τ : SpecZ[[q]] → M0(N) and compos-
ing with the map SpecZ → SpecZ[[q]] (given by q 7→ 0)), we get a point in
M0(N)(Z), called the cusp ∞. The structure along ∞ of M0(N) is described
in [Edi90, §1.2]; in particular, the completion along ∞ is given by Z[[q]], and so
∞ is a smooth point. Thus the map τ factors through M0(N)0, and so we can
define a q-expansion map on H0(M0(N)0,ΩM0(N)0/Z) as we did (for Xµ(N))
above. The usual q-expansion map over C is just given by extending scalars
from Z to C in the description just above, and hence our q-expansion map is
compatible with the usual one over C.

Another method, which is more moduli-theoretic, was communicated to us
by B. Conrad, and is as follows: it is shown in [Con03] that one can merge
the “affine” moduli-theoretic Z-theory in [KM85] with the “proper” moduli-
theoretic Z[1/N ]-theory in [DR73]. Using this, one can show that the proper
schemes over Z in [KM85] are in fact moduli schemes for generalized elliptic
curves with “Drinfeld structure”. Then, by the moduli interpretation, the Tate
curve with its canonical subgroup gives a map τ and the cusp ∞ as in the pre-
vious paragraph. Next, one can use a deformation theoretic argument to show
that the cusp ∞ is a smooth point, i.e., that τ factors through M0(N)0. As in
the previous paragraph, one can now pullback via τ to get the q-expansion map
over Z, which by the moduli interpretation agrees with the usual q-expansions
over C.
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Remark 4.10. The Manin constants cA might not equal 1. For example, let
Γ = Γ0(N), and suppose A = J0(N) is the quotient by the trivial ideal. Let us
work in the setting of Remark 4.9, using the model M0(N)0 over Z of X0(N).
Then, since A = J0(N), the map φ∗

A is just

H0(J0(N)Z,Ω1
J0(N)/Z) → H0(M0(N)0,Ω1

M0(N)0/Z),

which is an isomorphism. Let us identify S2(Z) with its image in Z[[q]]. Then
using the argument in the proof of Proposition 4.6 we see that cA is the order
of the cokernel of the map

H0(M0(N)0,Ω1
M0(N)0/Z)

q-exp−−−→ S2(Z), (7)

where q-exp is the q-expansion map discussed in Remark 4.9. The map (7)
need not be surjective, and the order of its cokernel can be calculated by using
methods in [DR73, VII.3.17] (see [Edi03]). For example, B. Edixhoven observed
that for N = 33 the cokernel has order 3, so cJ0(33) = 3. B. Edixhoven also
informed us that if N is square free, then the map (7) is surjective if and only if
there are no old spaces in S2(Γ0(N),C) (cf. [Edi03]). See also Remark 4.3 for
an example of a quotient of J0(N), with N prime, and with Manin constant 2.

Note that H0(M0(N)0Z,Ω1
M0(N)0/Z) is precisely the subgroup of S2(Q) =

H0(X0(N),Ω1
X0(N)/Q) of elements that have integral Fourier expansion at all

the cusps (this follows from the interpretation in [Edi03] of the integrality con-
dition in terms of a differential having no pole along along any irreducible com-
ponent of M0(N)0). Whereas S2(Z) consists of differentials that are required
only to have integral Fourier expansion at the cusp ∞.

If one assumes the BSD conjecture, then a comparison of formulas for the
ratio L(Je, 1)/ΩJe

, where Je is the winding quotient of prime level, and the
corresponding formulas for winding quotients of level a product of two distinct
primes (see [Aga00, Thm. 3.2.2 and Thm. 4.2.1]) suggests that the Manin
constant of such winding quotients is not 1 when there are old forms involved
(see [Aga00, §4.2.1] for details).

4.3 Generalizations of theorems of Mazur and Raynaud

In this section, we prove the following two theorems:

Theorem 4.11. Let A be a quotient of J = J0(N) by an ideal of the Hecke
algebra such that the quotient map factors through J0(N)new. If p is a prime
such that p | cA, then p2 | 4N .

Theorem 4.12. Let f be a newform on Γ0(N), and let Af be the associated
newform quotient. If 4 - N , then ord2(cAf

) ≤ dimAf .

Theorem 4.11 generalizes Mazur’s Theorem 2.5, while Theorem 4.12 gener-
alizes Raynaud’s Theorem 2.6.
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The proofs of the theorems are similar. Suppose p || N . The reduction
X0(N)Fp

is a union of two copies of X0(N/p)Fp
, identified at the supersingular

points. A differential on X0(N)Fp
has q-expansion 0 if and only if it vanishes on

the component X of X0(N)Fp
that contains ∞. Since there can be differentials

that vanish on X, but not on the other component, the q-expansion map on
differentials on X0(N)Fp

need not be injective. However, as Mazur observed in
[Maz78], if a differential is an eigenvector for the Atkin-Lehner involution Wp,
then it is 0 on one component if and only if it is 0 on both components, since
Wp swaps the two components. That the q-expansion map is injective on each
eigenspace for Wp is one of the key ideas behind the proofs of Theorems 4.11,
4.12, and 4.13.

Proof of Theorem 4.11. We want to prove that that cA is a unit in Z[ 1
2m ],

where m is the largest square dividing N . We do this by generalizing the proof
of [Maz78, Prop. 3.1].

Let R = Z[ 1
2m ], and let JR denote the Néron model of J0(N) over R. Let X

be the smooth locus of a minimal proper regular model for X0(N) over R, and
let ΩX denote the sheaf of “regular differentials”, denoted Ω in [Maz78, §2(e)].

Let π denote the map J0(N) → A. Consider the diagram

H0(AR,ΩAR
)

π∗

−→ H0(JR,ΩJR
) ∼= H0(X ,ΩX )

q-exp−−−−→ R[[q]], (8)

where the map q-exp is as in [Maz78, §2(e)]. (Note that we defined a different
q-expansion map in Section 4.2.)

The composite of the maps in (8) must be an inclusion because
H0(AR,ΩAR

) is torsion free and the composite is an inclusion after tensoring
with C. To show that the generalized Manin constant is a unit in R, it suffices
to check that the image of H0(AR,ΩAR

) in R[[q]] is saturated, in the sense that
the cokernel is torsion free. This is because the image of S2(Γ0(N);R)[I] is
saturated in R[[q]] and S2(Γ0(N);R)[I] ⊗ Q = H0(AR,ΩAR

) ⊗ Q.
For the image of H0(AR,ΩAR

) in R[[q]] to be saturated means that the
quotient D is torsion free. Let ` be a prime not dividing 2m. Tensoring

0 → H0(AR,ΩAR
)

q-exp−−−→ R[[q]] → D → 0

with F`, we obtain

0 → D[`] → H0(AR,ΩAR
) ⊗ F` → F`[[q]] → D ⊗ F` → 0.

Here we have used either the snake lemma applied to multiplication-by-` or
that Tor1(D,F`) is the `-torsion in D, and that Tor1(−,F`) vanishes on the
torsion-free group R[[q]]. To show D[`] = 0, it suffices to prove injectivity of

Φ : H0(AR,ΩAR
) ⊗ F` −→ F`[[q]].

Since A is optimal, J has good or semistable reduction at `, and ` 6= 2,
[Maz78, Cor 1.1] gives an exact sequence

0 → H0(AZ`
,ΩAZ`

) → H0(JZ`
,ΩJZ`

) → H0(BZ`
,ΩBZ`

) → 0
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where B = ker(J → A). Since H0(BZ`
,ΩBZ`

) is torsion free, the map

H0(ARZ`
,ΩARZ`

) ⊗ F` → H0(JRZ`
,ΩJRZ`

) ⊗ F`
∼= H0(XF`

,ΩXF`
)

is injective. We also remark that

H0(AR,ΩAR
) ⊗ F`

∼= H0(AZ`
,ΩAZ`

) ⊗ F`,

because Z` is torsion free, hence flat over R. This proves injectivity of

H0(AR,ΩAR
) ⊗ F` → H0(XF`

,ΩXF`
).

If ` - N , then injectivity of Φ now follows from the q-expansion principle,
which asserts that the q-expansion map H0(XF`

,ΩXF`
) → F`[[q]] is injective.

(This part of the argument does not assume that A is new.)
Next suppose that ` | N ; note that ` || N because ` - m. As mentioned

above, the reduction XF`
is a union of two copies of X0(N/`)F`

identified
transversely at the supersingular points, and these two copies are swapped
under the action of the Atkin-Lehner involution W`. If ω ∈ ker(Φ), then
the q-expansion principle implies that ω vanishes on the irreducible component
containing the cusp ∞. The action of W` on H0(AR,ΩAR

)⊗F` is diagonalizable
since its minimal polynomial divides X2 − 1, and X2 − 1 has distinct roots
since ` 6= 2, and the eigenvalues ± 1 are in F`. Let ω ∈ ker(Φ) be in the
+1 eigenspace for the action of W`. If ω is also nonzero on the component
that does not contain ∞, then ω = W`(ω) is nonzero when restricted to the
component that contains ∞, which is a contradiction. Therefore ω = 0. A
similar argument shows that if ω ∈ ker(Φ) is in the −1 eigenspace for the
action of W`, then ω = 0. Hence Φ is injective, as required.

Proof of Theorem 4.12. Recall that we want to prove that if A = Af is a
quotient of J = J0(N) attached to a newform f , and 4 - N , then ord2(cA ≤
dim(A). The proof closely follows the one in [AU96], except at the end we
argue using indexes instead of multiples.

Let B denote the kernel of the quotient map J → A. Consider the exact
sequence 0 → B → J → A → 0, and the corresponding complex BZ2

→ JZ2
→

AJZ2
of Néron models. Because JZ2

has semiabelian reduction (since 4 - N),
Theorem A.1 of the appendix of [AU96, pg. 279–280], due to Raynaud, implies
that there is an integer r and an exact sequence

0 → Tan(BZ2
) → Tan(JZ2

) → Tan(AZ2
) → (Z/2Z)r → 0.

Here Tan is the tangent space at the 0 section; it is a free abelian group of
rank equal to the dimension. Note that Tan is Z2-dual to the cotangent space,
and the cotangent space is isomorphic to the global differential 1-forms. The
theorem of Raynaud mentioned above is the generalization to e = p − 1 of
[Maz78, Cor. 1.1], which we used above in the proof of Theorem 4.11.



22 Agashe, Ribet, Stein

Let C be the cokernel of Tan(BZ2
) → Tan(JZ2

). We have a diagram

0 // Tan(BZ2
) // Tan(JZ2

) //

%% %%KKKKK
Tan(AZ2

) // (Z/2Z)r // 0.

C
+

®

99rrrrrr

(9)

Note that C ⊂ Tan(AZ2
), so C is torsion free, hence C is a free Z2-module

of rank d = dim(A). Let C∗ = HomZ2
(C,Z2) be the Z2-linear dual of C.

Applying the HomZ2
(−,Z2) functor to the two short exact sequences in (9),

we obtain exact sequences

0 → C∗ → H0(JZ2
,ΩJ/Z2

) → H0(BZ2
,ΩB/Z2

) → 0,

and
0 → H0(AZ2

,ΩA/Z2
) → C∗ → (Z/2Z)r → 0. (10)

Note that the (Z/2Z)r on the right in (10) is really Ext1Z2
((Z/2Z)r,Z2), which

is isomorphic to (Z/2Z)r. Also, (10) implies that r ≤ d = dim(A).
Let X ′ be the smooth locus a minimal proper regular model for X0(N)

over Z[1/m], where m is the largest square dividing N , and let ΩX ′ denote the
sheaf of “regular differentials” on X ′ (denoted Ω in [Maz78, §2(e)]).

Arguing as in the last two paragraphs of the proof of Theorem 4.11 above
(note that since A is attached to a single newform, the Atkin-Lehner involu-
tion W2 acts either as +1 or as −1), we see that the composition

C∗ ⊗ F2 → H0(JZ2
,ΩJ/Z2

) ⊗ F2
∼= H0(X ′

F2
,ΩX ′

F2
)

q-exp−−−−→ F2[[q]]

is injective. Thus, just as in the proof of Theorem 4.11, we see that the image
of C∗ in Z2[[q]] is saturated. The Manin constant for A at 2 is the index of
the image via q-expansion of H0(AZ2

,Ω) in Z2[[q]] in its saturation. Since the
image of C∗ in Z2[[q]] is saturated, the image of C∗ is the saturation of the
image of H0(AZ2

,Ω), so the Manin index at 2 is the index of H0(AZ2
,Ω) in C∗,

which is 2r by (9), hence is at most 2d.

4.4 The Manin constant and congruence primes

In this section, we prove the following theorem, whose proof builds on tech-
niques of [AU96]:

Theorem 4.13. Let A = Af be a quotient of J = J0(N) attached to a new-
form f . If p | cAf

is a prime, then p2 | N or p | r̃Af
.

The key idea is to project the “Manin index” to the differentials on the
dual of A and to use a “conjugate isogeny” to bring it back to differentials
on a model of X0(N), and then use an argument similar to the one in the
last two paragraphs of the proof of Theorem 4.11. Note that the techniques
of the proof of this theorem can be used to prove that if the quotient map
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J0(N) → A factors through J0(N)new, and if p | cA, then p2 | N or p = 2 or
p | r̃A (see Remark 4.17). However, this does not add anything new, in light of
Theorem 4.11.

We will use notation consistent with [AU96] since we will follow their tech-
niques closely. If G is a finite group, we denote its order by #G.

Suppose A1 and A2 are abelian varieties such that there is an isogeny
f : A1 → A2. If n is a positive integer which annihilates kerf , then the
multiplication by n map on A1 factors through A1/kerf ∼= A2, thus giving an
isogeny f ′ : A2 → A1 such that f ′ ◦ f is the multiplication by n map on A1.
Also one sees that f ◦ f ′ is the multiplication by n map on A2.

We apply this to our situation as follows. Recall that φ2 denotes the quotient
map J → A, and φ1 denotes the composition of the dual map A∨ → J∨ with
the canonical polarization J∨ ∼= J . By Proposition 3.2, the composite

A∨ φ1−→ J
φ2−→ A (11)

is an isogeny. As in Definition 3.3, we denote the exponent of the kernel of this
isogeny by ñA. There is an isogeny φ′ : A → A∨ such that the composite

A∨ φ1−→ J
φ2−→ A

φ′

−→ A∨ (12)

is the multiplication by ñA map on A∨, and the composite

A
φ′

−→ A∨ φ1−→ J
φ2−→ A (13)

is the multiplication by ñA map on A.
Pulling back differentials along φ2 then φ1 in (11), we obtain maps:

H0(AC,Ω1
A/C)

φ∗

2−→ H0(JC,Ω1
J/C)

φ∗

1−→ H0(A∨
C,Ω1

A∨/C).

Let m denote the largest square that divides the level N and let S =
SpecZ[1/m]. Let M0(N) be as in Remark 4.9. Then M0(N)S is semistable
over S. Let Ω be the relative dualizing sheaf of M0(N)S over S. Consider the
map

q-exp : H0(M0(N)S ,Ω) ↪→ Z[1/m][[q]]

in [AU96, §2.1] (cf. Remark 4.9). Note that we are abusing notation slightly
since we had defined a different q-expansion map in Section 4.2.

As mentioned in [AU96, §2.1] we have an inclusion

q-exp : H0(M0(N)S ,Ω) ↪→ S2(Z[1/m])

(this really follows from the discussion in Section 4.2). This map is not an
isomorphism in general, but it induces an isomorphism

q-exp : H0(M0(N)Fp
,Ω)

∼=−→ S2(Fp) (14)
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for each prime p that does not divide N (see [AU96, §2.1], and the arguments
in the proof of Theorem 4.11).

We have

H0(M0(N)S ,Ω) ↪→ S2(Z[1/m]) ↪→ S2(C) ∼= H0(JC,Ω1
J/C).

Applying φ∗
1 to the first two groups, we get an injection

φ∗
1(H

0(M0(N)S ,Ω)) ↪→ φ∗
1(S2(Z[1/m])),

where the source and target are viewed as sitting in H0(A∨
C,ΩA∨/C). Denote

the cokernel of the above map by C. It is a finite group and, by (14), the
only primes that can divide its order are the primes that divide N . An easy
generalization of [AU96, Prop. 3.2] gives

φ∗
1(H

0(M0(N)S ,Ω)) = H0(A∨
S ,Ω1

A∨/S),

so we have an exact sequence

0 → H0(A∨
S ,Ω1

A∨/S) → φ∗
1(S2(Z[1/m])) → C → 0.

On considering the quotient of the middle group above by the pullback
of H0(AS ,Ω1

A/S) under φ2 ◦ φ1, we obtain

0 →
H0(A∨

S ,Ω1
A∨/S)

φ∗
1φ

∗
2H

0(AS ,Ω1
A/S)

→ φ∗
1(S2(Z[1/m]))

φ∗
1φ

∗
2H

0(AS ,Ω1
A/S)

→ C → 0. (15)

Now φ∗
1 is injective when restricted to φ∗

2H
0(AC,Ω1

A/C), because the pull-

back of the composite of the maps in (13) is injective, since it is multiplication
by ñA on a vector space over C. So, since

S2(Z)[I] ⊆ φ∗
2H

0(AC,Ω1
A/C),

we have a natural isomorphism

S2(Z)[I] ⊗ Z[1/m]

φ∗
2H

0(AS ,Ω1
A/S)

∼=−→ φ∗
1(S2(Z)[I] ⊗ Z[1/m])

φ∗
1(φ

∗
2H

0(AS ,Ω1
A/S))

.

If n and m are positive integers, let nm denote the largest divisor of n that
is coprime to m.

By the discussion in Section 4.2,

(cA)m = #

(

S2(Z)[I] ⊗ Z[1/m]

φ∗
2H

0(AS ,Ω1
A/S)

)

.

So

(cA)m = #

(

φ∗
1(S2(Z)[I] ⊗ Z[1/m])

φ∗
1(φ

∗
2H

0(AS ,Ω1
A/S))

)

.
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Hence

#

(

φ∗
1(S2(Z[1/m]))

φ∗
1φ

∗
2H

0(AS ,Ω1
A/S)

)

= (cA)m · #

(

φ∗
1(S2(Z[1/m]))

φ∗
1(S2(Z)[I] ⊗ Z[1/m])

)

. (16)

As in the proof of [AU96, Prop. 3.3], we have isomorphisms

(

S2(Z)

S2(Z)[I] ⊕ W (I

)

⊗ Z[1/m]
∼=−→ S2(Z[1/m])

(S2(Z)[I] ⊗ Z[1/m]) ⊕ (W (I) ⊗ Z[1/m])

∼=−→ φ∗
1(S2(Z[1/m])))

φ∗
1(S2(Z)[I] ⊗ Z[ 1

m ])
.

Thus

#

(

φ∗
1(S2(Z[1/m])))

φ∗
1(S2(Z)[I] ⊗ Z[1/m])

)

= (rA)m.

Putting this in (16) and then using (15), we get

(cA)m · (rA)m = #

(

H0(A∨
S ,Ω1

A∨/S)

φ∗
1φ

∗
2H

0(AS ,Ω1
A/S)

)

· #C. (17)

Since the composite of the maps in (12) is multiplication by ñA, we see that

multiplication by some power of ñA kills

(

H0(A∨

S ,Ω1
A∨/S

)

φ∗

1φ∗

2H0(AS ,Ω1
A/S

)

)

. Thus we obtain

the following lemma:

Lemma 4.14. If p
∣

∣

∣
#

(

H0(A∨

S ,Ω1
A∨/S

)

φ∗

1φ∗

2H0(AS ,Ω1
A/S

)

)

is a prime, then p | ñA.

We already remarked that a prime can divide #C only if it divides N . The
main addition to the techniques of [AU96] is the following result, which further
controls the primes that can divide #C:

Proposition 4.15. If A = Af is a newform quotient of J0(N) and p | #C is
a prime, then p2 | N or p | r̃A.

Before proving Proposition 4.15 we use it to prove Theorem 4.13.

Proof of Theorem 4.13. Suppose p2 - N and p | cA. Then p | (cA)m, and so

by equation (17), p | #

(

H0(A∨

S ,Ω1
A∨/S

)

φ∗

1φ∗

2H0(AS ,Ω1
A/S

)

)

or p | #C. In the former case, by

Lemma 4.14, p | ñA, and hence by Proposition 3.11, p | r̃A and in the latter
case, by Proposition 4.15, p | r̃A.

Remark 4.16. The obstruction to proving a generalization of Theorem 2.7 to
dimension greater than 1 lies in equation (17). When A is an elliptic curve,
Abbes-Ullmo [AU96] prove that the quotient of differentials on the right hand
side of (17) divides (rA)m. Thus (cA)m | #C, which proves Theorem 2.7, since
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the prime divisors of #C divide N . When A has dimension bigger than 1,
the relationship between the quotient of differentials and (rA)m is unclear.
For example, Remark 3.6 suggests that divisibility might sometimes fail when
multiplicity one fails.

Proof of Proposition 4.15. We have the exact sequence

0 → φ∗
1(H

0(M0(N)S ,Ω)) → φ∗
1(S2(Z[1/m])) → C → 0. (18)

Suppose p is a prime such that p2 - N and p - r̃A. We want to show that
p - #C. We already know that the only primes that can divide #C are those
that divide N ; so we may assume that p exactly divides N . Then considering
the multiplication by p map applied to each term of the sequence (18) and
using the snake lemma, we get:

0 → C[p] → φ∗
1(H

0(M0(N)S ,Ω))⊗Fp
q-exp−−−→ φ∗

1(S2(Z[1/m]))⊗Fp → C⊗Fp → 0

(note the similarity to the situation in the proof of Theorem 4.11). Then to
show that p - #C, i.e., that C[p] is trivial, all we have to show is that the map

φ∗
1(H

0(M0(N)S ,Ω)) ⊗ Fp
q-exp−−−−−→ φ∗

1 (S2 (Z[1/m])) ⊗ Fp (19)

is injective.
The key idea is to use the isogeny φ′ defined at the beginning of this section.

We have maps

A∨ φ1→ J
φ2→ A

φ′

→ A∨ (20)

such that the composite is multiplication by ñA. Let φ′′ = φ′ ◦φ2. Pulling back
differentials, we get

H0(A∨
C,Ω1

A∨/C)
φ′′∗

−→ H0(JC,Ω1
J/C)

φ∗

1−→ H0(A∨
C,Ω1

A∨/C), (21)

where the composite is again multiplication by ñA.
By the Néron mapping property, the maps (20) extend to the corresponding

Néron models, and we see that

φ′′∗(φ∗
1(H

0(JS ,ΩJ/S))) ⊆ H0(JS ,ΩJ/S).

By [AU96, p.271], the canonical morphism X0(N) → J0(N) induces a canonical
isomorphism

H0(JS ,ΩJ/S)
∼=→ H0(M0(N)0S ,Ω) = H0(M0(N)S ,Ω).

Thus we see that the image of

φ∗
1(H

0(M0(N)S ,Ω)) = φ∗
1(H

0(JS ,ΩJ/S))
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under φ′′∗ lands in H0(M0(N)S ,Ω) = H0(JS ,ΩJ/S). Also, since p - r̃A, we
have

S2(Z[1/m]) ⊗ Fp = S2(Z[1/m])[I] ⊗ Fp ⊕ (W (I) ∩ S2(Z[1/m])[I]) ⊗ Fp.

Thus if f ∈ S2(Z[1/m])⊗Fp, then there exist unique f1 ∈ S2(Z[1/m])[I]⊗Fp

and f2 ∈ (W (I) ∪ S2(Z[1/m])[I]) ⊗ Fp such that f = f1 + f2. It then follows
that φ∗

1f = φ∗
1f1, and so φ′′∗(φ∗

1f) = ñAf1 ∈ S2(Z[1/m])⊗Fp. Thus the image
of φ∗

1(S2(Z[1/m])) ⊗ Fp under φ′′∗ lands in S2(Z[1/m]) ⊗ Fp.
Hence, applying the maps in (21) to the groups in (19), which are subgroups

of H0(A∨
C,Ω1

A∨/C), we get the following commutative diagram:

φ∗
1(H

0(M0(N)S ,Ω))Fp

φ′′∗

//

q-exp

²²

H0(M0(N)S ,Ω)Fp

φ∗

1 //

q-exp

²²

φ∗
1(H

0(M0(N)S ,Ω))Fp

q-exp

²²
φ∗

1(S2(Z[1/m]))Fp

φ′′∗

// S2(Z[1/m])Fp

φ∗

1 // φ∗
1(S2(Z[1/m]))Fp

.

The Atkin-Lehner involution Wp acts on φ∗
1(H

0(M0(N)S ,Ω)) ⊗ Fp and
since A is attached to a newform, Wp acts as either +1 or −1. Suppose x is
an element of φ∗

1(H
0(M0(N)S ,Ω)) ⊗ Fp that is in the +1 eigenspace for the

action of Wp and in the kernel of the map in (19), i.e., the left-most q-exp
map above. Then its image y = (φ′′∗)(x) in H0(M0(N)S ,Ω)⊗Fp above maps
to zero in S2(Z[1/m]) ⊗ Fp under the middle q-exp map, by commutativity of
the first square. But we have H0(M0(N)S ,Ω)⊗Fp

∼= H0(M0(N)Fp
,Ω). Since

p2 - N , M0(N)Fp
is a union of two irreducible components. Now q-exp(y) = 0

means that y ∈ H0(M0(N)Fp
,Ω) is zero on the component that contains the

cusp ∞. But x is an eigenvector for Wp, and hence so is y. But Wp is an
involution that swaps the two components of M0(N)Fp

. Hence y is zero on all
of M0(N)Fp

; i.e., y = 0. Note that this part of the argument is very similar to
the one towards the end of the proof of Theorem 4.11.

Looking at the top line in the diagram above, we find that x maps to zero
under the composite. But its image under this composite is ñAx, and so ñAx =
0. Since p - r̃A, Proposition 3.11 shows that p - ñA, and so x = 0. A similar
argument shows that if x is an element of φ∗

1(H
0(M0(N)S ,Ω))⊗Fp in the −1

eigenspace for the action of Wp and in the kernel of the map in (19), then
x = 0. This shows that the map (19) is injective, which is what was left to
prove.

Remark 4.17. Note that the fact that A is associated to a single newform was
used only in the last two paragraphs of the proof above. We could have used
the fact that the action of Wp on φ∗

1(H
0(M0(N)S ,Ω))⊗Fp is diagonalizable if

p 6= 2 (e.g., see the last paragraph of the proof of Theorem 4.11; the paragraph
at the beginning of Section 3.2 is also relevant here), to prove that if A is a
quotient of J0(N) by an ideal of the Hecke algebra such that the quotient map
factors through J0(N)new, and if p | #C, then p2 | N or p = 2 or p | r̃A. Then
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one would have the statement that for such a quotient, if p | cA, then p2 | N or
p = 2 or p | r̃A.
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Études Sci. Publ. Math. (1977), no. 47, 33–186 (1978).

[Maz78] B. Mazur, Rational isogenies of prime degree (with an appendix by
D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162.

[MR91] B. Mazur and K. A. Ribet, Two-dimensional representations in the
arithmetic of modular curves, Astérisque (1991), no. 196-197, 6,
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