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Chapter 1

Preface

This book is based on notes I created for a one-semester undergraduate course on
Algebraic Number Theory, which I taught at Harvard during Spring 2004. The
primary sources for the course were chapter 1 of Swinnerton-Dyer’s book A Brief
Guide to Algebraic Number Theory [SD01] and chapter 2 of Cassels’s article Global
Fields [Cas67]. I wrote these notes by following closely the above two chapters; in
some cases I added substantial text and examples. For example, chapter 1 of [SD01]
is 30 pages, whereas my rewrite of it occupies over 100 pages. In contrast, I follow
[Cas67] more closely. I have no intent whatever to plagiarize. I acknowledge as such
those chapters in this book which are simply a close rewrite of [Cas67]. My goal is
to take the useful classical article ([Cas67]) and make it more accessible to students
by modernizing the notation, and adding additional explanations and examples.

I have no intent to publish this book with a traditional publisher, so it will
remain freely available indefinitely. If you have comments, corrections, suggestions
for additions, etc., please send them to me!

—————————

Copyright: William Stein, 2004.

License: FREE! More precisely, this book my be freely redistributed, copied, or
even sold without requiring you to obtain written permission from me. You may
even extend or change this book, but this preface page must remain in any derived
work, and any derived work must also remain free, including the LATEX source files.
In particular, I have no interest in making any money from this book.

Please send me any typos or corrections: was@math.harvard.edu.
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Chapter 2

Introduction

2.1 Mathematical background I assume you have

In addition to general mathematical maturity, this book assumes you have the
following background:

• Basics of finite group theory

• Commutative rings, ideals, quotient rings

• Some elementary number theory

• Basic Galois theory of fields

• Point set topology

• Basic of topological rings, groups, and measure theory

For example, if you have never worked with finite groups before, you should read
another book first. If you haven’t seen much elementary ring theory, there is still
hope, but you will have to do some additional reading and exercises. I will briefly
review the basics of the Galois theory of number fields.

Some of the homework problems involve using a computer, but I’ll give you
examples which you can build on. I will not assume that you have a programming
background or know much about algorithms. If you don’t have PARI [ABC+] or
Magma [BCP97], and don’t want to install either one on your computer, you might
want to try the following online interface to PARI and Magma:

http://modular.fas.harvard.edu/calc/

9



10 CHAPTER 2. INTRODUCTION

2.2 What is algebraic number theory?

A number field K is a finite algebraic extension of the rational numbers Q. Every
such extension can be represented as all polynomials in an algebraic number α:

K = Q(α) =

{

m
∑

n=0

anαn : an ∈ Q

}

.

Here α is a root of a polynomial with coefficients in Q.

Algebraic number theory involves using techniques from (mostly commutative)
algebra and finite group theory to gain a deeper understanding of number fields.
The main objects that we study in algebraic number theory are number fields,
rings of integers of number fields, unit groups, ideal class groups,norms, traces,
discriminants, prime ideals, Hilbert and other class fields and associated reciprocity
laws, zeta and L-functions, and algorithms for computing each of the above.

2.2.1 Topics in this book

These are some of the main topics that are discussed in this book:

• Rings of integers of number fields

• Unique factorization of ideals in Dedekind domains

• Structure of the group of units of the ring of integers

• Finiteness of the group of equivalence classes of ideals of the ring of integers
(the “class group”)

• Decomposition and inertia groups, Frobenius elements

• Ramification

• Discriminant and different

• Quadratic and biquadratic fields

• Cyclotomic fields (and applications)

• How to use a computer to compute with many of the above objects (both
algorithms and actual use of PARI and Magma).

• Valuations on fields

• Completions (p-adic fields)

• Adeles and Ideles
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Note that we will not do anything nontrivial with zeta functions or L-functions.
This is to keep the prerequisites to algebra, and so we will have more time to
discuss algorithmic questions. Depending on time and your inclination, I may also
talk about integer factorization, primality testing, or complex multiplication elliptic
curves (which are closely related to quadratic imaginary fields).

2.3 Some applications of algebraic number theory

The following examples are meant to convince you that learning algebraic number
theory now will be an excellent investment of your time. If an example below seems
vague to you, it is safe to ignore it.

1. Integer factorization using the number field sieve. The number field sieve is
the asymptotically fastest known algorithm for factoring general large integers
(that don’t have too special of a form). Recently, in December 2003, the
number field sieve was used to factor the RSA-576 $10000 challenge:

1881988129206079638386972394616504398071635633794173827007 . . .
. . . 6335642298885971523466548531906060650474304531738801130339 . . .
. . . 6716199692321205734031879550656996221305168759307650257059
= 39807508642406493739712550055038649119906436234252670840 . . .

. . . 6385189575946388957261768583317
×47277214610743530253622307197304822463291469530209711 . . .

. . . 6459852171130520711256363590397527

(The . . . indicates that the newline should be removed, not that there are
missing digits.) For more information on the NFS, see the paper by Lenstra
et al. on the Math 129 web page.

2. Primality test: Agrawal and his students Saxena and Kayal from India re-
cently (2002) found the first ever deterministic polynomial-time (in the num-
ber of digits) primality test. There methods involve arithmetic in quotients of
(Z/nZ)[x], which are best understood in the context of algebraic number the-
ory. For example, Lenstra, Bernstein, and others have done that and improved
the algorithm significantly.

3. Deeper point of view on questions in number theory:

(a) Pell’s Equation (x2−dy2 = 1) =⇒ Units in real quadratic fields =⇒ Unit
groups in number fields

(b) Diophantine Equations =⇒ For which n does xn + yn = zn have a non-
trivial solution in Q(

√
2)?

(c) Integer Factorization =⇒ Factorization of ideals

(d) Riemann Hypothesis =⇒ Generalized Riemann Hypothesis
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(e) Deeper proof of Gauss’s quadratic reciprocity law in terms of arithmetic
of cyclotomic fields Q(e2πi/n), which leads to class field theory.

4. Wiles’s proof of Fermat’s Last Theorem, i.e., xn+yn = zn has no nontrivial
integer solutions, uses methods from algebraic number theory extensively (in
addition to many other deep techniques). Attempts to prove Fermat’s Last
Theorem long ago were hugely influential in the development of algebraic
number theory (by Dedekind, Kummer, Kronecker, et al.).

5. Arithmetic geometry: This is a huge field that studies solutions to polyno-
mial equations that lie in arithmetically interesting rings, such as the integers
or number fields. A famous major triumph of arithmetic geometry is Faltings’s
proof of Mordell’s Conjecture.

Theorem 2.3.1 (Faltings). Let X be a plane algebraic curve over a number
field K. Assume that the manifold X(C) of complex solutions to X has genus
at least 2 (i.e., X(C) is topologically a donut with two holes). Then the set
X(K) of points on X with coordinates in K is finite.

For example, Theorem 2.3.1 implies that for any n ≥ 4 and any number
field K, there are only finitely many solutions in K to xn + yn = 1. A famous
open problem in arithmetic geometry is the Birch and Swinnerton-Dyer
conjecture, which gives a deep conjectural criterion for exactly when X(K)
should be infinite when X(C) is a torus.
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Classical Viewpoint
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Chapter 3

Finitely generated abelian
groups

We will now prove the structure theorem for finitely generated abelian groups, since
it will be crucial for much of what we will do later.

Let Z = {0,±1,±2, . . .} denote the ring of integers, and for each positive inte-
ger n let Z/nZ denote the ring of integers modulo n, which is a cyclic abelian group
of order n under addition.

Definition 3.0.2 (Finitely Generated). A group G is finitely generated if there
exists g1, . . . , gn ∈ G such that every element of G can be obtained from the gi.

Theorem 3.0.3 (Structure Theorem for Abelian Groups). Let G be a finitely
generated abelian group. Then there is an isomorphism

G ∼= (Z/n1Z) ⊕ (Z/n2Z) ⊕ · · · ⊕ (Z/nsZ) ⊕ Zr,

where n1 > 1 and n1 | n2 | · · · | ns. Furthermore, the ni and r are uniquely
determined by G.

We will prove the theorem as follows. We first remark that any subgroup of a
finitely generated free abelian group is finitely generated. Then we see that finitely
generated abelian groups can be presented as quotients of finite rank free abelian
groups, and such a presentation can be reinterpreted in terms of matrices over the
integers. Next we describe how to use row and column operations over the integers
to show that every matrix over the integers is equivalent to one in a canonical
diagonal form, called the Smith normal form. We obtain a proof of the theorem by
reinterpreting Smith normal form in terms of groups.

Proposition 3.0.4. Suppose G is a free abelian group of finite rank n, and H is a
subgroup of G. Then H is a free abelian group generated by at most n elements.

The key reason that this is true is that G is a finitely generated module over the
principal ideal domain Z. We will give a complete proof of a beautiful generalization

15



16 CHAPTER 3. FINITELY GENERATED ABELIAN GROUPS

of this result in the context of Noetherian rings next time, but will not prove this
proposition here.

Corollary 3.0.5. Suppose G is a finitely generated abelian group. Then there are
finitely generated free abelian groups F1 and F2 such that G ∼= F1/F2.

Proof. Let x1, . . . , xm be generators for G. Let F1 = Zm and let ϕ : F1 → G be
the map that sends the ith generator (0, 0, . . . , 1, . . . , 0) of Zm to xi. Then ϕ is a
surjective homomorphism, and by Proposition 3.0.4 the kernel F2 of ϕ is a finitely
generated free abelian group. This proves the corollary.

Suppose G is a nonzero finitely generated abelian group. By the corollary, there
are free abelian groups F1 and F2 such that G ∼= F1/F2. Choosing a basis for F1, we
obtain an isomorphism F1

∼= Zn, for some positive integer n. By Proposition 3.0.4,
F2

∼= Zm, for some integer m with 0 ≤ m ≤ n, and the inclusion map F2 ↪→ F1

induces a map Zm → Zn. This homomorphism is left multiplication by the n × m
matrix A whose columns are the images of the generators of F2 in Zn. The cokernel
of this homomorphism is the quotient of Zn by the image of A, and the cokernel
is isomorphic to G. By augmenting A with zero columns on the right we obtain a
square n × n matrix A with the same cokernel. The following proposition implies
that we may choose bases such that the matrix A is diagonal, and then the structure
of the cokernel of A will be easy to understand.

Proposition 3.0.6 (Smith normal form). Suppose A is an n×n integer matrix.
Then there exist invertible integer matrices P and Q such that A′ = PAQ is a
diagonal matrix with entries n1, n2, . . . , ns, 0, . . . , 0, where n1 > 1 and n1 | n2 | . . . |
ns. This is called the Smith normal form of A.

We will see in the proof of Theorem 3.0.3 that A′ is uniquely determined by A.

Proof. The matrix P will be a product of matrices that define elementary row
operations and Q will be a product corresponding to elementary column operations.
The elementary operations are:

1. Add an integer multiple of one row to another (or a multiple of one column
to another).

2. Interchange two rows or two columns.

3. Multiply a row by −1.

Each of these operations is given by left or right multiplying by an invertible ma-
trix E with integer entries, where E is the result of applying the given operation
to the identity matrix, and E is invertible because each operation can be reversed
using another row or column operation over the integers.

To see that the proposition must be true, assume A 6= 0 and perform the fol-
lowing steps (compare [Art91, pg. 459]):
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1. By permuting rows and columns, move a nonzero entry of A with smallest
absolute value to the upper left corner of A. Now attempt to make all other
entries in the first row and column 0 by adding multiples of row or column 1
to other rows (see step 2 below). If an operation produces a nonzero entry in
the matrix with absolute value smaller than |a11|, start the process over by
permuting rows and columns to move that entry to the upper left corner of
A. Since the integers |a11| are a decreasing sequence of positive integers, we
will not have to move an entry to the upper left corner infinitely often.

2. Suppose ai1 is a nonzero entry in the first column, with i > 1. Using the
division algorithm, write ai1 = a11q + r, with 0 ≤ r < a11. Now add −q times
the first row to the ith row. If r > 0, then go to step 1 (so that an entry with
absolute value at most r is the upper left corner). Since we will only perform
step 1 finitely many times, we may assume r = 0. Repeating this procedure
we set all entries in the first column (except a11) to 0. A similar process using
column operations sets each entry in the first row (except a11) to 0.

3. We may now assume that a11 is the only nonzero entry in the first row and
column. If some entry aij of A is not divisible by a11, add the column of A
containing aij to the first column, thus producing an entry in the first column
that is nonzero. When we perform step 2, the remainder r will be greater
than 0. Permuting rows and columns results in a smaller |a11|. Since |a11| can
only shrink finitely many times, eventually we will get to a point where every
aij is divisible by a11. If a11 is negative, multiple the first row by −1.

After performing the above operations, the first row and column of A are zero except
for a11 which is positive and divides all other entries of A. We repeat the above
steps for the matrix B obtained from A by deleting the first row and column. The
upper left entry of the resulting matrix will be divisible by a11, since every entry of
B is. Repeating the argument inductively proves the proposition.

Example 3.0.7. The matrix

(

1 2
3 4

)

is equivalent to

(

1 0
0 2

)

and the matrix





1 2 3
4 5 6
7 8 9





is equivalent to





1 0 0
0 3 0
0 0 0



 . Note that the determinants match, up to sign.

Theorem 3.0.3. Suppose G is a finitely generated abelian group, which we may
assume is nonzero. As in the paragraph before Proposition 3.0.6, we use Corol-
lary 3.0.5 to write G as a the cokernel of an n × n integer matrix A. By Propo-
sition 3.0.6 there are isomorphisms Q : Zn → Zn and P : Zn → Zn such that
A′ = PAQ is a diagonal matrix with entries n1, n2, . . . , ns, 0, . . . , 0, where n1 > 1
and n1 | n2 | . . . | ns. Then G is isomorphic to the cokernel of the diagonal matrix
A′, so

G ∼= (Z/n1Z) ⊕ (Z/n2Z) ⊕ · · · ⊕ (Z/nsZ) ⊕ Zr, (3.0.1)
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as claimed. The ni are determined by G, because ni is the smallest positive integer n
such that nG requires at most s + r − i generators (we see from the representation
(3.0.1) of G as a product that ni has this property and that no smaller positive
integer does).



Chapter 4

Commutative Algebra

We will do some serious commutative algebra in this chapter, which will provide a
powerful algebraic foundation for understanding the more refined number-theoretic
structures associated to number fields.

In the first section we establish the standard properties of Noetherian rings
and modules, including the Hilbert basis theorem. We also observe that finitely
generated abelian groups are Noetherian Z-modules, which fills the gap in our proof
of the structure theorem for finitely generated abelian groups. After establishing
properties of Noetherian rings, we consider the rings of algebraic integers and discuss
some of their properties.

4.1 Noetherian Rings and Modules

Let R be a commutative ring with unit element. We will frequently work with
R-modules, which are like vector spaces but over a ring. More precisely, recall that
an R-module is an additive abelian group M equipped with a map R × M → M
such that for all r, r′ ∈ R and all m, m′ ∈ M we have (rr′)m = r(r′m), (r + r′)m =
rm + r′m, r(m + m′) = rm + rm′, and 1m = m. A submodule is a subgroup of M
that is preserved by the action of R.

Example 4.1.1. The set of abelian groups are in natural bijection with Z-modules.

A homomorphism of R-modules ϕ : M → N is a abelian group homomorphism
such that for any r ∈ R and m ∈ M we have ϕ(rm) = rϕ(m). A short exact
sequence of R-modules

0 → L
f−→ M

g−→ N → 0

is a specific choice of injective homomorphism f : L → M and a surjective homo-
morphism g : M → N such that im(f) = ker(g).

Definition 4.1.2 (Noetherian). An R-module M is Noetherian if every submod-
ule of M is finitely generated. A ring R is Noetherian if R is Noetherian as a module
over itself, i.e., if every ideal of R is finitely generated.

19
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Notice that any submodule M ′ of M is Noetherian, because if every submodule
of M is finitely generated then so is every submodule of M ′, since submodules of
M ′ are also submodules of M .

Definition 4.1.3 (Ascending chain condition). An R-module M satisfies the
ascending chain condition if every sequences M1 ⊂ M2 ⊂ M3 ⊂ · · · of submodules
of M eventually stabilizes, i.e., there is some n such that Mn = Mn+1 = Mn+2 = · · · .

Proposition 4.1.4. If M is an R-module, then the following are equivalent:

1. M is Noetherian,

2. M satisfies the ascending chain condition, and

3. Every nonempty set of submodules of M contains at least one maximal ele-
ment.

Proof. 1 =⇒ 2: Suppose M1 ⊂ M2 ⊂ · · · is a sequence of submodules of M . Then
M∞ = ∪∞

n=1Mn is a submodule of M . Since M is Noetherian, there is a finite set
a1, . . . , am of generators for M . Each ai must be contained in some Mj , so there is
an n such that a1, . . . , am ∈ Mn. But then Mk = Mn for all k ≥ n, which proves
that the ascending chain condition holds for M .

2 =⇒ 3: Suppose 3 were false, so there exists a nonempty set S of submodules
of M that does not contain a maximal element. We will use S to construct an
infinite ascending chain of submodules of M that does not stabilize. Note that S is
infinite, otherwise it would contain a maximal element. Let M1 be any element of S.
Then there is an M2 in S that contains M1, otherwise S would contain the maximal
element M1. Continuing inductively in this way we find an M3 in S that properly
contains M2, etc., and we produce an infinite ascending chain of submodules of M ,
which contradicts the ascending chain condition.

3 =⇒ 1: Suppose 1 is false, so there is a submodule M ′ of M that is not finitely
generated. We will show that the set S of all finitely generated submodules of
M ′ does not have a maximal element, which will be a contradiction. Suppose S
does have a maximal element L. Since L is finitely generated and L ⊂ M ′, and
M ′ is not finitely generated, there is an a ∈ M ′ such that a 6∈ L. Then L′ =
L + Ra is an element of S that strictly contains the presumed maximal element L,
a contradiction.

Lemma 4.1.5. If

0 → L
f−→ M

g−→ N → 0

is a short exact sequence of R-modules, then M is Noetherian if and only if both L
and N are Noetherian.

Proof. First suppose that M is Noetherian. Then L is a submodule of M , so L is
Noetherian. If N ′ is a submodule of N , then the inverse image of N ′ in M is a
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submodule of M , so it is finitely generated, hence its image N ′ is finitely generated.
Thus N is Noetherian as well.

Next assume nothing about M , but suppose that both L and N are Noetherian.
If M ′ is a submodule of M , then M0 = ϕ(L)∩M ′ is isomorphic to a submodule of the
Noetherian module L, so M0 is generated by finitely many elements a1, . . . , an. The
quotient M ′/M0 is isomorphic (via g) to a submodule of the Noetherian module N ,
so M ′/M0 is generated by finitely many elements b1, . . . , bm. For each i ≤ m, let ci

be a lift of bi to M ′, modulo M0. Then the elements a1, . . . , an, c1, . . . , cm generate
M ′, for if x ∈ M ′, then there is some element y ∈ M0 such that x− y is an R-linear
combination of the ci, and y is an R-linear combination of the ai.

Proposition 4.1.6. Suppose R is a Noetherian ring. Then an R-module M is
Noetherian if and only if it is finitely generated.

Proof. If M is Noetherian then every submodule of M is finitely generated so M
is finitely generated. Conversely, suppose M is finitely generated, say by elements
a1, . . . , an. Then there is a surjective homomorphism from Rn = R ⊕ · · · ⊕ R to M
that sends (0, . . . , 0, 1, 0, . . . , 0) (1 in ith factor) to ai. Using Lemma 4.1.5 and
exact sequences of R-modules such as 0 → R → R⊕R → R → 0, we see inductively
that Rn is Noetherian. Again by Lemma 4.1.5, homomorphic images of Noetherian
modules are Noetherian, so M is Noetherian.

Lemma 4.1.7. Suppose ϕ : R → S is a surjective homomorphism of rings and R
is Noetherian. Then S is Noetherian.

Proof. The kernel of ϕ is an ideal I in R, and we have an exact sequence

0 → I → R → S → 0

with R Noetherian. By Lemma 4.1.5, it follows that S is a Noetherian R-modules.
Suppose J is an ideal of S. Since J is an R-submodule of S, if we view J as an R-
module, then J is finitely generated. Since R acts on J through S, the R-generators
of J are also S-generators of J , so J is finitely generated as an ideal. Thus S is
Noetherian.

Theorem 4.1.8 (Hilbert Basis Theorem). If R is a Noetherian ring and S is
finitely generated as a ring over R, then S is Noetherian. In particular, for any n
the polynomial ring R[x1, . . . , xn] and any of its quotients are Noetherian.

Proof. Assume first that we have already shown that for any n the polynomial ring
R[x1, . . . , xn] is Noetherian. Suppose S is finitely generated as a ring over R, so
there are generators s1, . . . , sn for S. Then the map xi 7→ si extends uniquely to a
surjective homomorphism π : R[x1, . . . , xn] → S, and Lemma 4.1.7 implies that S
is Noetherian.

The rings R[x1, . . . , xn] and (R[x1, . . . , xn−1])[xn] are isomorphic, so it suffices
to prove that if R is Noetherian then R[x] is also Noetherian. (Our proof follows
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[Art91, §12.5].) Thus suppose I is an ideal of R[x] and that R is Noetherian. We
will show that I is finitely generated.

Let A be the set of leading coefficients of polynomials in I along with 0. If
a, b ∈ A are nonzero with a + b 6= 0, then there are polynomials f and g in I with
leading coefficients a and b. If deg(f) ≤ deg(g), then a + b is the leading coefficient
of xdeg(g)−deg(f)f + g, so a + b ∈ A. If r ∈ R and a ∈ A with ra 6= 0, then ra
is the leading coefficient of rf , so ra ∈ A. Thus A is an ideal in R, so since R is
Noetherian there exists a1, . . . , an that generate A as an ideal. Since A is the set
of leading coefficients of elements of I, and the aj are in I, we can choose for each
j ≤ n an element fj ∈ I with leading coefficient aj . By multipying the fj by some
power of x, we may assume that the fj all have the same degree d.

Let S<d be the set of elements of I that have degree strictly less than d. This
set is closed under addition and under multiplication by elements of R, so S<d is
a module over R. The module S<d is submodule of the R-module of polynomials
of degree less than n, which is Noetherian because it is generated by 1, x, . . . , xn−1.
Thus S<d is finitely generated, and we may choose generators h1, . . . , hm for S<d.

Suppose g ∈ I is an arbitrary element. We will show by induction on the degree
of g that g is an R[x]-linear combination of f1, . . . , fn, h1, . . . hm. Thus suppose this
statement is true for all elements of I of degree less than the degree of g. If the degree
of g is less than d, then g ∈ S<d, so g is in the R[x]-ideal generated by h1, . . . , hm.
Next suppose that g has degree e ≥ d. Then the leading coefficient b of g lies in the
ideal A of leading coefficients of g, so there exist ri ∈ R such that b = r1a1 + · · · +
rnan. Since fi has leading coefficient ai, the difference g − xe−drifi has degree less
than the degree e of g. By induction g − xe−drifi is an R[x] linear combination of
f1, . . . , fn, h1, . . . hm, so g is also an R[x] linear combination of f1, . . . , fn, h1, . . . hm.
Since each fi and hj lies in I, it follows that I is generated by f1, . . . , fn, h1, . . . hm,
so I is finitely generated, as required.

Properties of Noetherian rings and modules will be crucial in the rest of this
course. We have proved above that Noetherian rings have many desirable properties.

4.1.1 Z is Noetherian

The ring Z of integers is Noetherian because every ideal of Z is generated by one
element.

Proposition 4.1.9. Every ideal of the ring Z of integers is principal.

Proof. Suppose I is a nonzero ideal in Z. Let d the least positive element of I.
Suppose that a ∈ I is any nonzero element of I. Using the division algorithm, write
a = dq + r, where q is an integer and 0 ≤ r < d. We have r = a− dq ∈ I and r < d,
so our assumption that d is minimal implies that r = 0, so a = dq is in the ideal
generated by d. Thus I is the principal ideal generated by d.

Proposition 4.1.6 and 4.1.9 together imply that any finitely generated abelian
group is Noetherian. This means that subgroups of finitely generated abelian groups
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are finitely generated, which provides the missing step in our proof of the structure
theorem for finitely generated abelian groups.



24 CHAPTER 4. COMMUTATIVE ALGEBRA



Chapter 5

Rings of Algebraic Integers

In this chapter we will learn about rings of algebraic integers and discuss some
of their properties. We will prove that the ring of integers OK of a number field
is Noetherian. We will also develop some basic properties of norms, traces, and
discriminants, and give more properties of rings of integers in the general context
of Dedekind domains.

5.1 Rings of Algebraic Integers

Fix an algebraic closure Q of Q. For example, Q could be the subfield of the
complex numbers C generated by all roots in C of all polynomials with coefficients
in Q.

Much of this course is about algebraic integers.

Definition 5.1.1 (Algebraic Integer). An element α ∈ Q is an algebraic integer
if it is a root of some monic polynomial with coefficients in Z.

Definition 5.1.2 (Minimal Polynomial). The minimal polynomial of α ∈ Q is
the monic polynomial f ∈ Q[x] of least positive degree such that f(α) = 0.

The minimal polynomial of α divides any polynomial h such that h(α) = 0, for
the following reason. If h(α) = 0, use the division algorithm to write h = qf + r,
where 0 ≤ deg(r) < deg(f). We have r(α) = h(α) − q(α)f(α) = 0, so α is a root
of r. However, f is the polynomial of least positive degree with root α, so r = 0.

Lemma 5.1.3. If α is an algebraic integer, then the minimal polynomial of α has
coefficients in Z.

Proof. Suppose f ∈ Q[x] is the minimal polynomial of α and g ∈ Z[x] is a monic
integral polynomial such that g(α) = 0. As mentioned after the definition of minimal
polynomial, we have g = fh, for some h ∈ Q[x]. If f 6∈ Z[x], then some prime p
divides the denominator of some coefficient of f . Let pi be the largest power of p that
divides some denominator of some coefficient f , and likewise let pj be the largest
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power of p that divides some denominator of a coefficient of g. Then pi+jg =
(pif)(pjg), and if we reduce both sides modulo p, then the left hand side is 0 but
the right hand side is a product of two nonzero polynomials in Fp[x], hence nonzero,
a contradiction.

Proposition 5.1.4. An element α ∈ Q is integral if and only if Z[α] is finitely
generated as a Z-module.

Proof. Suppose α is integral and let f ∈ Z[x] be the monic minimal polynomial
of α (that f ∈ Z[x] is Lemma 5.1.3). Then Z[α] is generated by 1, α, α2, . . . , αd−1,
where d is the degree of f . Conversely, suppose α ∈ Q is such that Z[α] is finitely
generated, say by elements f1(α), . . . , fn(α). Let d be any integer bigger than the
degree of any fi. Then there exist integers ai such that αd =

∑

aifi(α), hence α
satisfies the monic polynomial xd − ∑

aifi(x) ∈ Z[x], so α is integral.

The rational number α = 1/2 is not integral. Note that G = Z[1/2] is not a
finitely generated Z-module, since G is infinite and G/2G = 0.

Proposition 5.1.5. The set Z of all algebraic integers is a ring, i.e., the sum and
product of two algebraic integers is again an algebraic integer.

Proof. Suppose α, β ∈ Z, and let m, n be the degrees of the minimal polynomials
of α, β, respectively. Then 1, α, . . . , αm−1 span Z[α] and 1, β, . . . , βn−1 span Z[β] as
Z-module. Thus the elements αiβj for i ≤ m, j ≤ n span Z[α, β]. Since Z[α + β]
is a submodule of the finitely-generated module Z[α, β], it is finitely generated, so
α + β is integral. Likewise, Z[αβ] is a submodule of Z[α, β], so it is also finitely
generated and αβ is integral.

Recall that a number field is a subfield K of Q such that the degree [K : Q] :=
dimQ(K) is finite.

Definition 5.1.6 (Ring of Integers). The ring of integers of a number field K
is the ring

OK = K ∩ Z = {x ∈ K : x is an algebraic integer}.

The field Q of rational numbers is a number field of degree 1, and the ring
of integers of Q is Z. The field K = Q(i) of Gaussian integers has degree 2 and
OK = Z[i]. The field K = Q(

√
5) has ring of integers OK = Z[(1 +

√
5)/2]. Note

that the Golden ratio (1 +
√

5)/2 satisfies x2 − x − 1. According to Magma, the
ring of integers of K = Q( 3

√
9) is Z[ 3

√
3], where 3

√
3 = 1

3( 3
√

9)2.

Definition 5.1.7 (Order). An order in OK is any subring R of OK such that the
quotient OK/R of abelian groups is finite. (Note that R must contain 1 because it
is a ring, and for us every ring has a 1.)

As noted above, Z[i] is the ring of integers of Q(i). For every nonzero integer
n, the subring Z + niZ of Z[i] is an order. The subring Z of Z[i] is not an order,
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because Z does not have finite index in Z[i]. Also the subgroup 2Z + iZ of Z[i] is
not an order because it is not a ring.

We will frequently consider orders in practice because they are often much easier
to write down explicitly than OK . For example, if K = Q(α) and α is an algebraic
integer, then Z[α] is an order in OK , but frequently Z[α] 6= OK .

Lemma 5.1.8. Let OK be the ring of integers of a number field. Then OK ∩Q = Z
and QOK = K.

Proof. Suppose α ∈ OK ∩ Q with α = a/b in lowest terms and b > 0. The monic
minimal polynomial of α is bx−a ∈ Z[x], so if b 6= 1 then Lemma 5.1.3 implies that
α is not an algebraic integer, a contradiction.

To prove that QOK = K, suppose α ∈ K, and let f(x) ∈ Q[x] be the minimal
monic polynomial of α. For any positive integer d, the minimal monic polynomial
of dα is ddeg(f)f(x/d), i.e., the polynomial obtained from f(x) by multiplying the
coefficient of xdeg(f) by 1, multiplying the coefficient of xdeg(f)−1 by d, multiplying
the coefficient of xdeg(f)−2 by d2, etc. If d is the least common multiple of the
denominators of the coefficients of f , then the minimal monic polynomial of dα has
integer coefficients, so dα is integral and dα ∈ OK . This proves that QOK = K.

In the next two sections we will develop some basic properties of norms and
traces, and deduce further properties of rings of integers.

5.2 Norms and Traces

Before discussing norms and traces we introduce some notation for field extensions.
If K ⊂ L are number fields, we let [L : K] denote the dimension of L viewed as a
K-vector space. If K is a number field and a ∈ Q, let K(a) be the number field
generated by a, which is the smallest number field that contains a. If a ∈ Q then a
has a minimal polynomial f(x) ∈ Q[x], and the Galois conjugates of a are the roots
of f . For example the element

√
2 has minimal polynomial x2 − 2 and the Galois

conjugates of
√

2 are ±
√

2.
Suppose K ⊂ L is an inclusion of number fields and let a ∈ L. Then left multi-

plication by a defines a K-linear transformation `a : L → L. (The transformation
`a is K-linear because L is commutative.)

Definition 5.2.1 (Norm and Trace). The norm and trace of a from L to K are

NormL/K(a) = Det(`a) and trL/K(a) = tr(`a).

It is standard from linear algebra that determinants are multiplicative and traces
are additive, so for a, b ∈ L we have

NormL/K(ab) = NormL/K(a) · NormL/K(b)

and
trL/K(a + b) = trL/K(a) + trL/K(b).
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Note that if f ∈ Q[x] is the characteristic polynomial of `a, then the constant
term of f is (−1)deg(f) Det(`a), and the coefficient of xdeg(f)−1 is − tr(`a).

Proposition 5.2.2. Let a ∈ L and let σ1, . . . , σd, where d = [L : K], be the distinct
field embeddings L ↪→ Q that fix every element of K. Then

NormL/K(a) =
d

∏

i=1

σi(a) and trL/K(a) =
d

∑

i=1

σi(a).

Proof. We prove the proposition by computing the characteristic polynomial F of a.
Let f ∈ K[x] be the minimal polynomial of a over K, and note that f has distinct
roots (since it is the polynomial in K[x] of least degree that is satisfied by a).
Since f is irreducible, [K(a) : K] = deg(f), and a satisfies a polynomial if and only
if `a does, the characteristic polynomial of `a acting on K(a) is f . Let b1, . . . , bn

be a basis for L over K(a) and note that 1, . . . , am is a basis for K(a)/K, where
m = deg(f)− 1. Then aibj is a basis for L over K, and left multiplication by a acts
the same way on the span of bj , abj , . . . , a

mbj as on the span of bk, abk, . . . , a
mbk,

for any pair j, k ≤ n. Thus the matrix of `a on L is a block direct sum of copies
of the matrix of `a acting on K(a), so the characteristic polynomial of `a on L
is f [L:K(a)]. The proposition follows because the roots of f [L:K(a)] are exactly the
images σi(a), with multiplicity [L : K(a)] (since each embedding of K(a) into Q
extends in exactly [L : K(a)] ways to L by Exercise 9).

The following corollary asserts that the norm and trace behave well in towers.

Corollary 5.2.3. Suppose K ⊂ L ⊂ M is a tower of number fields, and let a ∈ M .
Then

NormM/K(a) = NormL/K(NormM/L(a)) and trM/K(a) = trL/K(trM/L(a)).

Proof. For the first equation, both sides are the product of σi(a), where σi runs
through the embeddings of M into K. To see this, suppose σ : L → Q fixes K. If σ′

is an extension of σ to M , and τ1, . . . , τd are the embeddings of M into Q that fix L,
then τ1σ

′, . . . , τdσ
′ are exactly the extensions of σ to M . For the second statement,

both sides are the sum of the σi(a).

The norm and trace down to Q of an algebraic integer a is an element of Z,
because the minimal polynomial of a has integer coefficients, and the characteristic
polynomial of a is a power of the minimal polynomial, as we saw in the proof of
Proposition 5.2.2.

Proposition 5.2.4. Let K be a number field. The ring of integers OK is a lattice
in K, i.e., QOK = K and OK is an abelian group of rank [K : Q].

Proof. We saw in Lemma 5.1.8 that QOK = K. Thus there exists a basis a1, . . . , an

for K, where each ai is in OK . Suppose that as x =
∑

ciai ∈ OK varies over all
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elements of OK the denominators of the coefficients ci are arbitrarily large. Then
subtracting off integer multiples of the ai, we see that as x =

∑

ciai ∈ OK varies
over elements of OK with ci between 0 and 1, the denominators of the ci are also
arbitrarily large. This implies that there are infinitely many elements of OK in the
bounded subset

S = {c1a1 + · · · + cnan : ci ∈ Q, 0 ≤ ci ≤ 1} ⊂ K.

Thus for any ε > 0, there are elements a, b ∈ OK such that the coefficients of a − b
are all less than ε (otherwise the elements of OK would all be a “distance” of least
ε from each other, so only finitely many of them would fit in S).

As mentioned above, the norms of elements of OK are integers. Since the norm
of an element is the determinant of left multiplication by that element, the norm is
a homogenous polynomial of degree n in the indeterminate coefficients ci. If the ci

get arbitrarily small for elements of OK , then the values of the norm polynomial get
arbitrarily small, which would imply that there are elements of OK with positive
norm too small to be in Z, a contradiction. So the set S contains only finitely many
elements of OK . Thus the denominators of the ci are bounded, so for some d, we
have that OK has finite index in A = 1

dZa1 + · · · + 1
dZan. Since A is isomorphic to

Zn, it follows from the structure theorem for finitely generated abelian groups that
OK is isomorphic as a Z-module to Zn, as claimed.

Corollary 5.2.5. The ring of integers OK of a number field is Noetherian.

Proof. By Proposition 5.2.4, the ring OK is finitely generated as a module over Z,
so it is certainly finitely generated as a ring over Z. By the Hilbert Basis Theorem,
OK is Noetherian.
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Chapter 6

Unique Factorization of Ideals

In this chapter we will deduce, with complete proofs, the most important basic
property of the ring of integers OK of an algebraic number, namely that every
nonzero ideals can be written uniquely as products of prime ideals. After proving
this fundamental theorem, we will compute some examples using Magma. The
next chapter will consist mostly of examples illustrating the substantial theory we
will have already developed, so hang in there!

6.1 Dedekind Domains

Recall (Corollary 5.2.5) that we proved that the ring of integers OK of a number
field is Noetherian. As we saw before using norms, the ring OK is finitely generated
as a module over Z, so it is certainly finitely generated as a ring over Z. By the
Hilbert Basis Theorem, OK is Noetherian.

If R is an integral domain, the field of fractions of R is the field of all elements
a/b, where a, b ∈ R. The field of fractions of R is the smallest field that contains R.
For example, the field of fractions of Z is Q and of Z[(1 +

√
5)/2] is Q(

√
5).

Definition 6.1.1 (Integrally Closed). An integral domain R is integrally closed
in its field of fractions if whenever α is in the field of fractions of R and α satisfies
a monic polynomial f ∈ R[x], then α ∈ R.

Proposition 6.1.2. If K is any number field, then OK is integrally closed. Also,
the ring Z of all algebraic integers is integrally closed.

Proof. We first prove that Z is integrally closed. Suppose c ∈ Q is integral over Z,
so there is a monic polynomial f(x) = xn + an−1x

n−1 + · · · + a1x + a0 with
ai ∈ Z and f(c) = 0. The ai all lie in the ring of integers OK of the num-
ber field K = Q(a0, a1, . . . an−1), and OK is finitely generated as a Z-module, so
Z[a0, . . . , an−1] is finitely generated as a Z-module. Since f(c) = 0, we can write cn

as a Z[a0, . . . , an−1]-linear combination of ci for i < n, so the ring Z[a0, . . . , an−1, c]
is also finitely generated as a Z-module. Thus Z[c] is finitely generated as Z-module
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because it is a submodule of a finitely generated Z-module, which implies that c is
integral over Z.

Suppose c ∈ K is integral over OK . Then since Z is integrally closed, c is an
element of Z, so c ∈ K ∩ Z = OK , as required.

Definition 6.1.3 (Dedekind Domain). An integral domain R is a Dedekind
domain if it is Noetherian, integrally closed in its field of fractions, and every nonzero
prime ideal of R is maximal.

The ring Q⊕Q is Noetherian, integrally closed in its field of fractions, and the
two prime ideals are maximal. However, it is not a Dedekind domain because it is
not an integral domain. The ring Z[

√
5] is not a Dedekind domain because it is not

integrally closed in its field of fractions, as (1 +
√

5)/2 is integrally over Z and lies
in Q(

√
5), but not in Z[

√
5]. The ring Z is a Dedekind domain, as is any ring of

integers OK of a number field, as we will see below. Also, any field K is a Dedekind
domain, since it is a domain, it is trivially integrally closed in itself, and there are
no nonzero prime ideals so that condition that they be maximal is empty.

Proposition 6.1.4. The ring of integers OK of a number field is a Dedekind do-
main.

Proof. By Proposition 6.1.2, the ring OK is integrally closed, and by Proposi-
tion 5.2.5 it is Noetherian. Suppose that p is a nonzero prime ideal of OK . Let
α ∈ p be a nonzero element, and let f(x) ∈ Z[x] be the minimal polynomial of α.
Then

f(α) = αn + an−1α
n−1 + · · · + a1α + a0 = 0,

so a0 = −(αn + an−1α
n−1 + · · · + a1α) ∈ p. Since f is irreducible, a0 is a nonzero

element of Z that lies in p. Every element of the finitely generated abelian group
OK/p is killed by a0, so OK/p is a finite set. Since p is prime, OK/p is an integral
domain. Every finite integral domain is a field, so p is maximal, which completes
the proof.

If I and J are ideals in a ring R, the product IJ is the ideal generated by all
products of elements in I with elements in J :

IJ = (ab : a ∈ I, b ∈ J) ⊂ R.

Note that the set of all products ab, with a ∈ I and b ∈ J , need not be an ideal, so
it is important to take the ideal generated by that set. (See the homework problems
for examples.)

Definition 6.1.5 (Fractional Ideal). A fractional ideal is an OK-submodule of
I ⊂ K that is finitely generated as an OK-module.

To avoid confusion, we will sometimes call a genuine ideal I ⊂ OK an integral
ideal. Also, since fractional ideals are finitely generated, we can clear denominators
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of a generating set to see that every fractional ideal is of the form aI = {ab : b ∈ I}
for some a ∈ K and ideal I ⊂ OK .

For example, the collection 1
2Z of rational numbers with denominator 1 or 2 is

a fractional ideal of Z.

Theorem 6.1.6. The set of nonzero fractional ideals of a Dedekind domain R is
an abelian group under ideal multiplication.

Before proving Theorem 6.1.6 we prove a lemma. For the rest of this section
OK is the ring of integers of a number field K.

Definition 6.1.7 (Divides for Ideals). Suppose that I, J are ideals of OK .
Then I divides J if I ⊃ J .

To see that this notion of divides is sensible, suppose K = Q, so OK = Z.
Then I = (n) and J = (m) for some integer n and m, and I divides J means that
(n) ⊃ (m), i.e., that there exists an integer c such that m = cn, which exactly
means that n divides m, as expected.

Lemma 6.1.8. Suppose I is an ideal of OK . Then there exist prime ideals p1, . . . , pn

such that p1 · p2 · · · pn ⊂ I. In other words, I divides a product of prime ideals. (By
convention the empty product is the unit ideal. Also, if I = 0, then we take p1 = (0),
which is a prime ideal.)

Proof. The key idea is to use that OK is Noetherian to deduce that the set S of
ideals that do not satisfy the lemma is empty. If S is nonempty, then because OK

is Noetherian, there is an ideal I ∈ S that is maximal as an element of S. If I were
prime, then I would trivially contain a product of primes, so I is not prime. By
definition of prime ideal, there exists a, b ∈ OK such that ab ∈ I but a 6∈ I and
b 6∈ I. Let J1 = I + (a) and J2 = I + (b). Then neither J1 nor J2 is in S, since I
is maximal, so both J1 and J2 contain a product of prime ideals. Thus so does I,
since

J1J2 = I2 + I(b) + (a)I + (ab) ⊂ I,

which is a contradiction. Thus S is empty, which completes the proof.

We are now ready to prove the theorem.

Proof of Theorem 6.1.6. The product of two fractional ideals is again finitely gen-
erated, so it is a fractional ideal, and IOK = OK for any nonzero ideal I, so to
prove that the set of fractional ideals under multiplication is a group it suffices to
show the existence of inverses. We will first prove that if p is a prime ideal, then
p has an inverse, then we will prove that nonzero integral ideals have inverses, and
finally observe that every fractional ideal has an inverse.

Suppose p is a nonzero prime ideal of OK . We will show that the OK-module

I = {a ∈ K : ap ⊂ OK}
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is a fractional ideal of OK such that Ip = OK , so that I is an inverse of p.

For the rest of the proof, fix a nonzero element b ∈ p. Since I is an OK-module,
bI ⊂ OK is an OK ideal, hence I is a fractional ideal. Since OK ⊂ I we have
p ⊂ Ip ⊂ OK , hence either p = Ip or Ip = OK . If Ip = OK , we are done since
then I is an inverse of p. Thus suppose that Ip = p. Our strategy is to show that
there is some d ∈ I not in OK ; such a d would leave p invariant (i.e., dp ⊂ p), so
since p is an OK-module it will follow that d ∈ OK , a contradiction.

By Lemma 6.1.8, we can choose a product p1, . . . , pm, with m minimal, such
that

p1p2 · · · pm ⊂ (b) ⊂ p.

If no pi is contained in p, then we can choose for each i an ai ∈ pi with ai 6∈ p;
but then

∏

ai ∈ p, which contradicts that p is a prime ideal. Thus some pi, say
p1, is contained in p, which implies that p1 = p since every nonzero prime ideal
is maximal. Because m is minimal, p2 · · · pm is not a subset of (b), so there exists
c ∈ p2 · · · pm that does not lie in (b). Then p(c) ⊂ (b), so by definition of I we have
d = c/b ∈ I. However, d 6∈ OK , since if it were then c would be in (b). We have
thus found our element d ∈ I that does not lie in OK . To finish the proof that p

has an inverse, we observe that d preserves the OK-module p, and is hence in OK ,
a contradiction. More precisely, if b1, . . . , bn is a basis for p as a Z-module, then the
action of d on p is given by a matrix with entries in Z, so the minimal polynomial of
d has coefficients in Z. This implies that d is integral over Z, so d ∈ OK , since OK

is integrally closed by Proposition 6.1.2. (Note how this argument depends strongly
on the fact that OK is integrally closed!)

So far we have proved that if p is a prime ideal of OK , then p−1 = {a ∈ K :
ap ⊂ OK} is the inverse of p in the monoid of nonzero fractional ideals of OK . As
mentioned after Definition 6.1.5 [on Tuesday], every nonzero fractional ideal is of the
form aI for a ∈ K and I an integral ideal, so since (a) has inverse (1/a), it suffices
to show that every integral ideal I has an inverse. If not, then there is a nonzero
integral ideal I that is maximal among all nonzero integral ideals that do not have
an inverse. Every ideal is contained in a maximal ideal, so there is a nonzero prime
ideal p such that I ⊂ p. Multiplying both sides of this inclusion by p−1 and using
that OK ⊂ p−1, we see that I ⊂ p−1I ⊂ OK . If I = p−1I, then arguing as in the
proof that p−1 is the inverse of p, we see that each element of p−1 preserves the
finitely generated Z-module I and is hence integral. But then p−1 ⊂ OK , which
implies that OK = pp−1 ⊂ p, a contradiction. Thus I 6= p−1I. Because I is maximal
among ideals that do not have an inverse, the ideal p−1I does have an inverse, call
it J . Then pJ is the inverse of I, since OK = (pJ)(p−1I) = JI.

We can finally deduce the crucial Theorem 6.1.10, which will allow us to show
that any nonzero ideal of a Dedekind domain can be expressed uniquely as a product
of primes (up to order). Thus unique factorization holds for ideals in a Dedekind
domain, and it is this unique factorization that initially motivated the introduction
of rings of integers of number fields over a century ago.



6.1. DEDEKIND DOMAINS 35

Theorem 6.1.9. Suppose I is an integral ideal of OK . Then I can be written as a
product

I = p1 · · · pn

of prime ideals of OK , and this representation is unique up to order. (Exception:
If I = 0, then the representation is not unique.)

Proof. Suppose I is an ideal that is maximal among the set of all ideals in OK

that can not be written as a product of primes. Every ideal is contained in a
maximal ideal, so I is contained in a nonzero prime ideal p. If Ip−1 = I, then by
Theorem 6.1.6 we can cancel I from both sides of this equation to see that p−1 =
OK , a contradiction. Thus I is strictly contained in Ip−1, so by our maximality
assumption on I there are maximal ideals p1, . . . , pn such that Ip−1 = p1 · · · pn.
Then I = p ·p1 · · · pn, a contradiction. Thus every ideal can be written as a product
of primes.

Suppose p1 · · · pn = q1 · · · qm. If no qi is contained in p1, then for each i there is
an ai ∈ qi such that ai 6∈ p1. But the product of the ai is in the p1 · · · pn, which is
a subset of p1, which contradicts the fact that p1 is a prime ideal. Thus qi = p1 for
some i. We can thus cancel qi and p1 from both sides of the equation. Repeating
this argument finishes the proof of uniqueness.

Corollary 6.1.10. If I is a fractional ideal of OK then there exists prime ideals
p1, . . . , pn and q1, . . . , qm, unique up to order, such that

I = (p1 · · · pn)(q1 · · · qm)−1.

Proof. We have I = (a/b)J for some a, b ∈ OK and integral ideal J . Applying
Theorem 6.1.10 to (a), (b), and J gives an expression as claimed. For uniqueness, if
one has two such product expressions, multiply through by the denominators and
use the uniqueness part of Theorem 6.1.10

Example 6.1.11. The ring of integers of K = Q(
√
−6) is OK = Z[

√
−6]. In OK , we

have
6 = −

√
−6

√
−6 = 2 · 3.

If ab =
√
−6, with a, b ∈ OK and neither a unit, then Norm(a)Norm(b) = 6, so

without loss Norm(a) = 2 and Norm(b) = 3. If a = c + d
√
−6, then Norm(a) =

c2 + 6d2; since the equation c2 + 6d2 = 2 has no solution with c, d ∈ Z, there is
no element in OK with norm 2, so

√
−6 is irreducible. Also,

√
−6 is not a unit

times 2 or times 3, since again the norms would not match up. Thus 6 can not
be written uniquely as a product of irreducibles in OK . Theorem 6.1.9, however,
implies that the principal ideal (6) can, however, be written uniquely as a product
of prime ideals. Using Magma we find such a decomposition:

> R<x> := PolynomialRing(RationalField());

> K := NumberField(x^2+6);

> OK := MaximalOrder(K);
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> [K!b : b in Basis(OK)];

[

1,

K.1 // this is sqrt(-6)

]

> Factorization(6*OK);

[

<Prime Ideal of OK

Two element generators:

[2, 0]

[2, 1], 2>,

<Prime Ideal of OK

Two element generators:

[3, 0]

[3, 1], 2>

]

The output means that

(6) = (2, 2 +
√
−6)2 · (3, 3 +

√
−6)2,

where each of the ideals (2, 2 +
√
−6) and (3, 3 +

√
−6) is prime. I will discuss

algorithms for computing such a decomposition in detail, probably next week. The
first idea is to write (6) = (2)(3), and hence reduce to the case of writing the (p),
for p ∈ Z prime, as a product of primes. Next one decomposes the Artinian ring
OK ⊗ Fp as a product of local Artinian rings.



Chapter 7

Computing

7.1 Algorithms for Algebraic Number Theory

I think the best overall reference for algorithms for doing basic algebraic number
theory computations is [Coh93].

Our main long-term algorithmic goals for this book (which we won’t succeed at
reaching) are to understand good algorithms for solving the following problems in
particular cases:

• Ring of integers: Given a number field K (by giving a polynomial), compute
the full ring OK of integers.

• Decomposition of primes: Given a prime number p ∈ Z, find the decom-
position of the ideal pOK as a product of prime ideals of OK .

• Class group: Compute the group of equivalence classes of nonzero ideals of
OK , where I and J are equivalent if there exists α ∈ OK such that IJ−1 = (α).

• Units: Compute generators for the group of units of OK .

As we will see, somewhat surprisingly it turns out that algorithmically by far
the most time-consuming step in computing the ring of integers OK seems to be
to factor the discriminant of a polynomial whose root generates the field K. The
algorithm(s) for computing OK are quite complicated to describe, but the first step
is to factor this discriminant, and it takes much longer in practice than all the other
complicated steps.

7.2 Using Magma

This section is a first introduction to Magma for algebraic number theory. Magma

is a good general purpose package for doing algebraic number theory computations.
You can use it via the web page http://modular.fas.harvard.edu/calc. Magma

is not free, but student discounts are available.
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The following examples illustrate what we’ve done so far in the course using
Magma, and a little of where we are going. Feel free to ask questions as we go.

7.2.1 Smith Normal Form

On the first day of class we learned about Smith normal forms of matrices.

> A := Matrix(2,2,[1,2,3,4]);

> A;

[1 2]

[3 4]

> SmithForm(A);

[1 0]

[0 2]

[ 1 0]

[-1 1]

[-1 2]

[ 1 -1]

As you can see, Magma computed the Smith form, which is

(

1 0
0 2

)

. What are the

other two matrices it output? To see what any Magma command does, type the
command by itself with no arguments followed by a semicolon.

> SmithForm;

Intrinsic ’SmithForm’

Signatures:

(<Mtrx> X) -> Mtrx, AlgMatElt, AlgMatElt

[

k: RngIntElt,

NormType: MonStgElt,

Partial: BoolElt,

RightInverse: BoolElt

]

The smith form S of X, together with unimodular matrices

P and Q such that P * X * Q = S.

As you can see, SmithForm returns three arguments, a matrix and matrices P and
Q that transform the input matrix to Smith normal form. The syntax to “receive”
three return arguments is natural, but uncommon in other programming languages:
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> S, P, Q := SmithForm(A);

> S;

[1 0]

[0 2]

> P;

[ 1 0]

[-1 1]

> Q;

[-1 2]

[ 1 -1]

> P*A*Q;

[1 0]

[0 2]

Next, let’s test the limits. We make a 10 × 10 integer matrix with entries between
0 and 99, and compute its Smith normal form.

> A := Matrix(10,10,[Random(100) : i in [1..100]]);

> time B := SmithForm(A);

Time: 0.000

Let’s print the first row of A, the first and last row of B, and the diagonal of B:

> A[1];

( 4 48 84 3 58 61 53 26 9 5)

> B[1];

(1 0 0 0 0 0 0 0 0 0)

> B[10];

(0 0 0 0 0 0 0 0 0 51805501538039733)

> [B[i,i] : i in [1..10]];

[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 51805501538039733 ]

Let’s see how big we have to make A in order to slow down Magma. These timings
below are on a 1.6Ghz Pentium 4-M laptop running Magma V2.11 under VMware
Linux. I tried exactly the same computation running Magma V2.17 natively under
Windows XP on the same machine, and it takes twice as long to do each computa-
tion, which is strange.

> n := 50; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 0.050

> n := 100; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 0.800

> n := 150; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);
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Time: 4.900

> n := 200; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 19.160

Magma can also work with finitely generated abelian groups.

> G := AbelianGroup([3,5,18]);

> G;

Abelian Group isomorphic to Z/3 + Z/90

Defined on 3 generators

Relations:

3*G.1 = 0

5*G.2 = 0

18*G.3 = 0

> #G;

270

> H := sub<G | [G.1+G.2]>;

> #H;

15

> G/H;

Abelian Group isomorphic to Z/18

7.2.2 Q and Number Fields

Magma has many commands for doing basic arithmetic with Q.

> Qbar := AlgebraicClosure(RationalField());

> Qbar;

> S<x> := PolynomialRing(Qbar);

> r := Roots(x^3-2);

> r;

[

<r1, 1>,

<r2, 1>,

<r3, 1>

]

> a := r[1][1];

> MinimalPolynomial(a);

x^3 - 2

> s := Roots(x^2-7);

> b := s[1][1];

> MinimalPolynomial(b);

x^2 - 7

> a+b;
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r4 + r1

> MinimalPolynomial(a+b);

x^6 - 21*x^4 - 4*x^3 + 147*x^2 - 84*x - 339

> Trace(a+b);

0

> Norm(a+b);

-339

There are few commands for general algebraic number fields, so usually we work in
specific finitely generated subfields:

> MinimalPolynomial(a+b);

x^6 - 21*x^4 - 4*x^3 + 147*x^2 - 84*x - 339

> K := NumberField($1) ; // $1 = result of previous computation.

> K;

Number Field with defining polynomial x^6 - 21*x^4 - 4*x^3 +

147*x^2 - 84*x - 339 over the Rational Field

We can also define relative extensions of number fields and pass to the corresponding
absolute extension.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2); // a is the image of x in Q[x]/(x^3-2)

> a;

a

> a^3;

2

> S<y> := PolynomialRing(K);

> L<b> := NumberField(y^2-a);

> L;

Number Field with defining polynomial y^2 - a over K

> b^2;

a

> b^6;

2

> AbsoluteField(L);

Number Field with defining polynomial x^6 - 2 over the Rational

Field

7.2.3 Rings of integers

Magma computes rings of integers of number fields.

> RingOfIntegers(K);

Maximal Equation Order with defining polynomial x^3 - 2 over ZZ

> RingOfIntegers(L);
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Maximal Equation Order with defining polynomial x^2 + [0, -1, 0]

over its ground order

Sometimes the ring of integers of Q(a) isn’t just Z[a]. First a simple example, then
a more complicated one:

> K<a> := NumberField(2*x^2-3); // doesn’t have to be monic

> 2*a^2 - 3;

0

> K;

Number Field with defining polynomial x^2 - 3/2 over the Rational

Field

> O := RingOfIntegers(K);

> O;

Maximal Order of Equation Order with defining polynomial 2*x^2 -

3 over ZZ

> Basis(O);

[

O.1,

O.2

]

> [K!x : x in Basis(O)];

[

1,

2*a // this is Sqrt(3)

]

Here’s are some more examples:

> procedure ints(f) // (procedures don’t return anything; functions do)

K<a> := NumberField(f);

O := MaximalOrder(K);

print [K!z : z in Basis(O)];

end procedure;

> ints(x^2-5);

[

1,

1/2*(a + 1)

]

> ints(x^2+5);

[

1,

a

]

> ints(x^3-17);
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[

1,

a,

1/3*(a^2 + 2*a + 1)

]

> ints(CyclotomicPolynomial(7));

[

1,

a,

a^2,

a^3,

a^4,

a^5

]

> ints(x^5+&+[Random(10)*x^i : i in [0..4]]); // RANDOM

[

1,

a,

a^2,

a^3,

a^4

]

> ints(x^5+&+[Random(10)*x^i : i in [0..4]]); // RANDOM

[

1,

a,

a^2,

1/2*(a^3 + a),

1/16*(a^4 + 7*a^3 + 11*a^2 + 7*a + 14)

]

Lets find out how high of a degree Magma can easily deal with.

> d := 10; time ints(x^10+&+[Random(10)*x^i : i in [0..d-1]]);

[

1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9

]

Time: 0.030

> d := 15; time ints(x^10+&+[Random(10)*x^i : i in [0..d-1]]);

[

1,

7*a,

7*a^2 + 4*a,

7*a^3 + 4*a^2 + 4*a,

7*a^4 + 4*a^3 + 4*a^2 + a,



44 CHAPTER 7. COMPUTING

7*a^5 + 4*a^4 + 4*a^3 + a^2 + a,

7*a^6 + 4*a^5 + 4*a^4 + a^3 + a^2 + 4*a,

7*a^7 + 4*a^6 + 4*a^5 + a^4 + a^3 + 4*a^2,

7*a^8 + 4*a^7 + 4*a^6 + a^5 + a^4 + 4*a^3 + 4*a,

7*a^9 + 4*a^8 + 4*a^7 + a^6 + a^5 + 4*a^4 + 4*a^2 + 5*a,

7*a^10 + 4*a^9 + 4*a^8 + a^7 + a^6 + 4*a^5 + 4*a^3 + 5*a^2 + 4*a,

...

]

Time: 0.480

> d := 20; time ints(x^10+&+[Random(10)*x^i : i in [0..d-1]]);

[

1,

2*a,

4*a^2,

8*a^3,

8*a^4 + 2*a^2 + a,

8*a^5 + 2*a^3 + 3*a^2,

...]

Time: 3.940

> d := 25; time ints(x^10+&+[Random(10)*x^i : i in [0..d-1]]);

... I stopped it after a few minutes...

We can also define orders in rings of integers.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2);

> O := Order([2*a]);

> O;

Transformation of Order over

Equation Order with defining polynomial x^3 - 2 over ZZ

Transformation Matrix:

[1 0 0]

[0 2 0]

[0 0 4]

> OK := MaximalOrder(K);

> Index(OK,O);

8

> Discriminant(O);

-6912

> Discriminant(OK);

-108

> 6912/108;

64 // perfect square...
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7.2.4 Ideals

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2);

> O := Order([2*a]);

> O;

Transformation of Order over

Equation Order with defining polynomial x^3 - 2 over ZZ

Transformation Matrix:

[1 0 0]

[0 2 0]

[0 0 4]

> OK := MaximalOrder(K);

> Index(OK,O);

8

> Discriminant(O);

-6912

> Discriminant(OK);

-108

> 6912/108;

64 // perfect square...

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^2-7);

> K<a> := NumberField(x^2-5);

> Discriminant(K);

20 // ????????? Yuck!

> OK := MaximalOrder(K);

> Discriminant(OK);

5 // better

> Discriminant(NumberField(x^2-20));

80

> I := 7*OK;

> I;

Principal Ideal of OK

Generator:

[7, 0]

> J := (OK!a)*OK; // the ! computes the natural image of a in OK

> J;

Principal Ideal of OK

Generator:

[-1, 2]

> I*J;

Principal Ideal of OK

Generator:
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[-7, 14]

> J*I;

Principal Ideal of OK

Generator:

[-7, 14]

> I+J;

Principal Ideal of OK

Generator:

[1, 0]

>

> Factorization(I);

[

<Principal Prime Ideal of OK

Generator:

[7, 0], 1>

]

> Factorization(3*OK);

[

<Principal Prime Ideal of OK

Generator:

[3, 0], 1>

]

> Factorization(5*OK);

[

<Prime Ideal of OK

Two element generators:

[5, 0]

[4, 2], 2>

]

> Factorization(11*OK);

[

<Prime Ideal of OK

Two element generators:

[11, 0]

[14, 2], 1>,

<Prime Ideal of OK

Two element generators:

[11, 0]

[17, 2], 1>

]

We can even work with fractional ideals in Magma.

> K<a> := NumberField(x^2-5);
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> OK := MaximalOrder(K);

> I := 7*OK;

> J := (OK!a)*OK;

> M := I/J;

> M;

Fractional Principal Ideal of OK

Generator:

-7/5*OK.1 + 14/5*OK.2

> Factorization(M);

[

<Prime Ideal of OK

Two element generators:

[5, 0]

[4, 2], -1>,

<Principal Prime Ideal of OK

Generator:

[7, 0], 1>

]

In the next chapter, we will learn about discriminants and an algorithm for
“factoring primes”, that is writing an ideal pOK as a product of prime ideals of OK .
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Chapter 8

Factoring Primes

First we will learn how, if p ∈ Z is a prime and OK is the ring of integers of a number
field, to write pOK as a product of primes of OK . Then I will sketch the main results
and definitions that we will study in detail during the next few chapters. We will
cover discriminants and norms of ideals, define the class group of OK and prove
that it is finite and computable, and define the group of units of OK , determine its
structure, and prove that it is also computable.

8.1 Factoring Primes

A diagram from [LL93].

“The obvious mathematical breakthrough would be develop-
ment of an easy way to factor large prime numbers.” –Bill
Gates, The Road Ahead, pg. 265
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Let K = Q(α) be a number field, and let OK be the ring of integers of K. To
employ our geometric intuition, as the Lenstras did on the cover of [LL93], it is
helpful to view OK as a one-dimensional scheme

X = Spec(OK) = { all prime ideals of OK }

over
Y = Spec(Z) = {(0)} ∪ {pZ : p ∈ Z is prime }.

There is a natural map π : X → Y that sends a prime ideal p ∈ X to p ∩ Z ∈ Y .
For much more on this point of view, see [EH00, Ch. 2].

Ideals were originally introduced by Kummer because, as we proved last Tuesday,
in rings of integers of number fields ideals factor uniquely as products of primes
ideals, which is something that is not true for general algebraic integers. (The
failure of unique factorization for algebraic integers was used by Liouville to destroy
Lamé’s purported 1847 “proof” of Fermat’s Last Theorem.)

If p ∈ Z is a prime number, then the ideal pOK of OK factors uniquely as
a product

∏

p
ei

i , where the pi are maximal ideals of OK . We may imagine the
decomposition of pOK into prime ideals geometrically as the fiber π−1(pZ) (with
multiplicities).

How can we compute π−1(pZ) in practice?

Example 8.1.1. The following Magma session shows the commands needed to com-
pute the factorization of pOK in Magma for K the number field defined by a root
of x5 + 7x4 + 3x2 − x + 1.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^5 + 7*x^4 + 3*x^2 - x + 1);

> OK := MaximalOrder(K);

> I := 2*OK;

> Factorization(I);

[

<Principal Prime Ideal of OK

Generator:

[2, 0, 0, 0, 0], 1>

]

> J := 5*OK;

> Factorization(J);

[

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0]

[2, 1, 0, 0, 0], 1>,

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0]
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[3, 1, 0, 0, 0], 2>,

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0]

[2, 4, 1, 0, 0], 1>

]

> [K!OK.i : i in [1..5]];

[ 1, a, a^2, a^3, a^4 ]

Thus 2OK is already a prime ideal, and

5OK = (5, 2 + a) · (5, 3 + a)2 · (5, 2 + 4a + a2).

Notice that in this example OK = Z[a]. (Warning: There are examples of OK

such that OK 6= Z[a] for any a ∈ OK , as Example 8.1.6 below illustrates.) When
OK = Z[a] it is very easy to factor pOK , as we will see below. The following
factorization gives a hint as to why:

x5 + 7x4 + 3x2 − x + 1 ≡ (x + 2) · (x + 3)2 · (x2 + 4x + 2) (mod 5).

The exponent 2 of (5, 3 + a)2 in the factorization of 5OK above suggests “rami-
fication”, in the sense that the cover X → Y has less points (counting their “size”,
i.e., their residue class degree) in its fiber over 5 than it has generically. Here’s a
suggestive picture:
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� (5, 2 + 4a + a2)

(5, 3 + a)2

(5, 2 + a)

5Z

2OK

2Z
(0)

(0)

3Z 7Z 11Z

Diagram of Spec(OK) → Spec(Z)
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8.1.1 A Method for Factoring that Often Works

Suppose a ∈ OK is such that K = Q(a), and let g(x) be the minimal polynomial
of a. Then Z[a] ⊂ OK , and we have a diagram of schemes

(??) Â

Ä

//

²²

Spec(OK)

²²
⋃

Spec(Fp[x]/(gei

i )) Â

Ä

//

²²

Spec(Z[a])

²²
Spec(Fp)

Â

Ä

// Spec(Z)

where g =
∏

i g
ei

i is the factorization of the image of g in Fp[x].
The cover π : Spec(Z[a]) → Spec(Z) is easy to understand because it is defined

by the single equation g(x). To give a maximal ideal p of Z[a] such that π(p) = pZ is
the same as giving a homomorphism ϕ : Z[x]/(g) → Fp (up to automorphisms of the
image), which is in turn the same as giving a root of g in Fp (up to automorphism),
which is the same as giving an irreducible factor of the reduction of g modulo p.

Lemma 8.1.2. Suppose the index of Z[a] in OK is coprime to p. Then the primes pi

in the factorization of pZ[a] do not decompose further going from Z[a] to OK , so
finding the prime ideals of Z[a] that contain p yields the factorization of pOK .

Proof. Hi-brow argument: By hypothesis we have an exact sequence of abelian
groups

0 → Z[a] → OK → H → 0,

where H is a finite abelian group of order coprime to p. Tensor product is right
exact, and there is an exact sequence

Tor1(H,Fp) → Z[a] ⊗ Fp → OK ⊗ Fp → H ⊗ Fp → 0,

and Tor1(H,Fp) = H ⊗ Fp = 0, so Z[a] ⊗ Fp
∼= OK ⊗ Fp.

Low-brow argument: The inclusion map Z[a] ↪→ OK is defined by a matrix over Z
that has determinant ±[OK : Z[a]], which is coprime to p. The reduction of this
matrix modulo p is invertible, so it defines an isomorphism Z[a] ⊗ Fp → OK ⊗ Fp.
Any homomorphism OK → Fp is the composition of a homomorphism OK →
OK ⊗ Fp with a homomorphism OK ⊗ Fp → Fp. Since OK ⊗ Fp

∼= Z[a] ⊗ Fp, the
homomorphisms OK → Fp are in bijection with the homomorphisms Z[a] → Fp,
which proves the lemma.

As suggested in the proof of the lemma, we find all homomorphisms OK → Fp

by finding all homomorphism Z[a] → Fp. In terms of ideals, if p = (g(a), p)Z[a] is a
maximal ideal of Z[a], then the ideal p′ = (g(a), p)OK of OK is also maximal, since

OK/p′ ∼= (OK ⊗ Fp)/(g(ã)) ∼= (Z[a] ⊗ Fp)/(g(ã)) ⊂ Fp.

We formalize the above discussion in the following theorem:
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Theorem 8.1.3. Let f(x) denote the minimal polynomial of a over Q. Suppose
that p - [OK : Z[a]] is a prime. Let

f =
t

∏

i=1

f
ei

i ∈ Fp[x]

where the f i are distinct monic irreducible polynomials. Let pi = (p, fi(a)) where
fi ∈ Z[x] is a lift of f i in Fp[X]. Then

pOK =
t

∏

i=1

pei

i .

We return to the example from above, in which K = Q(a), where a is a root of
x5+7x4+3x2−x+1. According to Magma, the maximal order OK has discriminant
2945785:

> Discriminant(MaximalOrder(K));

2945785

The order Z[a] has the same discriminant as OK , so Z[a] = OK and we can apply
the above theorem.

> Discriminant(x^5 + 7*x^4 + 3*x^2 - x + 1);

2945785

We have

x5 + 7x4 + 3x2 − x + 1 ≡ (x + 2) · (x + 3)2 · (x2 + 4x + 2) (mod 5),

which yields the factorization of 5OK given before the theorem.
If we replace a by b = 7a, then the index of Z[b] in OK will be a power of 7,

which is coprime to 5, so the above method will still work.

> f:=MinimalPolynomial(7*a);

> f;

x^5 + 49*x^4 + 1029*x^2 - 2401*x + 16807

> Discriminant(f);

235050861175510968365785

> Discriminant(f)/Discriminant(MaximalOrder(K));

79792266297612001 // coprime to 5

> S<t> := PolynomialRing(GF(5));

> Factorization(S!f);

[

<t + 1, 2>,

<t + 4, 1>,

<t^2 + 3*t + 3, 1>

]
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Thus 5 factors in OK as

5OK = (5, 7a + 1)2 · (5, 7a + 4) · (5, (7a)2 + 3(7a) + 3).

If we replace a by b = 5a and try the above algorithm with Z[b], then the method
fails because the index of Z[b] in OK is divisible by 5.

> f:=MinimalPolynomial(5*a);

> f;

x^5 + 35*x^4 + 375*x^2 - 625*x + 3125

> Discriminant(f) / Discriminant(MaximalOrder(K));

95367431640625 // divisible by 5

> Factorization(S!f);

[

<t, 5>

]

8.1.2 A Method for Factoring that Always Works

There are numbers fields K such that OK is not of the form Z[a] for any a ∈ K.
Even worse, Dedekind found a field K such that 2 | [OK : Z[a]] for all a ∈ OK , so
there is no choice of a such that Theorem 8.1.3 can be used to factor 2 for K (see
Example 8.1.6 below).

Most algebraic number theory books do not describe an algorithm for decompos-
ing primes in the general case. Fortunately, Cohen’s book [Coh93, §6.2]) describes
how to solve the general problem. The solutions are somewhat surprising, since the
algorithms are much more sophisticated than the one suggested by Theorem 8.1.3.
However, these complicated algorithms all run very quickly in practice, even without
assuming the maximal order is already known.

For simplicity we consider the following slightly easier problem whose solution
contains the key ideas: Let O be any order in OK and let p be a prime of Z. Find
the prime ideals of O that contain p.

To go from this special case to the general case, given a prime p that we wish
to factor in OK , we find a p-maximal order O, i.e., an order O such that [OK : O]
is coprime to p. A p-maximal order can be found very quickly in practice using the
“round 2” or “round 4” algorithms. (Remark: Later we will see that to compute OK ,
we take the sum of p-maximal orders, one for every p such that p2 divides Disc(OK).
The time-consuming part of this computation of OK is finding the primes p such
that p2 | Disc(OK), not finding the p-maximal orders. Thus a fast algorithm for
factoring integers would not only break many cryptosystems, but would massively
speed up computation of the ring of integers of a number field.)

Algorithm 8.1.4. Suppose O is an order in the ring OK of integers of a number
field K. For any prime p ∈ Z, the following (sketch of an) algorithm computes the
set of maximal ideals of O that contain p.
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Sketch of algorithm. Let K = Q(a) be a number field given by an algebraic
integer a as a root of its minimal monic polynomial f of degree n. We assume that
an order O has been given by a basis w1, . . . , wn and that O that contains Z[a]. Each
of the following steps can be carried out efficiently using little more than linear algebra
over Fp. The details are in [Coh93, §6.2.5].

1. [Check if easy] If p - disc(Z[a])/ disc(O) (so p - [O : Z[a]]), then by a slight
modification of Theorem 8.1.3, we easily factor pO.

2. [Compute radical] Let I be the radical of pO, which is the ideal of elements x ∈ O
such that xm ∈ pO for some positive integer m. Using linear algebra over the
finite field Fp, we can quickly compute a basis for I/pO. (We never compute
I ⊂ O.)

3. [Compute quotient by radical] Compute an Fp basis for

A = O/I = (O/pO)/(I/pO).

The second equality comes from the fact that pO ⊂ I, which is clear by definition.
Note that O/pO ∼= O ⊗ Fp is obtained by simply reducing the basis w1, . . . , wn

modulo p.

4. [Decompose quotient] The ring A is a finite Artin ring with no nilpotents, so it
decomposes as a product A ∼=

∏

Fp[x]/gi(x) of fields. We can quickly find such
a decomposition explicitly, as described in [Coh93, §6.2.5].

5. [Compute the maximal ideals over p] Each maximal ideal pi lying over p is the
kernel of O → A → Fp[x]/gi(x).

The algorithm finds all primes of O that contain the radical I of pO. Every such
prime clearly contains p, so to see that the algorithm is correct, we must prove that
the primes p of O that contain p also contain I. If p is a prime of O that contains p,
then pO ⊂ p. If x ∈ I then xm ∈ pO for some m, so xm ∈ p which implies that
x ∈ p by primality of p. Thus p contains I, as required.

8.1.3 Essential Discriminant Divisors

Definition 8.1.5. A prime p is an essential discriminant divisor if p | [OK : Z[a]]
for every a ∈ OK .

Since [OK : Z[a]] is the absolute value of Disc(f(x))/ Disc(OK), where f(x) is
the characteristic polynomial of f(x), an essential discriminant divisor divides the
discriminant of the characteristic polynomial of any element of OK .

Example 8.1.6 (Dedekind). Let K = Q(a) be the cubic field defined by a root a of
the polynomial f = x3 +x2−2x+8. We will use Magma, which implements the al-
gorithm described in the previous section, to show that 2 is an essential discriminant
divisor for K.
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> K<a> := NumberField(x^3 + x^2 - 2*x + 8);

> OK := MaximalOrder(K);

> Factorization(2*OK);

[

<Prime Ideal of OK

Basis:

[2 0 0]

[0 1 0]

[0 0 1], 1>,

<Prime Ideal of OK

Basis:

[1 0 1]

[0 1 0]

[0 0 2], 1>,

<Prime Ideal of OK

Basis:

[1 0 1]

[0 1 1]

[0 0 2], 1>

]

Thus 2OK = p1p2p3, with the pi distinct. Moreover, one can check that OK/pi
∼=

F2. If OK = Z[a] for some a ∈ OK with minimal polynomial g, then g(x) ∈ F2[x]
must be a product of three distinct linear factors, which is impossible.



Chapter 9

Chinese Remainder Theorem

In this section we will prove the Chinese Remainder Theorem for rings of integers,
deduce several surprising and useful consequences, then learn about discriminants,
and finally norms of ideals. We will also define the class group of OK and state
the main theorem about it. The tools we develop here illustrate the power of what
we have already proved about rings of integers, and will be used over and over
again to prove other deeper results in algebraic number theory. It is essentially to
understand everything we discuss in this chapter very well.

9.1 The Chinese Remainder Theorem

Recall that the Chinese Remainder Theorem from elementary number theory asserts
that if n1, . . . , nr are integers that are coprime in pairs, and a1, . . . , ar are integers,
then there exists an integer a such that a ≡ ai (mod ni) for each i = 1, . . . , r. In
terms of rings, the Chinese Remainder Theorem asserts that the natural map

Z/(n1 · · ·nr)Z → (Z/n1Z) ⊕ · · · ⊕ (Z/nrZ)

is an isomorphism. This result generalizes to rings of integers of number fields.

Lemma 9.1.1. If I and J are coprime ideals in OK , then I ∩ J = IJ .

Proof. The ideal I ∩ J is the largest ideal of OK that is divisible by (contained in)
both I and J . Since I and J are coprime, I ∩ J is divisible by IJ , i.e., I ∩ J ⊂ IJ .
By definition of ideal IJ ⊂ I ∩ J , which completes the proof.

Remark 9.1.2. This lemma is true for any ring R and ideals I, J ⊂ R such that
I + J = R. For the general proof, choose x ∈ I and y ∈ J such that x + y = 1. If
c ∈ I ∩ J then

c = c · 1 = c · (x + y) = cx + cy ∈ IJ + IJ = IJ,

so I ∩ J ⊂ IJ , and the other inclusion is obvious by definition.
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Theorem 9.1.3 (Chinese Remainder Theorem). Suppose I1, . . . , Ir are ideals
of OK such that Im + In = OK for any m 6= n. Then the natural homomorphism
OK → ⊕r

n=1(OK/In) induces an isomorphism

OK/

(

r
∏

n=1

In

)

→
r

⊕

n=1

(OK/In).

Thus given any an ∈ In then there exists a ∈ OK such that a ≡ an (mod In) for
n = 1, . . . , r.

Proof. First assume that we know the theorem in the case when the In are powers
of prime ideals. Then we can deduce the general case by noting that each OK/In

is isomorphic to a product
∏OK/pem

m , where In =
∏

pem
m , and OK/(

∏

n In) is
isomorphic to the product of the OK/pe, where the p and e run through the same
prime powers as appear on the right hand side.

It thus suffices to prove that if p1, . . . , pr are distinct prime ideals of OK and
e1, . . . , er are positive integers, then

ψ : OK/

(

r
∏

n=1

pen
n

)

→
r

⊕

n=1

(OK/pen
n )

is an isomorphism. Let ϕ : OK → ⊕r
n=1(OK/pen

n ) be the natural map induced by
reduction mod pen

n . Then kernel of ϕ is ∩r
n=1p

en
n , which by Lemma 9.1.1 is equal to

∏r
n=1 pen

n , so ψ is injective. Note that the projection OK → OK/pen
n of ϕ onto each

factor is obviously surjective, so it suffices to show that the element (1, 0, . . . , 0) is in
the image of ϕ (and the similar elements for the other factors). Since J =

∏r
n=2 pen

n

is not divisible by p1, hence not contained in p1, there is an element a ∈ J with
a 6∈ p1. Since p1 is maximal, OK/p1 is a field, so there exists b ∈ OK such that
ab = 1 − c, for some c ∈ p1. Then

1 − cn1 = (1 − c)(1 + c + c2 + · · · + cn1−1) = ab(1 + c + c2 + · · · + cn1−1)

is congruent to 0 mod pen
n for each n ≥ 2 since it is in

∏r
n=2 pen

n , and it is congruent
to 1 modulo pn1

1 .

Remark 9.1.4. In fact, the surjectivity part of the above proof is easy to prove
for any commutative ring; indeed, the above proof illustrates how trying to prove
something in a special case can result in a more complicated proof!! Suppose R is
a ring and I, J are ideals in R such that I + J = R. Choose x ∈ I and y ∈ J such
that x + y = 1. Then x = 1 − y maps to (0, 1) in R/I ⊕ R/J and y = 1 − x maps
to (1, 0) in R/I ⊕ R/J . Thus the map R/(I ∩ J) → R/I ⊕ R/J is surjective. Also,
as mentioned above, R/(I ∩ J) = R/(IJ).

Example 9.1.5. The Magma command ChineseRemainderTheorem implements the
algorithm suggested by the above theorem. In the following example, we compute
a prime over (3) and a prime over (5) of the ring of integers of Q( 3

√
2), and find an

element of OK that is congruent to 3
√

2 modulo one prime and 1 modulo the other.
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> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2);

> OK := MaximalOrder(K);

> I := Factorization(3*OK)[1][1];

> J := Factorization(5*OK)[1][1];

> I;

Prime Ideal of OK

Two element generators:

[3, 0, 0]

[4, 1, 0]

> J;

Prime Ideal of OK

Two element generators:

[5, 0, 0]

[7, 1, 0]

> b := ChineseRemainderTheorem(I, J, OK!a, OK!1);

> b - a in I;

true

> b - 1 in J;

true

> K!b;

-4

The element found by the Chinese Remainder Theorem algorithm in this case is
−4.

The following lemma is a nice application of the Chinese Remainder Theorem.
We will use it to prove that every ideal of OK can be generated by two elements.
Suppose I is a nonzero integral ideals of OK . If a ∈ I, then (a) ⊂ I, so I divides (a)
and the quotient (a)/I is an integral ideal. The following lemma asserts that (a)
can be chosen so the quotient (a)/I is coprime to any given ideal.

Lemma 9.1.6. If I, J are nonzero integral ideals in OK , then there exists an a ∈ I
such that (a)/I is coprime to J .

Proof. Let p1, . . . , pr be the prime divisors of J . For each n, let vn be the largest
power of pn that divides I. Choose an element an ∈ pvn

n that is not in pvn+1
n (there

is such an element since pvn
n 6= pvn+1

n , by unique factorization). By Theorem 9.1.3,
there exists a ∈ OK such that

a ≡ an (mod pvn+1
n )

for all n = 1, . . . , r and also

a ≡ 0 (mod I/
∏

pvn
n ).

(We are applying the theorem with the coprime integral ideals pvn+1
n , for n = 1, . . . , r

and the integral ideal I/
∏

pvn
n .)
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To complete the proof we must show that (a)/I is not divisible by any pn, or
equivalently, that the pvn

n exactly divides (a). Because a ≡ an (mod pvn+1
n ), there

is b ∈ pvn+1
n such that a = an + b. Since an ∈ pvn

n , it follows that a ∈ pvn
n , so pvn

n

divides (a). If a ∈ pvn+1
n , then an = a − b ∈ pvn+1

n , a contradiction, so pvn+1
n does

not divide (a), which completes the proof.

Suppose I is a nonzero ideal of OK . As an abelian group OK is free of rank equal
to the degree [K : Q] of K, and I is of finite index in OK , so I can be generated as an
abelian group, hence as an ideal, by [K : Q] generators. The following proposition
asserts something much better, namely that I can be generated as an ideal in OK

by at most two elements.

Proposition 9.1.7. Suppose I is a fractional ideal in the ring OK of integers of a
number field. Then there exist a, b ∈ K such that I = (a, b).

Proof. If I = (0), then I is generated by 1 element and we are done. If I is not an
integral ideal, then there is x ∈ K such that xI is an integral ideal, and the number
of generators of xI is the same as the number of generators of I, so we may assume
that I is an integral ideal.

Let a be any nonzero element of the integral ideal I. We will show that there
is some b ∈ I such that I = (a, b). Let J = (b). By Lemma 9.1.6, there exists a ∈ I
such that (a)/I is coprime to (b). The ideal (a, b) = (a)+(b) is the greatest common
divisor of (a) and (b), so I divides (a, b), since I divides both (a) and (b). Suppose
pn is a prime power that divides (a, b), so pn divides both (a) and (b). Because
(a)/I and (b) are coprime and pn divides (b), we see that pn does not divide (a)/I,
so pn must divide I. Thus (a, b) divides I, so (a, b) = I as claimed.

We can also use Theorem 9.1.3 to determine the OK-module structure of the
successive quotients pn/pn+1.

Proposition 9.1.8. Let p be a nonzero prime ideal of OK , and let n ≥ 0 be an
integer. Then pn/pn+1 ∼= OK/p as OK-modules.

Proof. (Compare page 13 of Swinnerton-Dyer.) Since pn 6= pn+1 (by unique factor-
ization), we can fix an element b ∈ pn such that b 6∈ pn+1. Let ϕ : OK → pn/pn+1

be the OK-module morphism defined by ϕ(a) = ab. The kernel of ϕ is p since
clearly ϕ(p) = 0 and if ϕ(a) = 0 then ab ∈ pn+1, so pn+1 | (a)(b), so p | (a), since
pn+1 does not divide (b). Thus ϕ induces an injective OK-module homomorphism
OK/p ↪→ pn/pn+1.

It remains to show that ϕ is surjective, and this is where we will use Theo-
rem 9.1.3. Suppose c ∈ pn. By Theorem 9.1.3 there exists d ∈ OK such that

d ≡ c (mod pn+1) and d ≡ 0 (mod (b)/pn).

We have pn | (c) since c ∈ pn and (b)/pn | (d) by the second displayed condition, so
(b) = pn · (b)/pn | (d), hence d/b ∈ OK . Finally

ϕ

(

d

b

)

=
d

b
· b (mod pn+1) = b (mod pn+1) = c (mod pn+1),
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so ϕ is surjective.
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Chapter 10

Discrimannts, Norms, and
Finiteness of the Class Group

10.1 Preliminary Remarks

Let K be a number field of degree n. Then there are n embeddings

σ1, . . . , σn : K ↪→ C.

Let σ : K → Cn be the product map a 7→ (σ1(a), . . . , σn(a)). Let V = Rσ(K) be
the R-span of σ(K) inside Cn.

Proposition 10.1.1. The R-vector space V = Rσ(K) spanned by the image σ(K)
has dimension n.

Proof. We prove this by showing that the image σ(OK) is discrete. If σ(OK) were
not discrete it would contain elements all of whose coordinates are simultaneously
arbitrarily small. The norm of an element a ∈ OK is the product of the entries of
σ(a), so the norms of nonzero elements of OK would go to 0. This is a contradiction,
since the norms of elements of OK are integers.

The fact that σ(OK) is discrete in Cn implies that Rσ(OK) has dimension equal
to the rank n of σ(OK), as claimed. This last assertion is not obvious, and requires
observing that if L if a free abelian group that is discrete in a real vector space W
and RL = W , then the rank of L equals the dimension of W . Here’s why this is
true. If x1, . . . , xm ∈ L are a basis for RL, then Zx1 + · · · + Zxm has finite index
in L, since otherwise there would be infinitely many elements of L in a fundamental
domain for Zx1 + · · · + Zxm, which would contradict discreteness of L. Thus the
rank of L is m = dim(RL), as claimed.

Since σ(OK) is a lattice in V , the volume of V/σ(OK) is finite. Suppose
w1, . . . , wn is a basis for OK . Then if A is the matrix whose ith row is σ(wi),
then |Det(A)| is the volume of V/σ(OK). (Take this determinant as the definition
of the volume—we won’t be using “volume” here except in a formal motivating
way.)
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Example 10.1.2. Let OK = Z[i] be the ring of integers of K = Q(i). Then w1 = 1,
w2 = i is a basis for OK . The map σ : K → C2 is given by

σ(a + bi) = (a + bi, a − bi) ∈ C2.

The image σ(OK) is spanned by (1, 1) and (i,−i). The volume determinant is
∣

∣

∣

∣

(

1 1
i −i

)∣

∣

∣

∣

= | − 2i| = 2.

Let OK = Z[
√

2] be the ring of integers of K = Q(
√

2). The map σ is

σ(a + b
√

2) = (a + b
√

2, a − b
√

2) ∈ R2,

and

A =

(

1 1√
2 −

√
2

)

,

which has determinant −2
√

2, so the volume of the ring of integers is 2
√

2.

As the above example illustrates, the volume of the ring of integers is not a
great invariant of OK . For example, it need not be an integer. If we consider
Det(A)2 instead, we obtain a number that is a well-defined integer which can be
either positive or negative. In the next section we will do just this.

10.2 Discriminants

Suppose w1, . . . , wn are a basis for a number field K, which we view as a Q-vector
space. Let σ : K ↪→ Cn be the embedding σ(a) = (σ1(a), . . . , σn(a)), where
σ1, . . . , σn are the distinct embeddings of K into C. Let A be the matrix whose
rows are σ(w1), . . . , σ(wn). The quantity Det(A) depends on the ordering of the wi,
and need not be an integer.

If we consider Det(A)2 instead, we obtain a number that is a well-defined integer
which can be either positive or negative. Note that

Det(A)2 = Det(AA) = Det(AAt)

= Det





∑

k=1,...,n

σk(wi)σk(wj)





= Det(Tr(wiwj)1≤i,j≤n),

so Det(A)2 can be defined purely in terms of the trace without mentioning the
embeddings σi. Also, changing the basis for OK is the same as left multiplying A
by an integer matrix U of determinant ±1, which does not change the squared
determinant, since Det(UA)2 = Det(U)2 Det(A)2 = Det(A)2. Thus Det(A)2 is well
defined, and does not depend on the choice of basis.

If we view K as a Q-vector space, then (x, y) 7→ Tr(xy) defines a bilinear pairing
K × K → Q on K, which we call the trace pairing. The following lemma asserts
that this pairing is nondegenerate, so Det(Tr(wiwj)) 6= 0 hence Det(A) 6= 0.
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Lemma 10.2.1. The trace pairing is nondegenerate.

Proof. If the trace pairing is degenerate, then there exists a ∈ K such that for
every b ∈ K we have Tr(ab) = 0. In particularly, taking b = a−1 we see that
0 = Tr(aa−1) = Tr(1) = [K : Q] > 0, which is absurd.

Definition 10.2.2 (Discriminant). Suppose a1, . . . , an is any Q-basis of K. The
discriminant of a1, . . . , an is

Disc(a1, . . . , an) = Det(Tr(aiaj)1≤i,j≤n) ∈ Q.

The discriminant Disc(O) of an order O in OK is the discriminant of any basis
for O. The discriminant dK = Disc(K) of the number field K is the discrimimant
of OK .

Note that the discriminants defined above are all nonzero by Lemma 10.2.1.
Warning: In Magma Disc(K) is defined to be the discriminant of the polynomial

you happened to use to define K, which is (in my opinion) a poor choice and goes
against most of the literature.

The following proposition asserts that the discriminant of an order O in OK is
bigger than disc(OK) by a factor of the square of the index.

Proposition 10.2.3. Suppose O is an order in OK . Then

Disc(O) = Disc(OK) · [OK : O]2.

Proof. Let A be a matrix whose rows are the images via σ of a basis for OK ,
and let B be a matrix whose rows are the images via σ of a basis for O. Since
O ⊂ OK has finite index, there is an integer matrix C such that CA = B, and
|Det(C)| = [OK : O]. Then

Disc(O) = Det(B)2 = Det(CA)2 = Det(C)2 Det(A)2 = [OK : O]2 · Disc(OK).

This result is enough to give an algorithm for computing OK , albeit a potentially
slow one. Given K, find some order O ⊂ K, and compute d = Disc(O). Factor d,
and use the factorization to write d = s · f2, where f2 is the largest square that
divides d. Then the index of O in OK is a divisor of f , and we (tediously) can
enumerate all rings R with O ⊂ R ⊂ K and [R : O] | f , until we find the largest
one all of whose elements are integral.

Example 10.2.4. Consider the ring OK = Z[(1 +
√

5)/2] of integers of K = Q(
√

5).
The discriminant of the basis 1, a = (1 +

√
5)/2 is

Disc(OK) =

∣

∣

∣

∣

(

2 1
1 3

)∣

∣

∣

∣

= 5.

Let O = Z[
√

5] be the order generated by
√

5. Then O has basis 1,
√

5, so

Disc(O) =

∣

∣

∣

∣

(

2 0
0 10

)∣

∣

∣

∣

= 20 = [OK : O]2 · 5.
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10.3 Norms of Ideals

In this section we extend the notion of norm to ideals. This will be helpful in
proving of class groups in the next section. For example, we will prove that the
group of fractional ideals modulo principal fractional ideals of a number field is
finite by showing that every ideal is equivalent to an ideal with norm at most some
a priori bound.

Definition 10.3.1 (Lattice Index). If L and M are two lattices in vector space V ,
then the lattice index [L : M ] is by definition the absolute value of the determinant
of any linear automorphism A of V such that A(L) = M .

The lattice index has the following properties:

• If M ⊂ L, then [L : M ] = #(L/M).

• If M, L, N are lattices then [L : N ] = [L : M ] · [M : N ].

Definition 10.3.2 (Norm of Fractional Ideal). Suppose I is a fractional ideal
of OK . The norm of I is the lattice index

Norm(I) = [OK : I] ∈ Q≥0,

or 0 if I = 0.

Note that if I is an integral ideal, then Norm(I) = #(OK/I).

Lemma 10.3.3. Suppose a ∈ K and I is an integral ideal. Then

Norm(aI) = |NormK/Q(a)|Norm(I).

Proof. By properties of the lattice index mentioned above we have

[OK : aI] = [OK : I] · [I : aI] = Norm(I) · |NormK/Q(a)|.

Here we have used that [I : aI] = |NormK/Q(a)|, which is because left multiplication
`a is an automorphism of K that sends I onto aI, so [I : aI] = |Det(`a)| =
|NormK/Q(a)|.

Proposition 10.3.4. If I and J are fractional ideals, then

Norm(IJ) = Norm(I) · Norm(J).

Proof. By Lemma 10.3.3, it suffices to prove this when I and J are integral ideals.
If I and J are coprime, then Theorem 9.1.3 (Chinese Remainder Theorem) implies
that Norm(IJ) = Norm(I) ·Norm(J). Thus we reduce to the case when I = pm and
J = pk for some prime ideal p and integers m, k. By Proposition 9.1.8 (consequence
of CRT that OK/p ∼= pn/pn+1), the filtration of OK/pn given by powers of p has
successive quotients isomorphic to OK/p, so we see that #(OK/pn) = #(OK/p)n,
which proves that Norm(pn) = Norm(p)n.
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Lemma 10.3.5. Fix a number field K. Let B be a positive integer. There are only
finitely many integral ideals I of OK with norm at most B.

Proof. An integral ideal I is a subgroup of OK of index equal to the norm of I. If G
is any finitely generated abelian group, then there are only finitely many subgroups
of G of index at most B, since the subgroups of index dividing an integer n are all
subgroups of G that contain nG, and the group G/nG is finite. This proves the
lemma.

10.4 Finiteness of the Class Group via Geometry of
Numbers

We have seen examples in which OK is not a unique factorization domain. If OK is
a principal ideal domain, then it is a unique factorization domain, so it is of interest
to understand how badly OK fails to be a principal ideal domain. The class group
of OK measures this failure. As one sees in a course on Class Field Theory, the
class group and its generalizations also yield deep insight into the possible abelian
Galois extensions of K.

Definition 10.4.1 (Class Group). Let OK be the ring of integers of a number
field K. The class group CK of K is the group of nonzero fractional ideals modulo
the sugroup of principal fractional ideals (a), for a ∈ K.

Note that if we let Div(K) denote the group of nonzero fractional ideals, then
there is an exact sequence

0 → O∗
K → K∗ → Div(K) → CK → 0.

A basic theorem in algebraic number theory is that the class group CK is finite,
which follows from the first part of the following theorem and the fact that there
are only finitely many ideals of norm less than a given integer.

Theorem 10.4.2 (Finiteness of the Class Group). Let K be a number field.
There is a constant Cr,s that depends only on the number r, s of real and pairs
of complex conjugate embeddings of K such that every ideal class of OK contains
an integral ideal of norm at most Cr,s

√

|dK |, where dK = Disc(OK). Thus by
Lemma 10.3.5 the class group CK of K is finite. One can choose Cr,s such that
every ideal class in CK contains an integral ideal of norm at most

√

|dK | ·
(

4

π

)s n!

nn
.

The explicit bound in the theorem is called the Minkowski bound, and I think
it is the best known unconditional general bound (though there are better bounds
in certain special cases).
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Before proving Theorem 10.4.2, we prove a few lemmas. The strategy of the
proof will be to start with any nonzero ideal I, and prove that there is some nonzero
a ∈ K, with very small norm, such that aI is an integral ideal. Then Norm(aI) =
NormK/Q(a)Norm(I) will be small, since NormK/Q(a) is small. The trick is to
determine precisely how small an a we can choose subject to the condition that aI
be an integral ideal, i.e., that a ∈ I−1.

Let S be a subset of V = Rn. Then S is convex if whenever x, y ∈ S then the
line connecting x and y lies entirely in S. We say that S is symmetric about the
origin if whenever x ∈ S then −x ∈ S also. If L is a lattice in V , then the volume
of V/L is the volume of the compact real manifold V/L, which is the same thing as
the absolute value of the determinant of any matrix whose rows form a basis for L.

Lemma 10.4.3 (Blichfeld). Let L be a lattice in V = Rn, and let S be a bounded
closed convex subset of V that is symmetric about the origin. Assume that Vol(S) ≥
2n Vol(V/L). Then S contains a nonzero element of L.

Proof. First assume that Vol(S) > 2n · Vol(V/L). If the map π : 1
2S → V/L is

injective, then
1

2n
Vol(S) = Vol

(

1

2
S

)

≤ Vol(V/L),

a contradiction. Thus π is not injective, so there exist P1 6= P2 ∈ 1
2S such that

P1 − P2 ∈ L. By symmetry −P2 ∈ 1
2S. By convexity, the average 1

2(P1 − P2) of P1

and −P2 is also in 1
2S. Thus 0 6= P1 − P2 ∈ S ∩ L, as claimed.

Next assume that Vol(S) = 2n · Vol(V/L). Then for all ε > 0 there is 0 6= Qε ∈
L ∩ (1 + ε)S, since Vol((1 + ε)S) > Vol(S) = 2n · Vol(V/L). If ε < 1 then the Qε

are all in L∩ 2S, which is finite since 2S is bounded and L is discrete. Hence there
exists Q = Qε ∈ L∩(1+ε)S for arbitrarily small ε. Since S is closed, Q ∈ L∩S.

Lemma 10.4.4. If L1 and L2 are lattices in V , then

Vol(V/L2) = Vol(V/L1) · [L1 : L2].

Proof. Let A be an automorphism of V such that A(L1) = L2. Then A defines an
isomorphism of real manifolds V/L1 → V/L2 that changes volume by a factor of
|Det(A)| = [L1 : L2]. The claimed formula then follows.

Fix a number field K with ring of integers OK . Let σ : K → V = Rn be the
embedding

σ(x) =
(

σ1(x), σ2(x), . . . , σr(x),

Re(σr+1(x)), . . . ,Re(σr+s(x)), Im(σr+1(x)), . . . , Im(σr+s(x))
)

,

where σ1, . . . , σr are the real embeddings of K and σr+1, . . . , σr+s are half the com-
plex embeddings of K, with one representative of each pair of complex conjugate
embeddings. Note that this σ is not exactly the same as the one at the beginning
of Section 10.2.
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Lemma 10.4.5.

Vol(V/σ(OK)) = 2−s
√

|dK |.

Proof. Let L = σ(OK). From a basis w1, . . . , wn for OK we obtain a matrix A
whose ith row is

(σ1(wi), · · · , σr(wi), Re(σr+1(wi)), . . . ,Re(σr+s(w1)), Im(σr+1(wi)), . . . , Im(σr+s(w1)))

and whose determinant has absolute value equal to the volume of V/L. By doing
the following three column operations, we obtain a matrix whose rows are exactly
the images of the wi under all embeddings of K into C, which is the matrix that
came up when we defined dK .

1. Add i =
√
−1 times each column with entries Im(σr+j(wi)) to the column

with entries Re(σr+j(wi)).

2. Multiply all columns Im(σr+j(wi)) by −2i, thus changing the determinant by
(−2i)s.

3. Add each columns with entries Re(σr+j(wi)) to the the column with entries
−2iIm(σr+j(wi)).

Recalling the definition of discriminant, we see that if B is the matrix constructed
by the above three operations, then Det(B)2 = dK . Thus

Vol(V/L) = |Det(A)| = |(−2i)−s · Det(B)| = 2−s
√

|dK |.

Lemma 10.4.6. If I is a nonzero fractional ideal for OK , then σ(I) is a lattice in
V , and

Vol(V/σ(I)) = 2−s
√

|dK | · Norm(I).

Proof. We know that [OK : I] = Norm(I) is a nonzero rational number. Lemma 10.4.5
implies that σ(OK) is a lattice in V , since σ(OK) has rank n as abelian group and
spans V , so σ(I) is also a lattice in V . For the volume formula, combine Lem-
mas 10.4.4–10.4.5 to get

Vol(V/σ(I)) = Vol(V/σ(OK)) · [OK : I] = 2−s
√

|dK |Norm(I).

Proof of Theorem 10.4.2. Let K be a number field with ring of integers OK , let
σ : K ↪→ V ∼= Rn be as above, and let f : V → R be the function defined by

f(x1, . . . , xn) = |x1 · · ·xr · (x2
r+1 + x2

(r+1)+s) · · · (x2
r+s + x2

n).

Notice that if x ∈ K then f(σ(x)) = |NormK/Q(x)|.
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Let S ⊂ V be any closed, bounded, convex, subset that is symmetric with
respect to the origin and has positive volume. Since S is closed and bounded,

M = max{f(x) : x ∈ S}
exists.

Suppose I is any nonzero fractional ideal of OK . Our goal is to prove there is
an integral ideal aI with small norm. We will do this by finding an appropriate
a ∈ I−1. By Lemma 10.4.6,

c = Vol(V/I−1) =
2−s

√

|dK |
Norm(I)

.

Let λ = 2 ·
(

c
v

)1/n
, where v = Vol(S). Then

Vol(λS) = λn Vol(S) = 2n c

v
· v = 2n · c = 2n Vol(V/I−1),

so by Lemma 10.4.3 there exists 0 6= a ∈ I−1 ∩ λS. Since M is the largest norm of
an element of S, the largest norm of an element of I−1 ∩ λS is at most λnM , so

|NormK/Q(a)| ≤ λnM.

Since a ∈ I−1, we have aI ⊂ OK , so aI is an integral ideal of OK that is equivalent
to I, and

Norm(aI) = |NormK/Q(a)| · Norm(I)

≤ λnM · Norm(I)

≤ 2n c

v
M · Norm(I)

≤ 2n · 2−s
√

|dK | · M · v−1

= 2r+s
√

|dK | · M · v−1.

Notice that the right hand side is independent of I. It depends only on r, s, |dK |, and
our choice of S. This completes the proof of the theorem, except for the assertion
that S can be chosen to give the claim at the end of the theorem, which we leave
as an exercise.

Corollary 10.4.7. Suppose that K 6= Q is a number field. Then |dK | > 1.

Proof. Applying Theorem 10.4.2 to the unit ideal, we get the bound

1 ≤
√

|dK | ·
(

4

π

)s n!

nn
.

Thus
√

|dK | ≥
(π

4

)s nn

n!
,

and the right hand quantity is strictly bigger than 1 for any s ≤ n/2 and any n > 1
(exercise).
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10.4.1 An Open Problem

Conjecture 10.4.8. There are infinitely many number fields K such that the class
group of K has order 1.

For example, if we consider real quadratic fields K = Q(
√

d), with d positive
and square free, many class numbers are probably 1, as suggested by the Magma

output below. It looks like 1’s will keep appearing infinitely often, and indeed Cohen
and Lenstra conjecture that they do. Nobody has found a way to prove this yet.

> for d in [2..1000] do

if d eq SquareFree(d) then

h := ClassNumber(NumberField(x^2-d));

if h eq 1 then

printf "%o, ", d;

end if;

end if;

end for;

2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37,

38, 41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83,

86, 89, 93, 94, 97, 101, 103, 107, 109, 113, 118, 127, 129, 131,

133, 134, 137, 139, 141, 149, 151, 157, 158, 161, 163, 166, 167,

173, 177, 179, 181, 191, 193, 197, 199, 201, 206, 209, 211, 213,

214, 217, 227, 233, 237, 239, 241, 249, 251, 253, 262, 263, 269,

271, 277, 278, 281, 283, 293, 301, 302, 307, 309, 311, 313, 317,

329, 331, 334, 337, 341, 347, 349, 353, 358, 367, 373, 379, 381,

382, 383, 389, 393, 397, 398, 409, 413, 417, 419, 421, 422, 431,

433, 437, 446, 449, 453, 454, 457, 461, 463, 467, 478, 479, 487,

489, 491, 497, 501, 502, 503, 509, 517, 521, 523, 526, 537, 541,

542, 547, 553, 557, 563, 566, 569, 571, 573, 581, 587, 589, 593,

597, 599, 601, 607, 613, 614, 617, 619, 622, 631, 633, 641, 643,

647, 649, 653, 661, 662, 669, 673, 677, 681, 683, 691, 694, 701,

709, 713, 717, 718, 719, 721, 734, 737, 739, 743, 749, 751, 753,

757, 758, 766, 769, 773, 781, 787, 789, 797, 809, 811, 813, 821,

823, 827, 829, 838, 849, 853, 857, 859, 862, 863, 869, 877, 878,

881, 883, 886, 887, 889, 893, 907, 911, 913, 917, 919, 921, 926,

929, 933, 937, 941, 947, 953, 958, 967, 971, 973, 974, 977, 983,

989, 991, 997, 998,

In contrast, if we look at class numbers of quadratic imaginary fields, only a few
at the beginning have class number 1.

> for d in [1..1000] do

if d eq SquareFree(d) then

h := ClassNumber(NumberField(x^2+d));
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if h eq 1 then

printf "%o, ", d;

end if;

end if;

end for;

1, 2, 3, 7, 11, 19, 43, 67, 163

It is a theorem that the above list of 9 fields is the complete list with class number 1.
More generally, it is possible (in theory), using deep work of Gross, Zagier, and
Goldfeld involving zeta functions and elliptic curves, to enumerate all quadratic
number fields with a given class number.



Chapter 11

Computing Class Groups

In this chapter we discuss how to compute class groups in some examples, then
introduce the group of units. We will prove the main structure theorem for the
group of units in the next chapter.

11.1 Remarks on Computing the Class Group

If p is a prime of OK , then the intersection p ∩ Z = pZ is a prime ideal of Z. We
say that p lies over p ∈ Z. Note p lies over p ∈ Z if and only if p is one of the
prime factors in the factorization of the ideal pOK . Geometrically, p is a point of
Spec(OK) that lies over the point pZ of Spec(Z) under the map induced by the
inclusion Z ↪→ OK .

Lemma 11.1.1. Let K be a number field with ring of integers OK . Then the class
group Cl(K) is generated by the prime ideals p of OK lying over primes p ∈ Z with
p ≤ BK =

√

|dK | ·
(

4
π

)s · n!
nn , where s is the number of complex conjugate pairs of

embeddings K ↪→ C.

Proof. We proved before that every ideal class in Cl(K) is represented by an ideal
I with Norm(I) ≤ BK . Write I =

∏m
i=1 pei

i , with each ei ≥ 1. Then by multi-
plicativity of the norm, each pi also satisfies Norm(pi) ≤ BK . If pi ∩ Z = pZ, then
p | Norm(pi), since p is the residue characteristic of OK/p, so p ≤ BK . Thus I is a
product of primes p that satisfies the norm bound of the lemma, whcih proves the
lemma.

This is a sketch of how to compute Cl(K):

1. Use the “factoring primes” algorithm to list all prime ideals p of OK that
appear in the factorization of a prime p ∈ Z with p ≤ BK .

2. Find the group generated by the ideal classes [p], where the p are the prime
ideals found in step 1. (In general, one must think more carefully about how
to do this step.)

73
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The following three examples illustrate computation of Cl(K) for K = Q(i),Q(
√

5)
and Q(

√
−6).

Example 11.1.2. We compute the class group of K = Q(i). We have

n = 2, r = 0, s = 1, dK = −4,

so

BK =
√

4 ·
(

4

π

)1

·
(

2!

22

)

=
8

π
< 3.

Thus Cl(K) is generated by the prime divisors of 2. We have

2OK = (1 + i)2,

so Cl(K) is generated by the principal prime ideal p = (1 + i). Thus Cl(K) = 0 is
trivial.

Example 11.1.3. We compute the class group of K = Q(
√

5). We have

n = 2, r = 2, s = 0, dK = 5,

so

B =
√

5 ·
(

4

π

)0

·
(

2!

22

)

< 3.

Thus Cl(K) is generated by the primes that divide 2. We have OK = Z[γ], where

γ = 1+
√

5
2 satisfies x2 − x − 1. The polynomial x2 − x − 1 is irreducible mod 2, so

2OK is prime. Since it is principal, we see that Cl(K) = 1 is trivial.

Example 11.1.4. In this example, we compute the class group of K = Q(
√
−6). We

have

n = 2, r = 0, s = 1, dK = −24,

so

B =
√

24 · 4

π
·
(

2!

22

)

∼ 3.1.

Thus Cl(K) is generated by the prime ideals lying over 2 and 3. We have OK =
Z[
√
−6], and

√
−6 satisfies x2 +6 = 0. Factoring x2 +6 modulo 2 and 3 we see that

the class group is generated by the prime ideals

p2 = (2,
√
−6) and p3 = (3,

√
−6).

Also, p2
2 = 2OK and p2

3 = 3OK , so p2 and p3 define elements of order dividing 2 in
Cl(K).

Is either p2 or p3 principal? Fortunately, there is an easier norm trick that allows
us to decide. Suppose p2 = (α), where α = a + b

√
−6. Then

2 = Norm(p2) = |Norm(α)| = (a + b
√
−6)(a − b

√
−6) = a2 + 6b2.
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Trying the first few values of a, b ∈ Z, we see that this equation has no solutions,
so p2 can not be principal. By a similar argument, we see that p3 is not principal
either. Thus p2 and p3 define elements of order 2 in Cl(K).

Does the class of p2 equal the class of p3? Since p2 and p3 define classes of
order 2, we can decide this by finding the class of p2 · p3. We have

p2 · p3 = (2,
√
−6) · (3,

√
−6) = (6, 2

√
−6, 3

√
−6) ⊂ (

√
−6).

The ideals on both sides of the inclusion have norm 6, so by multiplicativity of the
norm, they must be the same ideal. Thus p2 · p3 = (

√
−6) is principal, so p2 and p3

represent the same element of Cl(K). We conclude that

Cl(K) = 〈p2〉 = Z/2Z.
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Chapter 12

Dirichlet’s Unit Theorem

In this chapter we will prove the main structure theorem for the group of units of
the ring of integers of a number field. The answer is remarkably simple: if K has r
real and s complex embeddings, then

O∗
K ≈ Zr+s−1 ⊕ W,

where W is the finite cyclic group of roots of unity in K. Examples will follow on
Thursday (application: the solutions to Pell’s equation x2 − dy2 = 1, for d > 1
squarefree, form a free abelian group of rank 1).

12.1 The Group of Units

Definition 12.1.1 (Unit Group). The group of units UK associated to a number
field K is the group of elements of OK that have an inverse in OK .

Theorem 12.1.2 (Dirichlet). The group UK is the product of a finite cyclic group
of roots of unity with a free abelian group of rank r+s−1, where r is the number of
real embeddings of K and s is the number of complex conjugate pairs of embeddings.

We prove the theorem by defining a map ϕ : UK → Rr+s, and showing that
the kernel of ϕ is finite and the image of ϕ is a lattice in a hyperplane in Rr+s.
The trickiest part of the proof is showing that the image of ϕ spans a hyperplane,
and we do this by a clever application of Blichfeldt’s lemma (that if S is closed,
bounded, symmetric, etc., and has volume at least 2n ·Vol(V/L), then S∩L contains
a nonzero element).

Remark 12.1.3. Theorem 12.1.2 is due to Dirichlet who lived 1805–1859. Thomas
Hirst described Dirichlet as follows:

He is a rather tall, lanky-looking man, with moustache and beard about
to turn grey with a somewhat harsh voice and rather deaf. He was un-
washed, with his cup of coffee and cigar. One of his failings is forgetting
time, he pulls his watch out, finds it past three, and runs out without
even finishing the sentence.

77
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Koch wrote that:

... important parts of mathematics were influenced by Dirichlet. His
proofs characteristically started with surprisingly simple observations,
followed by extremely sharp analysis of the remaining problem.

I think Koch’s observation nicely describes the proof we will give of Theorem 12.1.2.

The following proposition explains how to think about units in terms of the
norm.

Proposition 12.1.4. An element a ∈ OK is a unit if and only if NormK/Q(a) =
±1.

Proof. Write Norm = NormK/Q. If a is a unit, then a−1 is also a unit, and 1 =
Norm(a)Norm(a−1). Since both Norm(a) and Norm(a−1) are integers, it follows
that Norm(a) = ±1. Conversely, if a ∈ OK and Norm(a) = ±1, then the equation
aa−1 = 1 = ±Norm(a) implies that a−1 = ±Norm(a)/a. But Norm(a) is the
product of the images of a in C by all embeddings of K into C, so Norm(a)/a is
also a product of images of a in C, hence a product of algebraic integers, hence an
algebraic integer. Thus a−1 ∈ OK , which proves that a is a unit.

Let r be the number of real and s the number of complex conjugate embeddings
of K into C, so n = [K : Q] = r + 2s. Define a map

ϕ : UK → Rr+s

by
ϕ(a) = (log |σ1(a)|, . . . , log |σr+s(a)|).

Lemma 12.1.5. The image of ϕ lies in the hyperplane

H = {(x1, . . . , xr+s) ∈ Rr+s : x1 + · · · + xr + 2xr+1 + · · · + 2xr+s = 0}. (12.1.1)

Proof. If a ∈ UK , then by Proposition 12.1.4,
(

r
∏

i=1

|σi(a)|
)

·
(

s
∏

i=r+1

|σi(a)|2
)

= 1.

Taking logs of both sides proves the lemma.

Lemma 12.1.6. The kernel of ϕ is finite.

Proof. We have

Ker(ϕ) ⊂ {a ∈ OK : |σi(a)| = 1 for all i = 1, . . . , r + 2s}
⊂ σ(OK) ∩ X,

where X is the bounded subset of Rr+2s of elements all of whose coordinates have
absolute value at most 1. Since σ(OK) is a lattice (see Proposition 5.2.4), the
intersection σ(OK) ∩ X is finite, so Ker(ϕ) is finite.
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Lemma 12.1.7. The kernel of ϕ is a finite cyclic group.

Proof. It is a general fact that any finite subgroup of the multiplicative group of a
field is cyclic. [Homework.]

To prove Theorem 12.1.2, it suffices to proove that Im(ϕ) is a lattice in the
hyperplane H from (12.1.1), which we view as a vector space of dimension r+s−1.

Define an embedding
σ : K ↪→ Rn (12.1.2)

given by σ(x) = (σ1(x), . . . , σr+s(x)), where we view C ∼= R×R via a+ bi 7→ (a, b).
Note that this is exactly the same as the embedding

x 7→
(

σ1(x), σ2(x), . . . , σr(x),

Re(σr+1(x)), . . . ,Re(σr+s(x)), Im(σr+1(x)), . . . , Im(σr+s(x))
)

,

from before, except that we have re-ordered the last s imaginary components to be
next to their corresponding real parts.

Lemma 12.1.8. The image of ϕ is discrete in Rr+s.

Proof. Suppose X is any bounded subset of Rr+s. Then for any u ∈ Y = ϕ−1(X)
the coordinates of σ(u) are bounded in terms of X (since log is an increasing func-
tion). Thus σ(Y ) is a bounded subset of Rn. Since σ(Y ) ⊂ σ(OK), and σ(OK) is
a lattice in Rn, it follows that σ(Y ) is finite. Since σ is injective, Y is finite, and ϕ
has finite kernel, so ϕ(UK) ∩ X is finite, which implies that ϕ(UK) is discrete.

To finish the proof of Theorem 12.1.2, we will show that the image of ϕ spans H.
Let W be the R-span of the image ϕ(UK), and note that W is a subspace of H.
We will show that W = H indirectly by showing that if v 6∈ H⊥, where ⊥ is with
respect to the dot product on Rr+s, then v 6∈ W⊥. This will show that W⊥ ⊂ H⊥,
hence that H ⊂ W , as required.

Thus suppose z = (z1, . . . , zr+s) 6∈ H⊥. Define a function f : K∗ → R by

f(x) = z1 log |σ1(x)| + · · · zr+s log |σr+s(x)|. (12.1.3)

To show that z 6∈ W⊥ we show that there exists some u ∈ UK with f(u) 6= 0.
Let

A =
√

|dK | ·
(

2

π

)s

∈ R>0.

Choose any positive real numbers c1, . . . , cr+s ∈ R>0 such that

c1 · · · cr · (cr+1 · · · cr+s)
2 = A.

Let

S = {(x1, . . . , xn) ∈ Rn :

|xi| ≤ ci for 1 ≤ i ≤ r,

|x2
i + x2

i+s| ≤ c2
i for r < i ≤ r + s} ⊂ Rn.
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Then S is closed, bounded, convex, symmetric with respect to the origin, and of
dimension r + 2s, since S is a product of r intervals and s discs, each of which has
these properties. Viewing S as a product of intervals and discs, we see that the
volume of S is

Vol(S) =
r

∏

i=1

(2ci) ·
s

∏

i=1

(πc2
i ) = 2r · πs · A.

Recall Blichfeldt’s lemma that if L is a lattice and S is closed, bounded, etc.,
and has volume at least 2n · Vol(V/L), then S ∩ L contains a nonzero element. To
apply this lemma, we take L = σ(OK) ⊂ Rn, where σ is as in (12.1.2). We showed,
when proving finiteness of the class group, that Vol(Rn/L) = 2−s

√

|dK |. To check
the hypothesis to Blichfeld’s lemma, note that

Vol(S) = 2r+s
√

|dK | = 2n2−s
√

|dK | = 2n Vol(Rn/L).

Thus there exists a nonzero element a ∈ S ∩ σ(OK), i.e., a nonzero a ∈ OK such
that |σi(a)| ≤ ci for 1 ≤ i ≤ r + s. We then have

|NormK/Q(a)| =

∣

∣

∣

∣

∣

r+2s
∏

i=1

σi(a)

∣

∣

∣

∣

∣

=
r

∏

i=1

|σi(a)| ·
s

∏

i=r+1

|σi(a)|2

≤ c1 · · · cr · (cr+1 · · · cr+s)
2 = A.

Since a ∈ OK is nonzero, we also have

|NormK/Q(a)| ≥ 1.

Moreover, if for any i ≤ r, we have |σi(a)| < ci

A , then

1 ≤ |NormK/Q(a)| < c1 · · ·
ci

A
· · · cr · (cr+1 · · · cr+s)

2 =
A

A
= 1,

a contradiction, so |σi(a)| ≥ ci

A for i = 1, . . . , r. Likewise, |σi(a)|2 ≥ c2i
A , for i =

r + 1, . . . , r + s. Rewriting this we have

ci

|σi(a)| ≤ A for i ≤ r and

(

ci

|σi(a)|

)2

≤ A for i = r + 1, . . . , r + s.

Our strategy is to use an appropriately chosen a to construct a unit u ∈ UK such
f(u) 6= 0. First, let b1, . . . , bm be representative generators for the finitely many
nonzero principal ideals of OK of norm at most A. Since |NormK/Q(a)| ≤ A, we
have (a) = (bj), for some j, so there is a unit u ∈ OK such that a = ubj .

Let
s = s(c1, . . . , cr+s) = z1 log(c1) + · · · + zr+s log(cr+s),
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and recall f : K∗ → R defined in (12.1.3) above. We first show that

|f(u) − s| ≤ B = |f(bj)| + log(A) ·
(

r
∑

i=1

|zi| +
1

2
·

s
∑

i=r+1

|zi|
)

. (12.1.4)

We have

|f(u) − s| = |f(a) − f(bj) − s|
≤ |f(bj)| + |s − f(a)|
= |f(bj)| + |z1(log(c1) − log(|σ1(a)|)) + · · · + zr+s(log(cr+s) − log(|σr+s(a)|))|
= |f(bj)| + |z1 · log(c1/|σ1(a)|) + · · · + zr+s

2
· log((cr+s/|σr+s(a)|)2)|

≤ |f(bj)| + log(A) ·
(

r
∑

i=1

|zi| +
1

2
·

s
∑

i=r+1

|zi|
)

.

The amazing thing about (12.1.4) is that the bound B on the right hand side
does not depend on the ci. Suppose we can choose positive real numbers ci such
that

c1 · · · cr · (cr+1 · · · cr+s)
2 = A

and s = s(c1, . . . , cr+s) is such that |s| > B. Then |f(u)− s| ≤ B would imply that
|f(u)| > 0, which is exactly what we aimed to prove. It is possible to choose such ci,
by proceeding as follows. If r + s = 1, then we are trying to prove that ϕ(UK) is
a lattice in R0 = Rr+s−1, which is automatically true, so assume r + s > 1. Then
there are at least two distinct ci. Let j be such that zj 6= 0 (which exists since
z 6= 0). Then |zj log(cj)| → ∞ as cj → ∞, so we choose cj very large and the other
ci, for i 6= j, in any way we want subject to the condition

r
∏

i=1,i6=j

ci ·
s

∏

i=r+1

c2
i =

A

cj
.

Since it is possible to choose the ci as needed, it is possible to find a unit u such
that f(u) > 0. We conclude that z 6∈ W⊥, so W⊥ ⊂ Z⊥, whence Z ⊂ W , which
finishes the proof Theorem 12.1.2.

12.2 Finishing the proof of Dirichlet’s Unit Theorem

We begin by finishing Dirichlet’s proof that the group of units UK of OK is isomor-
phic to Zr+s−1 ⊕ Z/mZ, where r is the number of real embeddings, s is half the
number of complex embeddings, and m is the number of roots of unity in K. Recall
that we defined a map ϕ : UK → Rr+s by

ϕ(x) = (log |σ1(x)|, . . . , log |σr+s(x)|).
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Without much trouble, we proved that the kernel of ϕ if finite and the image ϕ is
discrete, and in the last section we were finishing the proof that the image of ϕ spans
the subspace H of elements of Rr+s that are orthogonal to v = (1, . . . , 1, 2, . . . , 2),
where r of the entries are 1’s and s of them are 2’s. The somewhat indirect route
we followed was to suppose

z 6∈ H⊥ = Span(v),

i.e., that z is not a multiple of v, and prove that z is not orthogonal to some
element of ϕ(UK). Writing W = Span(ϕ(UK)), this would show that W⊥ ⊂ H⊥,
so H ⊂ W . We ran into two problems: (1) we ran out of time, and (2) the notes
contained an incomplete argument that a quantity s = s(c1, . . . , cr+s) can be chosen
to be arbitrarily large. We will finish going through a complete proof, then compute
many examples of unit groups using Magma.

Recall that f : K∗ → R was defined by

f(x) = z1 log |σ1(x)| + · · · + zr+s log |σr+s(x)| = z • ϕ(x) (dot product),

and our goal is to show that there is a u ∈ UK such that f(u) 6= 0.

Our strategy is to use an appropriately chosen a to construct a unit u ∈ UK

such f(u) 6= 0. Recall that we used Blichfeld’s lemma to find an a ∈ OK such that
1 ≤ |NormK/Q(a)| ≤ A, and

ci

|σi(a)| ≤ A for i ≤ r and

(

ci

|σi(a)|

)2

≤ A for i = r + 1, . . . , r + s.

(12.2.1)

Let b1, . . . , bm be representative generators for the finitely many nonzero princi-
pal ideals of OK of norm at most A = AK =

√

|dK | ·
(

2
π

)s
. Modify the bi to have the

property that |f(bi)| is minimal among generators of (bi) (this is possible because
ideals are discrete). Note that the set {|f(bi)| : i = 1, . . . , m} depends only on A.
Since |NormK/Q(a)| ≤ A, we have (a) = (bj), for some j, so there is a unit u ∈ OK

such that a = ubj .

Let

s = s(c1, . . . , cr+s) = z1 log(c1) + · · · + zr+s log(cr+s) ∈ R.

Lemma 12.2.1. We have

|f(u) − s| ≤ B = max
i

(|f(bi)|) + log(A) ·
(

r
∑

i=1

|zi| +
1

2
·

s
∑

i=r+1

|zi|
)

,

and B depends only on K and our fixed choice of z ∈ H⊥.

Proof. By properties of logarithms, f(u) = f(a/bj) = f(a) − f(bj). We next use
the triangle inequality |a + b| ≤ |a| + |b| in various ways, properties of logarithms,
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and the bounds (12.2.1) in the following computation:

|f(u) − s| = |f(a) − f(bj) − s|
≤ |f(bj)| + |s − f(a)|
= |f(bj)| + |z1(log(c1) − log(|σ1(a)|)) + · · · + zr+s(log(cr+s) − log(|σr+s(a)|))|

= |f(bj)| + |z1 · log(c1/|σ1(a)|) + · · · + 1

2
· zr+s log((cr+s/|σr+s(a)|)2)|

≤ |f(bj)| + log(A) ·
(

r
∑

i=1

|zi| +
1

2
·

s
∑

i=r+1

|zi|
)

.

The inequality of the lemma now follows. That B only depends on K and our choice
of z follows from the formula for A and how we chose the bi.

The amazing thing about Lemma 12.2.1 is that the bound B on the right hand
side does not depend on the ci. Suppose we could somehow cleverly choose the
positive real numbers ci in such a way that

c1 · · · cr · (cr+1 · · · cr+s)
2 = A and |s(c1, . . . , cr+s)| > B.

Then the facts that |f(u)−s| ≤ B and |s| > B would together imply that |f(u)| > 0
(since f(u) is closer to s than s is to 0), which is exactly what we aimed to prove.
We finish the proof by showing that it is possible to choose such ci. Note that if we
change the ci, then a could change, hence the j such that a/bj is a unit could change,
but the bj don’t change, just the subscript j. Also note that if r + s = 1, then we
are trying to prove that ϕ(UK) is a lattice in R0 = Rr+s−1, which is automatically
true, so we may assume that r + s > 1.

Lemma 12.2.2. Assume r + s > 1. Then there is a choice of c1, . . . , cr+s ∈ R>0

such that

|z1 log(c1) + · · · + zr+s log(cr+s)| > B.

Proof. It is easier if we write

z1 log(c1) + · · · + zr+s log(cr+s) =

z1 log(c1) + · · · + zr log(cr) +
1

2
· zr+1 log(c2

r+1) + · · · + 1

2
· zr+s log(c2

r+s)

= w1 log(d1) + · · · + wr log(dr) + wr+1 log(dr+1) + · · · + ·wr+s log(dr+s),

where wi = zi and di = ci for i ≤ r, and wi = 1
2zi and di = c2

i for r < i ≤ s,

The condition that z 6∈ H⊥ is that the wi are not all the same, and in our new
coordinates the lemma is equivalent to showing that |∑r+s

i=1 wi log(di)| > B, subject
to the condition that

∏r+s
i=1 di = A. Order the wi so that w1 6= 0. By hypothesis

there exists a wj such that wj 6= w1, and again re-ordering we may assume that
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j = 2. Set d3 = · · · = dr+s = 1. Then d1d2 = A and log(1) = 0, so

∣

∣

∣

∣

∣

r+s
∑

i=1

wi log(di)

∣

∣

∣

∣

∣

= |w1 log(d1) + w2 log(d2)|

= |w1 log(d1) + w2 log(A/d1)|
= |(w1 − w2) log(d1) + w2 log(A)|

Since w1 6= w2, we have |(w1 − w2) log(d1) + w2 log(A)| → ∞ as d1 → ∞.

12.3 Some Examples of Units in Number Fields

The classical Pell’s equation is, given square-free d > 0, to find all positive integer
solutions (x, y) to the equation x2 − dy2 = 1. Note that if x + y

√
d ∈ Q(

√
d), then

Norm(x + y
√

d) = (x + y
√

d)(x − y
√

d) = x2 − dy2.

The solutions to Pell’s equation thus form a finite-index subgroup of the group of
units in the ring of integers of Q(

√
d). Dirichlet’s unit theorem implies that for

any d the solutions to Pell’s equation form an infinite cyclic group, a fact that takes
substantial work to prove using only elementary number theory (for example, using
continued fractions).

We first solve the Pell equation x2 − 5y2 = 1 by finding the units of a field using
Magma (we will likely discuss algorithms for computing unit groups later in the
course...).

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^2-5);

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z

Defined on 2 generators

Relations:

2*G.1 = 0

> K!phi(G.1);

-1

> u := K!phi(G.2); u;

1/2*(a + 1)

> u^2;

1/2*(a + 3)

> u^3;

a + 2

> Norm(u);

-1

> Norm(u^3);
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-1

> Norm(u^6);

1

> fund := u^6;

> fund;

4*a + 9

> 9^2 - 5*4^2;

1

> fund^2;

72*a + 161

> fund^3;

1292*a + 2889

> fund^4;

23184*a + 51841

> fund^5;

416020*a + 930249

I think in practice for solving Pell’s equation it’s best to use the ideas in the
paper [Len02]. A review of this paper says: “This wonderful article begins with
history and some elementary facts and proceeds to greater and greater depth about
the existence of solutions to Pell equations and then later the algorithmic issues
of finding those solutions. The cattle problem is discussed, as are modern smooth
number methods for solving Pell equations and the algorithmic issues of representing
very large solutions in a reasonable way.” You can get the paper freely online from
the Notices web page.

The simplest solutions to Pell’s equation can be huge, even when d is quite small.
Read Lenstra’s paper for some awesome examples from antiquity.

K<a> := NumberField(x^2-NextPrime(10^7));

> G, phi := UnitGroup(K);

> K!phi(G.2);

1635802598803463282255922381210946254991426776931429155067472530\

003400641003657678728904388162492712664239981750303094365756\

106316392723776016806037958837914778176119741840754457028237\

899759459100428895693238165048098039*a +

517286692885814967470170672368346798303629034373575202975075\

605058714958080893991274427903448098643836512878351227856269\

086856679078304979321047765031073345259902622712059164969008\

6336036036403311756634562204182936222240930

The Magma Signature command returns the number of real and complex
conjugate embeddings of K into C. The command UnitGroup, which we used
above, returns the unit group UK as an abstract abelian group and a homomorphism
UK → OK . Note that we have to bang (!) into K to get the units as elements of
K.
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First we consider K = Q(i).

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^2+1);

> Signature(K);

0 1 // r=0, s=1

> G,phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/4

Defined on 1 generator

Relations:

4*G.1 = 0

> K!phi(G.1);

-a

Next we consider K = Q( 3
√

2).

> K<a> := NumberField(x^3-2);

> Signature(K);

1 1

> G,phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z

Defined on 2 generators

Relations:

2*G.1 = 0

> K!phi(G.2);

-a + 1

The Conjugates command returns the sequence (σ1(x), . . . , σr+2s(x)) of all embed-
dings of x ∈ K into C. The Logs command returns the sequence

(log(|σ1(x)|), . . . , log(|σr+s(x)|)).

Continuing the above example, we have

> Conjugates(K!phi(G.2));

[ -0.25992104989487316476721060727822835057025146470099999999995,

1.6299605249474365823836053036391141752851257323513843923104 -

1.09112363597172140356007261418980888132587333874018547370560*i,

1.6299605249474365823836053036391141752851257323513843923104 +

1.09112363597172140356007261418980888132587333874018547370560*i ]

> Logs(K!phi(G.2)); // image of infinite order unit -- generates a lattice

[ -1.34737734832938410091818789144565304628306227332099999999989\

, 0.6736886741646920504590939457228265231415311366603288999999 ]

> Logs(K!phi(G.1)); // image of -1

[ 0.E-57, 0.E-57 ]
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Let’s try a field such that r + s − 1 = 2. First, one with r = 0 and s = 3:

> K<a> := NumberField(x^6+x+1);

> Signature(K);

0 3

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z + Z

Defined on 3 generators

Relations:

2*G.1 = 0

> u1 := K!phi(G.2); u1;

a

> u2 := K!phi(G.3); u2;

-2*a^5 - a^3 + a^2 + a

> Logs(u1);

[ 0.11877157353322375762475480482285510811783185904379239999998,

0.048643909752673399635150940533329986148342128393119899999997,

-0.16741548328589715725990574535618509426617398743691229999999 ]

> Logs(u2);

[ 1.6502294567845884711894772749682228152154948421589999999997,

-2.09638539134527779532491660083370951943382108902299999999997,

0.44615593456068932413543932586548670421832624686433469999994 ]

Notice that the log image of u1 is clearly not a real multiple of the log image of
u2 (e.g., the scalar would have to be positive because of the first coefficient, but
negative because of the second). This illustrates the fact that the log images of u1

and u2 span a two-dimensional space.
Next we compute a field with r = 3 and s = 0. (A field with s = 0 is called

“totally real”.)

> K<a> := NumberField(x^3 + x^2 - 5*x - 1);

> Signature(K);

3 0

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z + Z

Defined on 3 generators

Relations:

2*G.1 = 0

> u1 := K!phi(G.2); u1;

1/2*(a^2 + 2*a - 1)

> u2 := K!phi(G.3); u2;

a

> Logs(u1);
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[ 1.16761574692758757159598251863681302946987760474899999999995,

-0.39284872458139826129179862583435951875841422643044369999996,

-0.7747670223461893103041838928024535107114633783181766999998 ]

> Logs(u2);

[ 0.6435429462288618773851817227686467257757954024463081999999,

-1.6402241503223171469101505551700850575583464226669999999999,

0.9966812040934552695249688324014383317825510202205498999998 ]

A family of fields with r = 0 (totally complex) is the cyclotomic fields Q(ζn).
The degree of Q(ζn) over Q is ϕ(n) and r = 0, so s = ϕ(n)/2 (assuming n > 2).

> K := CyclotomicField(11); K;

Cyclotomic Field of order 11 and degree 10

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/22 + Z + Z + Z + Z

Defined on 5 generators

Relations:

22*G.1 = 0

> u := K!phi(G.2); u;

zeta_11^9 + zeta_11^8 + zeta_11^7 + zeta_11^6 + zeta_11^5 +

zeta_11^3 + zeta_11^2 + zeta_11 + 1

> Logs(u);

[ -1.25656632417872848745322215929976803991663080388899999999969,

0.6517968940331400079717923884685099182823284402303273999999,

-0.18533004655986214094922163920197221556431542171819269999999,

0.5202849820300749393306985734118507551388955065272236999998,

0.26981449467537568109995283662137958205972227885009159999993 ]

> K!phi(G.3);

zeta_11^9 + zeta_11^7 + zeta_11^6 + zeta_11^5 + zeta_11^4 +

zeta_11^3 + zeta_11^2 + zeta_11 + 1

> K!phi(G.4);

zeta_11^9 + zeta_11^8 + zeta_11^7 + zeta_11^6 + zeta_11^5 +

zeta_11^4 + zeta_11^3 + zeta_11^2 + zeta_11

> K!phi(G.5);

zeta_11^9 + zeta_11^8 + zeta_11^7 + zeta_11^6 + zeta_11^5 +

zeta_11^4 + zeta_11^2 + zeta_11 + 1

How far can we go computing unit groups of cyclotomic fields directly with
Magma?

> time G,phi := UnitGroup(CyclotomicField(13));

Time: 2.210

> time G,phi := UnitGroup(CyclotomicField(17));

Time: 8.600
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> time G,phi := UnitGroup(CyclotomicField(23));

.... I waited over 10 minutes (usage of 300MB RAM) and gave up.

12.4 Preview

In the next chapter we will study extra structure in the case when K is Galois over Q;
the results are nicely algebraic, beautiful, and have interesting ramifications. We’ll
learn about Frobenius elements, the Artin symbol, decomposition groups, and how
the Galois group of K is related to Galois groups of residue class fields. These are
the basic structures needed to make any sense of representations of Galois groups,
which is at the heart of much of number theory.
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Chapter 13

Decomposition and Inertia
Groups

13.1 Galois Extensions

Suppose K ⊂ C is a number field. Then K is Galois if every field homomorphism
K → C has image K, or equivalently, # Aut(K) = [K : Q]. More generally, we
have the following definition.

Definition 13.1.1 (Galois). An extension K/L of number fields is Galois if
# Aut(K/L) = [K : L], where Aut(K/L) is the group of automorphisms of K
that fix L. We write Gal(K/L) = Aut(K/L).

For example, Q is Galois (over itself), any quadratic extension K/L is Galois,
since it is of the form L(

√
a), for some a ∈ L, and the nontrivial embedding is

induced by
√

a 7→ −√
a, so there is always one nontrivial automorphism. If f ∈ L[x]

is an irreducible cubic polynomial, and a is a root of f , then one proves in a course
in Galois theory that L(a) is Galois over L if and only if the discriminant of f is a
perfect square in L. Random number fields of degree bigger than 2 are rarely Galois
(I will not justify this claim further in this course).

If K/Q is a number field, then the Galois closure Kgc of K is the field generated
by all images of K under all embeddings in C (more generally, if K/L is an extension,
the Galois closure of K over L is the field generated by images of embeddings K → C
that are the identity map on L). If K = Q(a), then Kgc is generated by each of the
conjugates of a, and is hence Galois over Q, since the image under an embedding
of any polynomial in the conjugates of a is again a polynomial in conjugates of a.

How much bigger can the degree of Kgc be as compared to the degree of K =
Q(a)? There is a natural embedding of Gal(Kgc/Q) into the group of permutations
of the conjugates of a. If there are n conjugates of a, then this is an embedding
Gal(Kgc/Q) ↪→ Sn, where Sn is the symmetric group on n symbols, which has order
n!. Thus the degree of the Kgc over Q is a divisor of n!. Also the Galois group
is a transitive subgroup of Sn, which constrains the possibilities further. When
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n = 2, we recover the fact that quadratic extensions are Galois. When n = 3, we
see that the Galois closure of a cubic extension is either the cubic extension or a
quadratic extension of the cubic extension. It turns out that that Galois closure of a
cubic extension is obtained by adjoining the square root of the discriminant. For an
extension K of degree 5, it is “frequently” the case that the Galois closure has degree
120, and in fact it is a difficult and interesting problem to find examples of degree
5 extension in which the Galois closure has degree smaller than 120 (according to
Magma: the only possibilities for the order of a transitive proper subgroup of S5

are 5, 10, 20, and 60; there are five transitive subgroups of S5 out of the total of 19
subgroups of S5).

Let n be a positive integer. Consider the field K = Q(ζn), where ζn = e2πi/n is
a primitive nth root of unity. If σ : K → C is an embedding, then σ(ζn) is also an
nth root of unity, and the group of nth roots of unity is cyclic, so σ(ζn) = ζm

n for
some m which is invertible modulo n. Thus K is Galois and Gal(K/Q) ↪→ (Z/nZ)∗.
However, [K : Q] = n, so this map is an isomorphism. (Side note: Taking a p-adic
limit and using the maps Gal(Q/Q) → Gal(Q(ζpr)/Q), we obtain a homomorphism
Gal(Q/Q) → Z∗

p, which is called the p-adic cyclotomic character.)

Compositums of Galois extensions are Galois. For example, the biquadratic field
K = Q(

√
5,
√
−1) is a Galois extension of Q of degree 4.

Fix a number field K that is Galois over a subfield L. Then the Galois group
G = Gal(K/L) acts on many of the object that we have associated to K, including:

• the integers OK ,

• the units UK ,

• the group of nonzero fractional ideals of OK ,

• the class group Cl(K), and

• the set Sp of prime ideals P lying over a given prime p of OL.

In the next section we will be concerned with the action of Gal(K/L) on Sp, though
actions on each of the other objects, especially Cl(K), will be of further interest.

13.2 Decomposition of Primes

Fix a prime p ⊂ OK and write pOK = Pe1
1 · · ·Peg

g , so Sp = {P1, . . . ,Pg}.

Definition 13.2.1 (Residue class degree). Suppose P is a prime of OK lying
over p. Then the residue class degree of P is

fP/p = [OK/P : OL/p],

i.e., the degree of the extension of residue class fields.
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If M/K/L is a tower of field extensions and q is a prime of M over P, then

fq/p = [OM/q : OL/p] = [OM/q : OK/P] · [OK/P : OL/p] = fq/P · fP/p,

so the residue class degree is multiplicative in towers.
Note that if σ ∈ Gal(K/L) and P ∈ Sp, then σ induces an isomorphism of finite

fields OK/P → OK/σ(P) that fixes the common subfield OL/p. Thus the residue
class degrees of P and σ(P) are the same. In fact, much more is true.

Theorem 13.2.2. Suppose K/L is a Galois extension of number fields, and let p be
a prime of OL. Write pOK =

∏g
i=1 P

ei

i , and let fi = fPi/p. Then G = Gal(K/L)
acts transitively on the set Sp of primes Pi,

e1 = · · · = eg, f1 = · · · = fg,

and efg = [K : L], where e is the common value of the ei and f is the common
value of the fi.

Proof. For simplicity, we will give the proof only in the case L = Q, but the proof
works in general. Suppose p ∈ Z and pOK = pe1

1 · · · peg
g , and S = {p1, . . . , pg}. We

will first prove that G acts transitively on S. Let p = pi for some i. Recall that
we proved long ago, using the Chinese Remainder Theorem (Theorem 9.1.3) that
there exists a ∈ p such that (a)/p is an integral ideal that is coprime to pOK . The
product

I =
∏

σ∈G

σ((a)/p) =
∏

σ∈G

(σ(a))OK

σ(p)
=

(NormK/Q(a))OK
∏

σ∈G

σ(p)
(13.2.1)

is a nonzero integral OK ideal since it is a product of nonzero integral OK ideals.
Since a ∈ p we have that NormK/Q(a) ∈ p ∩ Z = pZ. Thus the numerator of the
rightmost expression in (13.2.1) is divisible by pOK . Also, because (a)/p is coprime
to pOK , each σ((a)/p) is coprime to pOK as well. Thus I is coprime to pOK . Thus
the denominator of the rightmost expression in (13.2.1) must also be divisibly by
pOK in order to cancel the pOK in the numerator. Thus for any i we have

g
∏

j=1

p
ej

j = pOK

∣

∣

∣

∏

σ∈G

σ(pi),

which in particular implies that G acts transitively on the pi.
Choose some j and suppose that k 6= j is another index. Because G acts

transitively, there exists σ ∈ G such that σ(pk) = pj . Applying σ to the factorization
pOK =

∏g
i=1 p

ei

i , we see that

g
∏

i=1

pei

i =

g
∏

i=1

σ(pi)
ei .
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Taking ordpj
on both sides we get ej = ek. Thus e1 = e2 = · · · = eg.

As was mentioned right before the statement of the theorem, for any σ ∈ G we
have OK/pi

∼= OK/σ(pi), so by transitivity f1 = f2 = · · · = fg. Since OK is a
lattice in K, we have

[K : Q] = dimZ OK = dimFp OK/pOK

= dimFp

(

g
⊕

i=1

OK/p
ei

i

)

=

g
∑

i=1

eifi = efg,

which completes the proof.

The rest of this section illustrates the theorem for quadratic fields and a cubic
field and its Galois closure.

13.2.1 Quadratic Extensions

Suppose K/Q is a quadratic field. Then K is Galois, so for each prime p ∈ Z we
have 2 = efg. There are exactly three possibilties:

• Ramified: e = 2, f = g = 1: The prime p ramifies in OK , so pOK =
p2. There are only finitely many such primes, since if f(x) is the minimal
polynomial of a generator for OK , then p ramifies if and only if f(x) has a
multiple root modulo p. However, f(x) has a multiple root modulo p if and
only if p divides the discriminant of f(x), which is nonzero because f(x) is
irreducible over Z. (This argument shows there are only finitely many ramified
primes in any number field. In fact, we will later show that the ramified primes
are exactly the ones that divide the discriminant.)

• Inert: e = 1, f = 2, g = 1: The prime p is inert in OK , so pOK = p is prime.
This happens 50% of the time, which is suggested by quadratic reciprocity
(but not proved this way), as we will see illustrated below for a particular
example.

• Split: e = f = 1, g = 2: The prime p splits in OK , in the sense that
pOK = p1p2 with p1 6= p2. This happens the other 50% of the time.

Suppose, in particular, that K = Q(
√

5), so OK = Z[γ], where γ = (1 +
√

5)/2.
Then p = 5 is ramified, since pOK = (

√
5)2. More generally, the order Z[

√
5] has

index 2 in OK , so for any prime p 6= 2 we can determine the factorization of p in
OK by finding the factorization of the polynomial x2 − 5 ∈ Fp[x]. The polynomial
x2 − 5 splits as a product of two distinct factors in Fp[x] if and only if e = f = 1
and g = 2. For p 6= 2, 5 this is the case if and only if 5 is a square in Fp, i.e., if
(

5
p

)

= 1, where
(

5
p

)

is +1 if 5 is a square mod p and −1 if 5 is not. By quadratic

reciprocity,

(

5

p

)

= (−1)
5−1
2

· p−1
2 ·

(p

5

)

=
(p

5

)

=

{

+1 if p ≡ ±1 (mod 5)

−1 if p ≡ ±2 (mod 5).
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Thus whether p splits or is inert in OK is determined by the residue class of p
modulo 5.

13.2.2 The Cube Roots of Two

Suppose K/Q is not Galois. Then ei, fi, and g are defined for each prime p ∈ Z,
but we need not have e1 = · · · = eg or f1 = · · · = fg. We do still have that
∑g

i=1 eifi = n, by the Chinese Remainder Theorem.
For example, let K = Q( 3

√
2). We know that OK = Z[ 3

√
2]. Thus 2OK = ( 3

√
2)3,

so for 2 we have e = 3 and f = g = 1. To factor 3OK , we note that working modulo
3 we have

x3 − 2 = (x − 2)(x2 + 2x + 1) = (x − 2)(x + 1)2 ∈ F3[x],

so
3OK = (3,

3
√

2 − 2) · (3,
3
√

2 + 1)2.

Thus e1 = 1, e2 = 2, f1 = f2 = 1, and g = 2. Next, working modulo 5 we have

x3 − 2 = (x + 2)(x2 + 3x + 4) ∈ F5[x],

and the quadratic factor is irreducible. Thus

5OK = (5,
3
√

2 + 2) · (5,
3
√

2
2
+ 3

3
√

2 + 4).

Thus here e1 = e2 = 1, f1 = 1, f2 = 2, and g = 2.
Next we consider what happens in the Galois closure of K. Since the three

embeddings of 3
√

2 in C are 3
√

2, ζ3
3
√

2, and ζ2
3

3
√

2, we have

M = Kgc = Q(
3
√

2, ζ3) = K.L,

where L = Q(ζ3) = Q(
√
−3), since ζ3 = (−1 +

√
−3)/2 is a primitive cube root

of unity. The notation K.L means the “compositum of K and L”, which is the
smallest field generated by K and L.

Let’s figure out e, f , and g for the prime p = 3 relative to the degree six Galois
field M/Q by using Theorem 13.2.2 and what we can easily determine about K and
L. First, we know that efg = 6. We have 3OK = p1p

2
2, so 3OM = p1OM · (p2OM )2,

and the prime factors of p1OM are disjoint from the prime factors of p2OM . Thus
e > 1 is even and also g > 1. The only possibility for e, f, g satisfying these two
conditions is e = 2, f = 1, g = 3, so we conclude that 3OM = q2

1q
2
2q

2
3 without doing

any further work, and without actually knowing the qi explicitly.
Here’s another interesting deduction that we can make “by hand”. Suppose

for the moment that OM = Z[ 3
√

2, ζ3] (this will turn out to be false). Then the
factorization of (

√
−3) ⊂ OL in OM would be exactly reflected by the factorization

of x3 − 2 in F3 = OL/(
√
−3). Modulo 3 we have x3 − 2 = x3 + 1 = (x + 1)3,

which would imply that (
√
−3) = q3 for some prime q of OM , i.e., that e = 6 and

f = g = 1, which is incorrect. Thus OM 6= Z[ 3
√

2, ζ3]. Indeed, this conclusion agrees
with the following Magma computation, which asserts that [OM : Z[ 3

√
2, ζ3]] = 24:
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> R<x> := PolynomialRing(RationalField());

> K := NumberField(x^3-2);

> L := NumberField(x^2+3);

> M := CompositeFields(K,L)[1];

> O_M := MaximalOrder(M);

> a := M!K.1;

> b := M!L.1;

> O := Order([a,b]);

> Index(O_M,O);

24



Chapter 14

Decomposition Groups and
Galois Representations

14.1 The Decomposition Group

Suppose K is a number field that is Galois over Q with group G = Gal(K/Q). Fix
a prime p ⊂ OK lying over p ∈ Z.

Definition 14.1.1 (Decomposition group). The decomposition group of p is the
subgroup

Dp = {σ ∈ G : σ(p) = p} ≤ G.

(Note: The decomposition group is called the “splitting group” in Swinnerton-
Dyer. Everybody I know calls it the decomposition group, so we will too.)

Let Fp = OK/p denote the residue class field of p. In this section we will prove
that there is a natural exact sequence

1 → Ip → Dp → Gal(Fp/Fp) → 1,

where Ip is the inertia subgroup of Dp, and #Ip = e. The most interesting part of
the proof is showing that the natural map Dp → Gal(Fp/Fp) is surjective.

We will also discuss the structure of Dp and introduce Frobenius elements, which
play a crucial roll in understanding Galois representations.

Recall that G acts on the set of primes p lying over p. Thus the decomposition
group is the stabilizer in G of p. The orbit-stabilizer theorem implies that [G : Dp]
equals the orbit of p, which by Theorem 13.2.2 equals the number g of primes lying
over p, so [G : Dp] = g.

Lemma 14.1.2. The decomposition subgroups Dp corresponding to primes p lying
over a given p are all conjugate in G.

Proof. We have τ(σ(τ−1(p))) = p if and only if σ(τ−1(p)) = τ−1p. Thus τστ−1 ∈ Dp

if and only if σ ∈ Dτ−1p, so τ−1Dpτ = Dτ−1p. The lemma now follows because, by
Theorem 13.2.2, G acts transitively on the set of p lying over p.

97
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The decomposition group is extremely useful because it allows us to see the
extension K/Q as a tower of extensions, such that at each step in the tower we
understand well the splitting behavior of the primes lying over p. Now might be a
good time to glance ahead at Figure 14.1.2 on page 101.

We characterize the fixed field of D = Dp as follows.

Proposition 14.1.3. The fixed field KD of D

KD = {a ∈ K : σ(a) = a for all σ ∈ D}

is the smallest subfield L ⊂ K such that p∩L does not split in K (i.e., g(K/L) = 1).

Proof. First suppose L = KD, and note that by Galois theory Gal(K/L) ∼= D, and
by Theorem 13.2.2, the group D acts transitively on the primes of K lying over
p ∩ L. One of these primes is p, and D fixes p by definition, so there is only one
prime of K lying over p ∩ L, i.e., p ∩ L does not split in K. Conversely, if L ⊂ K
is such that p ∩ L does not split in K, then Gal(K/L) fixes p (since it is the only
prime over p ∩ L), so Gal(K/L) ⊂ D, hence KD ⊂ L.

Thus p does not split in going from KD to K—it does some combination of
ramifying and staying inert. To fill in more of the picture, the following proposition
asserts that p splits completely and does not ramify in KD/Q.

Proposition 14.1.4. Let L = KD for our fixed prime p and Galois extension K/Q.
Let e = e(L/Q), f = f(L/Q), g = g(L/Q) be for L/Q and p. Then e = f = 1 and
g = [L : Q], i.e., p does not ramify and splits completely in L. Also f(K/Q) =
f(K/L) and e(K/Q) = e(K/L).

Proof. As mentioned right after Definition 14.1.1, the orbit-stabilizer theorem im-
plies that g(K/Q) = [G : D], and by Galois theory [G : D] = [L : Q]. Thus

e(K/L) · f(K/L) = [K : L] = [K : Q]/[L : Q]

=
e(K/Q) · f(K/Q) · g(K/Q)

[L : Q]
= e(K/Q) · f(K/Q).

Now e(K/L) ≤ e(K/Q) and f(K/L) ≤ f(K/Q), so we must have e(K/L) =
e(K/Q) and f(K/L) = f(K/Q). Since e(K/Q) = e(K/L) · e(L/Q) and f(K/Q) =
f(K/L) · f(L/Q), the proposition follows.

14.1.1 Galois groups of finite fields

Each σ ∈ D = Dp acts in a well-defined way on the finite field Fp = OK/p, so we
obtain a homomorphism

ϕ : Dp → Gal(Fp/Fp).

We pause for a moment and derive a few basic properties of Gal(Fp/Fp), which are
in fact general properties of Galois groups for finite fields. Let f = [Fp : Fp].
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The group Aut(Fp/Fp) contains the element Frobp defined by

Frobp(x) = xp,

because (xy)p = xpyp and

(x + y)p = xp + pxp−1y + · · · + yp ≡ xp + yp (mod p).

By Exercise 29 (see Chapter 22), the group F∗
p is cyclic, so there is an element

a ∈ F∗
p of order pf − 1, and Fp = Fp(a). Then Frobn

p (a) = apn
= a if and only

if (pf − 1) | pn − 1 which is the case preciselywhen f | n, so the order of Frobp

is f . Since the order of the automorphism group of a field extension is at most the
degree of the extension, we conclude that Aut(Fp/Fp) is generated by Frobp. Also,
since Aut(Fp/Fp) has order equal to the degree, we conclude that Fp/Fp is Galois,
with group Gal(Fp/Fp) cyclic of order f generated by Frobp. (Anther general fact:
Up to isomorphism there is exactly one finite field of each degree. Indeed, if there
were two of degree f , then both could be characterized as the set of roots in the
compositum of xpf − 1, hence they would be equal.)

14.1.2 The Exact Sequence

There is a natural reduction homomorphism

ϕ : Dp → Gal(Fp/Fp).

Theorem 14.1.5. The homomorphism ϕ is surjective.

Proof. Let ã ∈ Fp be an element such that Fp = Fp(a). Lift ã to an algebraic integer
a ∈ OK , and let f =

∏

σ∈Dp
(x−σ(a)) ∈ KD[x] be the characteristic polynomial of a

over KD. Using Proposition 14.1.4 we see that f reduces to the minimal polynomial
f̃ =

∏

(x − ˜σ(a)) ∈ Fp[x] of ã (by the Proposition the coefficients of f̃ are in Fp,
and ã satisfies f̃ , and the degree of f̃ equals the degree of the minimal polynomial
of ã). The roots of f̃ are of the form σ̃(a), and the element Frobp(a) is also a root

of f̃ , so it is of the form ˜σ(a). We conclude that the generator Frobp of Gal(Fp/Fp)
is in the image of ϕ, which proves the theorem.

Definition 14.1.6 (Inertia Group). The inertia group is the kernel Ip of Dp →
Gal(Fp/Fp).

Combining everything so far, we find an exact sequence of groups

1 → Ip → Dp → Gal(Fp/Fp) → 1. (14.1.1)

The inertia group is a measure of how p ramifies in K.

Corollary 14.1.7. We have #Ip = e(p/p), where p is a prime of K over p.
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Proof. The sequence (14.1.1) implies that #Ip = #Dp/f(K/Q). Applying Propo-
sitions 14.1.3–14.1.4, we have

#Dp = [K : L] =
[K : Q]

g
=

efg

g
= ef.

Dividing both sides by f = f(K/Q) proves the corollary.

We have the following characterization of Ip.

Proposition 14.1.8. Let K/Q be a Galois extension with group G, let p be a prime
lying over a prime p. Then

Ip = {σ ∈ G : σ(a) = a (mod p) for all a ∈ OK}.

Proof. By definition Ip = {σ ∈ Dp : σ(a) = a (mod p) for all a ∈ OK}, so it suffices
to show that if σ 6∈ Dp, then there exists a ∈ OK such that σ(a) = a (mod p). If
σ 6∈ Dp, we have σ−1(p) 6= p, so since both are maximal ideals, there exists a ∈ p

with a 6∈ σ−1(p), i.e., σ(a) 6∈ p. Thus σ(a) 6≡ a (mod p).

Figure 14.1.2 is a picture of the splitting behavior of a prime p ∈ Z.

14.2 Frobenius Elements

Suppose that K/Q is a finite Galois extension with group G and p is a prime
such that e = 1 (i.e., an unramified prime). Then I = Ip = 1 for any p | p, so
the map ϕ of Theorem 14.1.5 is a canonical isomorphism Dp

∼= Gal(Fp/Fp). By
Section 14.1.1, the group Gal(Fp/Fp) is cyclic with canonical generator Frobp. The
Frobenius element corresponding to p is Frobp ∈ Dp. It is the unique element of G
such that for all a ∈ OK we have

Frobp(a) ≡ ap (mod p).

(To see this argue as in the proof of Proposition 14.1.8.) Just as the primes p

and decomposition groups D are all conjugate, the Frobenius elements over a given
prime are conjugate.

Proposition 14.2.1. For each σ ∈ G, we have

Frobσp = σ Frobp σ−1.

In particular, the Frobenius elements lying over a given prime are all conjugate.

Proof. Fix σ ∈ G. For any a ∈ OK we have Frobp(σ
−1(a)) − σ−1(a) ∈ p. Multiply

by σ we see that σ Frobp(σ
−1(a)) − a ∈ σp, which proves the proposition.
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Figure 14.1.1: The Splitting of Behavior of a Prime in a Galois Extension
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Thus the conjugacy class of Frobp in G is a well defined function of p. For
example, if G is abelian, then Frobp does not depend on the choice of p lying over p

and we obtain a well defined symbol
(

K/Q
p

)

= Frobp ∈ G called the Artin symbol.

It extends to a map from the free abelian group on unramified primes to the group
G (the fractional ideals of Z). Class field theory (for Q) sets up a natural bijection
between abelian Galois extensions of Q and certain maps from certain subgroups
of the group of fractional ideals for Z. We have just described one direction of
this bijection, which associates to an abelian extension the Artin symbol (which
induces a homomorphism). The Kronecker-Weber theorem asserts that the abelian
extensions of Q are exactly the subfields of the fields Q(ζn), as n varies over all
positive integers. By Galois theory there is a correspondence between the subfields
of Q(ζn) (which has Galois group (Z/nZ)∗) and the subgroups of (Z/nZ)∗. Giving
an abelian extension of Q is exactly the same as giving an integer n and a subgroup

of (Z/nZ)∗. Even more importantly, the reciprocity map p 7→
(

Q(ζn)/Q
p

)

is simply

p 7→ p ∈ (Z/nZ)∗. This is a nice generalization of quadratic reciprocity: for Q(ζn),
the efg for a prime p depends in a simple way on nothing but p mod n.

14.3 Galois Representations and a Conjecture of Artin

The Galois group Gal(Q/Q) is an object of central importance in number theory,
and I’ve often heard that in some sense number theory is the study of this group.
A good way to study a group is to study how it acts on various objects, that is, to
study its representations.

Endow Gal(Q/Q) with the topology which has as a basis of open neighborhoods
of the origin the subgroups Gal(Q/K), where K varies over finite Galois extensions
of Q. (Note: This is not the topology got by taking as a basis of open neighborhoods
the collection of finite-index normal subgroups of Gal(Q/Q).) Fix a positive integer
n and let GLn(C) be the group of n×n invertible matrices over C with the discrete
topology.

Definition 14.3.1. A complex n-dimensional representation of Gal(Q/Q) is a con-
tinuous homomorphism

ρ : Gal(Q/Q) → GLn(C).

For ρ to be continuous means that there is a finite Galois extension K/Q such
that ρ factors through Gal(K/Q):

Gal(Q/Q)
ρ

//

''NNNNNNNNNNN
GLn(C)

Gal(K/Q)

ρ′

88qqqqqqqqqqq

For example, one could take K to be the fixed field of ker(ρ). (Note that continous
implies that the image of ρ is finite, but using Zorn’s lemma one can show that there
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are homomorphisms Gal(Q/Q) → {±1} with finite image that are not continuous,
since they do not factor through the Galois group of any finite Galois extension.)

Fix a Galois representation ρ and a finite Galois extension K such that ρ factors
through Gal(K/Q). For each prime p ∈ Z that is not ramified in K, there is an
element Frobp ∈ Gal(K/Q) that is well-defined up to conjugation by elements of
Gal(K/Q). This means that ρ′(Frobp) ∈ GLn(C) is well-defined up to conjugation.
Thus the characteristic polynomial Fp ∈ C[x] is a well-defined invariant of p and ρ.
Let

Rp(x) = xdeg(Fp) · Fp(1/x) = 1 + · · · + Det(Frobp) · xdeg(Fp)

be the polynomial obtain by reversing the order of the coefficients of Fp. Following
E. Artin, set

L(ρ, s) =
∏

p unramified

1

Rp(p−s)
. (14.3.1)

We view. L(ρ, s) as a function of a single complex variable s. One can prove that
L(ρ, s) is holomorphic on some right half plane, and extends to a meromorphic
function on all C.

Conjecture 14.3.2 (Artin). The L-series of any continuous representation

Gal(Q/Q) → GLn(C)

is an entire function on all C, except possibly at 1.

This conjecture asserts that there is some way to analytically continue L(ρ, s)
to the whole complex plane, except possibly at 1. (A standard fact from complex
analysis is that this analytic continuation must be unique.) The simple pole at
s = 1 corresponds to the trivial representation (the Riemann zeta function), and if
n ≥ 2 and ρ is irreducible, then the conjecture is that ρ extends to a holomorphic
function on all C.

The conjecture follows from class field theory for Q when n = 1. When n = 2
and the image of ρ in PGL2(C) is a solvable group, the conjecture is known, and is
a deep theorem of Langlands and others (see [Lan80]), which played a crucial roll
in Wiles’s proof of Fermat’s Last Theorem. When n = 2 and the projective image
is not solvable, the only possibility is that the projective image is isomorphic to the
alternating group A5. Because A5 is the symmetric group of the icosahedron, these
representations are called icosahedral. In this case, Joe Buhler’s Harvard Ph.D.
thesis gave the first example, there is a whole book [Fre94], which proves Artin’s
conjecture for 7 icosahedral representation (none of which are twists of each other).
Kevin Buzzard and I (Stein) proved the conjecture for 8 more examples. Subse-
quently, Richard Taylor, Kevin Buzzard, and Mark Dickinson proved the conjecture
for an infinite class of icosahedral Galois representations (disjoint from the exam-
ples). The general problem for n = 2 is still open, but perhaps Taylor and others
are still making progress toward it.
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Chapter 15

Valuations

The rest of this book is a partial rewrite of [Cas67] meant to make it more accessible.
I have attempted to add examples and details of the implicit exercises and remarks
that are left to the reader.

15.1 Valuations

Definition 15.1.1 (Valuation). A valuation | · | on a field K is a function defined
on K with values in R≥0 satisfying the following axioms:

(1) |a| = 0 if and only if a = 0,

(2) |ab| = |a| |b|, and

(3) there is a constant C ≥ 1 such that |1 + a| ≤ C whenever |a| ≤ 1.

The trivial valuation is the valuation for which |a| = 1 for all a 6= 0. We will
often tacitly exclude the trivial valuation from consideration.

From (2) we have

|1| = |1| · |1| ,

so |1| = 1 by (1). If w ∈ K and wn = 1, then |w| = 1 by (2). In particular, the
only valuation of a finite field is the trivial one. The same argument shows that
| − 1| = |1|, so

| − a| = |a| all a ∈ K.

Definition 15.1.2 (Equivalent). Two valuations | · | 1 and | · | 2 on the same field
are equivalent if there exists c > 0 such that

|a|2 = |a|c1

for all a ∈ K.

107



108 CHAPTER 15. VALUATIONS

Note that if | · | 1 is a valuation, then | · | 2 = | · | c
1 is also a valuation. Also,

equivalence of valuations is an equivalence relation.
If | · | is a valuation and C is the constant from Axiom (3), then there is a c > 0

such that Cc = 2 (i.e., c = log(C)/ log(2)). Then we can take 2 as constant for the
equivalent valuation | · | c. Thus every valuation is equivalent to a valuation with
C = 2. Note that if C = 1, e.g., if | · | is the trivial valuation, then we could simply
take C = 2 in Axiom (3).

Proposition 15.1.3. Suppose | · | is a valuation with C = 2. Then for all a, b ∈ K
we have

|a + b| ≤ |a| + |b| (triangle inequality). (15.1.1)

Proof. Suppose a1, a2 ∈ K with |a1| ≥ |a2|. Then a = a2/a1 satisfies |a| ≤ 1. By
Axiom (3) we have |1 + a| ≤ 2, so multiplying by a1 we see that

|a1 + a2| ≤ 2|a1| = 2 · max{|a1|, |a2|}.

Also we have

|a1 + a2 + a3 + a4| ≤ 2 · max{|a1 + a2|, |a3 + a4|} ≤ 4 · max{|a1|, |a2|, |a3|, |a4|},

and inductively we have for any r > 0 that

|a1 + a2 + · · · + a2r | ≤ 2r · max |aj |.

If n is any positive integer, let r be such that 2r−1 ≤ n ≤ 2r. Thenn

|a1 + a2 + · · · + an| ≤ 2r · max{|aj |} ≤ 2n · max{|aj |},

since 2r ≤ 2n. In particular,

|n| ≤ 2n · |1| = 2n (for n > 0). (15.1.2)

Applying (15.1.2) to

∣

∣

∣

∣

(

n

j

)∣

∣

∣

∣

and using the binomial expansion, we have for any

a, b ∈ K that

|a + b|n =

∣

∣

∣

∣

∣

∣

n
∑

j=0

(

n

j

)

ajbn−j

∣

∣

∣

∣

∣

∣

≤ 2(n + 1)max
j

{∣

∣

∣

∣

(

n

j

)∣

∣

∣

∣

|a|j |b|n−j

}

≤ 2(n + 1)max
j

{

2

(

n

j

)

|a|j |b|n−j

}

≤ 4(n + 1)max
j

{(

n

j

)

|a|j |b|n−j

}

≤ 4(n + 1)(|a| + |b|)n.
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Now take nth roots of both sides to obtain

|a + b| ≤ n
√

4(n + 1) · (|a| + |b|).

We have by elementary calculus that

lim
n→∞

n
√

4(n + 1) = 1,

so |a + b| ≤ |a| + |b|. (The “elementary calculus”: We instead prove that n
√

n → 1,
since the argument is the same and the notation is simpler. First, for any n ≥ 1 we
have n

√
n ≥ 1, since upon taking nth powers this is equivalent to n ≥ 1n, which is

true by hypothesis. Second, suppose there is an ε > 0 such that n
√

n ≥ 1 + ε for all
n ≥ 1. Then taking logs of boths sides we see that 1

n log(n) ≥ log(1 + ε) > 0. But
log(n)/n → 0, so there is no such ε. Thus n

√
n → 1 as n → ∞.)

Note that Axioms (1), (2) and Equation (15.1.1) imply Axiom (3) with C = 2.
We take Axiom (3) instead of Equation (15.1.1) for the technical reason that we will
want to call the square of the absolute value of the complex numbers a valuation.

Lemma 15.1.4. Suppose a, b ∈ K, and | · | is a valuation on K with C ≤ 2. Then

∣

∣

∣
|a| − |b|

∣

∣

∣
≤ |a − b| .

(Here the big absolute value on the outside of the left-hand side of the inequality
is the usual absolute value on real numbers, but the other absolute values are a
valuation on an arbitrary field K.)

Proof. We have

|a| = |b + (a − b)| ≤ |b| + |a − b|,

so |a| − |b| ≤ |a − b|. The same argument with a and b swapped implies that
|b| − |a| ≤ |a − b|, which proves the lemma.

15.2 Types of Valuations

We define two important properties of valuations, both of which apply to equivalence
classes of valuations (i.e., the property holds for | · | if and only if it holds for a
valuation equivalent to | · | ).

Definition 15.2.1 (Discrete). A valuation | · | is discrete if there is a δ > 0 such
that for any a ∈ K

1 − δ < |a| < 1 + δ =⇒ |a| = 1.

Thus the absolute values are bounded away from 1.
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To say that | · | is discrete is the same as saying that the set

G =
{

log |a| : a ∈ K, a 6= 0
}

⊂ R

forms a discrete subgroup of the reals under addition (because the elements of the
group G are bounded away from 0).

Proposition 15.2.2. A nonzero discrete subgroup G of R is free on one generator.

Proof. Since G is discrete there is a positive m ∈ G such that for any positive x ∈ G
we have m ≤ x. Suppose x ∈ G is an arbitrary positive element. By subtracting off
integer multiples of m, we find that there is a unique n such that

0 ≤ x − nm < m.

Since x − nm ∈ G and 0 < x − nm < m, it follows that x − nm = 0, so x is a
multiple of m.

By Proposition 15.2.2, the set of log |a| for nonzero a ∈ K is free on one gen-
erator, so there is a c < 1 such that |a|, for a 6= 0, runs precisely through the
set

cZ = {cm : m ∈ Z}

(Note: we can replace c by c−1 to see that we can assume that c < 1).

Definition 15.2.3 (Order). If |a| = cm, we call m = ord(a) the order of a.

Axiom (2) of valuations translates into

ord(ab) = ord(a) + ord(b).

Definition 15.2.4 (Non-archimedean). A valuation | · | is non-archimedean if
we can take C = 1 in Axiom (3), i.e., if

|a + b| ≤ max
{

|a|, |b|
}

. (15.2.1)

If | · | is not non-archimedean then it is archimedean.

Note that if we can take C = 1 for | · | then we can take C = 1 for any valuation
equivalent to | · | . To see that (15.2.1) is equivalent to Axiom (3) with C = 1,
suppose |b| ≤ |a|. Then |b/a| ≤ 1, so Axiom (3) asserts that |1 + b/a| ≤ 1, which
implies that |a + b| ≤ |a| = max{|a|, |b|}, and conversely.

We note at once the following consequence:

Lemma 15.2.5. Suppose | · | is a non-archimedean valuation. If a, b ∈ K with
|b| < |a|, then |a + b| = |a|.
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Proof. Note that |a + b| ≤ max{|a|, |b|} = |a|, which is true even if |b| = |a|. Also,

|a| = |(a + b) − b| ≤ max{|a + b|, |b|} = |a + b|,

where for the last equality we have used that |b| < |a| (if max{|a + b|, |b|} = |b|,
then |a| ≤ |b|, a contradiction).

Definition 15.2.6 (Ring of Integers). Suppose | · | is a non-archimedean absolute
value on a field K. Then

O = {a ∈ K : |a| ≤ 1}

is a ring called the ring of integers of K with respect to | · | .

Lemma 15.2.7. Two non-archimedean valuations | · | 1 and | · | 2 are equivalent if
and only if they give the same O.

We will prove this modulo the claim (to be proved later in Section 16.1) that
valuations are equivalent if (and only if) they induce the same topology.

Proof. Suppose suppose | · | 1 is equivalent to | · | 2, so | · | 1 = | · | c
2, for some c > 0.

Then |c|1 ≤ 1 if and only if |c|c2 ≤ 1, i.e., if |c|2 ≤ 11/c = 1. Thus O1 = O2.

Conversely, suppose O1 = O2. Then |a|1 < |b|1 if and only if a/b ∈ O1 and
b/a 6∈ O1, so

|a|1 < |b|1 ⇐⇒ |a|2 < |b|2. (15.2.2)

The topology induced by | |1 has as basis of open neighborhoods the set of open
balls

B1(z, r) = {x ∈ K : |x − z|1 < r},

for r > 0, and likewise for | |2. Since the absolute values |b|1 get arbitrarily close to
0, the set U of open balls B1(z, |b|1) also forms a basis of the topology induced by
| |1 (and similarly for | |2). By (15.2.2) we have

B1(z, |b|1) = B2(z, |b|2),

so the two topologies both have U as a basis, hence are equal. That equal topologies
imply equivalence of the corresponding valuations will be proved in Section 16.1.

The set of a ∈ O with |a| < 1 forms an ideal p in O. The ideal p is maximal,
since if a ∈ O and a 6∈ p then |a| = 1, so |1/a| = 1/|a| = 1, hence 1/a ∈ O, so a is a
unit.

Lemma 15.2.8. A non-archimedean valuation | · | is discrete if and only if p is a
principal ideal.
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Proof. First suppose that | · | is discrete. Choose π ∈ p with |π| maximal, which we
can do since

S = {log |a| : a ∈ p} ⊂ (−∞, 1],

so the discrete set S is bounded above. Suppose a ∈ p. Then
∣

∣

∣

a

π

∣

∣

∣ =
|a|
|π| ≤ 1,

so a/π ∈ O. Thus

a = π · a

π
∈ πO.

Conversely, suppose p = (π) is principal. For any a ∈ p we have a = πb with
b ∈ O. Thus

|a| = |π| · |b| ≤ |π| < 1.

Thus {|a| : |a| < 1} is bounded away from 1, which is exactly the definition of
discrete.

Example 15.2.9. For any prime p, define the p-adic valuation | · | p : Q → R as
follows. Write a nonzero α ∈ K as pn · a

b , where gcd(a, p) = gcd(b, p) = 1. Then

∣

∣

∣
pn · a

b

∣

∣

∣

p
:= p−n =

(

1

p

)n

.

This valuation is both discrete and non-archimedean. The ring O is the local ring

Z(p) =
{a

b
∈ Q : p - b

}

,

which has maximal ideal generated by p. Note that ord(pn · a
b ) = pn.

We will using the following lemma later (e.g., in the proof of Corollary 16.2.4
and Theorem 15.3.2).

Lemma 15.2.10. A valuation | · | is non-archimedean if and only if |n| ≤ 1 for all
n in the ring generated by 1 in K.

Note that we cannot identify the ring generated by 1 with Z in general, be-
cause K might have characteristic p > 0.

Proof. If | · | is non-archimedean, then |1| ≤ 1, so by Axiom (3) with a = 1, we have
|1 + 1| ≤ 1. By induction it follows that |n| ≤ 1.

Conversely, suppose |n| ≤ 1 for all integer multiples n of 1. This condition is
also true if we replace | · | by any equivalent valuation, so replace | · | by one with
C ≤ 2, so that the triangle inequality holds. Suppose a ∈ K with |a| ≤ 1. Then by
the triangle inequality,

|1 + a|n = |(1 + a)n|

≤
n

∑

j=0

∣

∣

∣

∣

(

n

j

)∣

∣

∣

∣

|a|

≤1 + 1 + · · · + 1 = n.
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Now take nth roots of both sides to get

|1 + a| ≤ n
√

n,

and take the limit as n → ∞ to see that |1 + a| ≤ 1. This proves that one can take
C = 1 in Axiom (3), hence that | · | is non-archimedean.

15.3 Examples of Valuations

The archetypal example of an archimedean valuation is the absolute value on the
complex numbers. It is essentially the only one:

Theorem 15.3.1 (Gelfand-Tornheim). Any field K with an archimedean valua-
tion is isomorphic to a subfield of C, the valuation being equivalent to that induced
by the usual absolute value on C.

We do not prove this here as we do not need it. For a proof, see [Art59, pg. 45,
67].

There are many non-archimedean valuations. On the rationals Q there is one
for every prime p > 0, the p-adic valuation, as in Example 15.2.9.

Theorem 15.3.2 (Ostrowski). The nontrivial valuations on Q are those equiva-
lent to | · |p, for some prime p, and the usual absolute value | · |∞.

Remark 15.3.3. Before giving the proof, we pause with a brief remark about Os-
trowski. According to

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Ostrowski.html

Ostrowski was a Ukrainian mathematician who lived 1893–1986. Gautschi writes
about Ostrowski as follows: “... you are able, on the one hand, to emphasise the
abstract and axiomatic side of mathematics, as for example in your theory of general
norms, or, on the other hand, to concentrate on the concrete and constructive
aspects of mathematics, as in your study of numerical methods, and to do both
with equal ease. You delight in finding short and succinct proofs, of which you have
given many examples ...” [italics mine]

We will now give an example of one of these short and succinct proofs.

Proof. Suppose | · | is a nontrivial valuation on Q.
Nonarchimedean case: Suppose |c| ≤ 1 for all c ∈ Z, so by Lemma 15.2.10, | · |

is nonarchimedean. Since | · | is nontrivial, the set

p = {a ∈ Z : |a| < 1}

is nonzero. Also p is an ideal and if |ab| < 1, then |a| |b| = |ab| < 1, so |a| < 1 or
|b| < 1, so p is a prime ideal of Z. Thus p = pZ, for some prime number p. Since
every element of Z has valuation at most 1, if u ∈ Z with gcd(u, p) = 1, then u 6∈ p,
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so |u| = 1. Let α = log|p|
1
p , so |p|α = 1

p . Then for any r and any u ∈ Z with
gcd(u, p) = 1, we have

|upr|α = |u|α |p|αr = |p|αr = p−r = |upr|p .

Thus | · |α = | · |p on Z, hence on Q by multiplicativity, so | · | is equivalent to | · |p,
as claimed.

Archimedean case: By replacing | · | by a power of | · |, we may assume without
loss that | · | satisfies the triangle inequality. We first make some general remarks
about any valuation that satisfies the triangle inequality. Suppose a ∈ Z is greater
than 1. Consider, for any b ∈ Z the base-a expansion of b:

b = bmam + bm−1a
m−1 + · · · + b0,

where
0 ≤ bj < a (0 ≤ j ≤ m),

and bm 6= 0. Since am ≤ b, taking logs we see that m log(a) ≤ log(b), so

m ≤ log(b)

log(a)
.

Let M = max
1≤d<a

|d|. Then by the triangle inequality for | · |, we have

|b| ≤ |bm| am + · · · + |b1| |a| + |b0|
≤ M · (|a|m + · · · + |a| + 1)

≤ M · (m + 1) · max(1, |a|m)

≤ M ·
(

log(b)

log(a)
+ 1

)

· max
(

1, |a|log(b)/ log(a)
)

,

where in the last step we use that m ≤ log(b)
log(a) . Setting b = cn, for c ∈ Z, in the

above inequality and taking nth roots, we have

|c| ≤
(

M ·
(

log(cn)

log(a)
+ 1

)

· max(1, |a|log(cn)/ log(a))

)1/n

= M1/n ·
(

log(cn)

log(a)
+ 1

)1/n

· max
(

1, |a|log(cn)/ log(a)
)1/n

.

The first factor M1/n converges to 1 as n → ∞, since M ≥ 1 (because |1| = 1). The
second factor is

(

log(cn)

log(a)
+ 1

)1/n

=

(

n · log(c)

log(a)
+ 1

)1/n

which also converges to 1, for the same reason that n1/n → 1 (because log(n1/n) =
1
n log(n) → 0 as n → ∞). The third factor is

max
(

1, |a|log(cn)/ log(a)
)1/n

=

{

1 if |a| < 1,

|a|log(c)/ log(a) if |a| ≥ 1.
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Putting this all together, we see that

|c| ≤ max

(

1, |a|
log(c)
log(a)

)

.

Our assumption that | · | is nonarchimedean implies that there is c ∈ Z with
c > 1 and |c| > 1. Then for all a ∈ Z with a > 1 we have

1 < |c| ≤ max

(

1, |a|
log(c)
log(a)

)

, (15.3.1)

so 1 < |a|log(c)/ log(a), so 1 < |a| as well (i.e., any a ∈ Z with a > 1 automatically
satisfies |a| > 1). Also, taking the 1/ log(c) power on both sides of (15.3.1) we see
that

|c|
1

log(c) ≤ |a|
1

log(a) . (15.3.2)

Because, as mentioned above, |a| > 1, we can interchange the roll of a and c to
obtain the reverse inequality of (15.3.2). We thus have

|c| = |a|
log(c)
log(a) .

Letting α = log(2) · log|2|(e) and setting a = 2, we have

|c|α = |2|
α

log(2)
·log(c)

=
(

|2|log|2|(e)
)log(c)

= elog(c) = c = |c|∞ .

Thus for all integers c ∈ Z with c > 1 we have |c|α = |c|∞, which implies that | · | is
equivalent to | · |∞.

Let k be any field and let K = k(t), where t is transcendental. Fix a real number
c > 1. If p = p(t) is an irreducible polynomial in the ring k[t], we define a valuation
by

∣

∣

∣
pa · u

v

∣

∣

∣

p
= c−deg(p)·a, (15.3.3)

where a ∈ Z and u, v ∈ k[t] with p - u and p - v.

Remark 15.3.4. This definition differs from the one page 46 of [Cassels-Frohlich,
Ch. 2] in two ways. First, we assume that c > 1 instead of c < 1, since otherwise
| · |p does not satisfy Axiom 3 of a valuation. Also, we write c− deg(p)·a instead of

c−a, so that the product formula will hold. (For more about the product formula,
see Section 20.1.)

In addition there is a a non-archimedean valuation | · |∞ defined by

∣

∣

∣

u

v

∣

∣

∣

∞
= cdeg(u)−deg(v). (15.3.4)

This definition differs from the one in [Cas67, pg. 46] in two ways. First, we
assume that c > 1 instead of c < 1, since otherwise | · |p does not satisfy Axiom 3
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of a valuation. Here’s why: Recall that Axiom 3 for a non-archimedean valuation
on K asserts that whenever a ∈ K and |a| ≤ 1, then |a + 1| ≤ 1. Set a = p − 1,
where p = p(t) ∈ K[t] is an irreducible polynomial. Then |a| = c0 = 1, since
ordp(p− 1) = 0. However, |a + 1| = |p − 1 + 1| = |p| = c1 < 1, since ordp(p) = 1. If
we take c > 1 instead of c < 1, as I propose, then |p| = c1 > 1, as required.

Note the (albeit imperfect) analogy between K = k(t) and Q. If s = t−1, so
k(t) = k(s), the valuation | · |∞ is of the type (15.3.3) belonging to the irreducible
polynomial p(s) = s.

The reader is urged to prove the following lemma as a homework problem.

Lemma 15.3.5. The only nontrivial valuations on k(t) which are trivial on k are
equivalent to the valuation (15.3.3) or (15.3.4).

For example, if k is a finite field, there are no nontrivial valuations on k, so the
only nontrivial valuations on k(t) are equivalent to (15.3.3) or (15.3.4).



Chapter 16

Topology and Completeness

16.1 Topology

A valuation | · | on a field K induces a topology in which a basis for the neighbor-
hoods of a are the open balls

B(a, d) = {x ∈ K : |x − a| < d}

for d > 0.

Lemma 16.1.1. Equivalent valuations induce the same topology.

Proof. If | · |1 = | · |r2, then |x − a|1 < d if and only if |x − a|r2 < d if and only if
|x − a|2 < d1/r so B1(a, d) = B2(a, d1/r). Thus the basis of open neighborhoods of
a for | · |1 and | · |2 are identical.

A valuation satisfying the triangle inequality gives a metric for the topology on
defining the distance from a to b to be |a − b|. Assume for the rest of this section
that we only consider valuations that satisfy the triangle inequality.

Lemma 16.1.2. A field with the topology induced by a valuation is a topological
field, i.e., the operations sum, product, and reciprocal are continuous.

Proof. For example (product) the triangle inequality implies that

|(a + ε)(b + δ) − ab| ≤ |ε| |δ| + |a| |δ| + |b| |ε|

is small when |ε| and |δ| are small (for fixed a, b).

Lemma 16.1.3. Suppose two valuations | · |1 and | · |2 on the same field K induce
the same topology. Then for any sequence {xn} in K we have

|xn|1 → 0 ⇐⇒ |xn|2 → 0.

117
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Proof. It suffices to prove that if |xn|1 → 0 then |xn|2 → 0, since the proof of
the other implication is the same. Let ε > 0. The topologies induced by the two
absolute values are the same, so B2(0, ε) can be covered by open balls B1(ai, ri).
One of these open balls B1(a, r) contains 0. There is ε′ > 0 such that

B1(0, ε′) ⊂ B1(a, r) ⊂ B2(0, ε).

Since |xn|1 → 0, there exists N such that for n ≥ N we have |xn|1 < ε′. For such n,
we have xn ∈ B1(0, ε′), so xn ∈ B2(0, ε), so |xn|2 < ε. Thus |xn|2 → 0.

Proposition 16.1.4. If two valuations | · |1 and | · |2 on the same field induce the
same topology, then they are equivalent in the sense that there is a positive real α
such that | · |1 = | · |α2 .

Proof. If x ∈ K and i = 1, 2, then |xn|i → 0 if and only if |x|ni → 0, which is the
case if and only if |x|i < 1. Thus Lemma 16.1.3 implies that |x|1 < 1 if and only
if |x|2 < 1. On taking reciprocals we see that |x|1 > 1 if and only if |x|2 > 1, so
finally |x|1 = 1 if and only if |x|2 = 1.

Let now w, z ∈ K be nonzero elements with |w|i 6= 1 and |z|i 6= 1. On applying
the foregoing to

x = wmzn (m, n ∈ Z)

we see that

m log |w|1 + n log |z|1 ≥ 0

if and only if

m log |w|2 + n log |z|2 ≥ 0.

Dividing through by log |z|i, and rearranging, we see that for every rational number
α = −n/m,

log |w|1
log |z|1

≥ α ⇐⇒ log |w|2
log |z|2

≥ α.

Thus
log |w|1
log |z|1

=
log |w|2
log |z|2

,

so
log |w|1
log |w|2

=
log |z|1
log |z|2

.

Since this equality does not depend on the choice of z, we see that there is a
constant c (= log |z|1 / log |z|2) such that log |w|1 / log |w|2 = c for all w. Thus
log |w|1 = c ·log |w|2, so |w|1 = |w|c2, which implies that | · |1 is equivalent to | · |2.
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16.2 Completeness

We recall the definition of metric on a set X.

Definition 16.2.1 (Metric). A metric on a set X is a map

d : X × X → R

such that for all x, y, z ∈ X,

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x), and

3. d(x, z) ≤ d(x, y) + d(y, z).

A Cauchy sequence is a sequence (xn) in X such that for all ε > 0 there exists M
such that for all n, m > M we have d(xn, xm) < ε. The completion of X is the set of
Cauchy sequences (xn) in X modulo the equivalence relation in which two Cauchy
sequences (xn) and (yn) are equivalent if limn→∞ d(xn, yn) = 0. A metric space is
complete if every Cauchy sequence converges, and one can show that the completion
of X with respect to a metric is complete.

For example, d(x, y) = |x − y| (usual archimedean absolute value) defines a
metric on Q. The completion of Q with respect to this metric is the field R of real
numbers. More generally, whenever | · | is a valuation on a field K that satisfies the
triangle inequality, then d(x, y) = |x − y| defines a metric on K. Consider for the
rest of this section only valuations that satisfy the triangle inequality.

Definition 16.2.2 (Complete). A field K is complete with respect to a valuation
| · | if given any Cauchy sequence an, (n = 1, 2, . . .), i.e., one for which

|am − an| → 0 (m, n → ∞,∞),

there is an a∗ ∈ K such that

an → a∗ w.r.t. | · |

(i.e., |an − a∗| → 0).

Theorem 16.2.3. Every field K with valuation v = | · | can be embedded in a
complete field Kv with a valuation | · | extending the original one in such a way that
Kv is the closure of K with respect to | · | . Further Kv is unique up to a unique
isomorphism fixing K.

Proof. Define Kv to be the completion of K with respect to the metric defined by | · |.
Thus Kv is the set of equivalence classes of Cauchy sequences, and there is a natural
injective map from K to Kv sending an element a ∈ K to the constant Cauchy
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sequence (a). Because the field operations on K are continuous, they induce well-
defined field operations on equivalence classes of Cauchy sequences componentwise.
Also, define a valuation on Kv by

|(an)∞n=1| = lim
n→∞

|an| ,

and note that this is well defined and extends the valuation on K.
To see that Kv is unique up to a unique isomorphism fixing K, we observe that

there are no nontrivial continuous automorphisms Kv → Kv that fix K. This is
because, by denseness, a continuous automorphism σ : Kv → Kv is determined by
what it does to K, and by assumption σ is the identity map on K. More precisely,
suppose a ∈ Kv and n is a positive integer. Then by continuity there is δ > 0 (with
δ < 1/n) such that if an ∈ Kv and |a − an| < δ then |σ(a) − σ(an)| < 1/n. Since
K is dense in Kv, we can choose the an above to be an element of K. Then by
hypothesis σ(an) = an, so |σ(a) − an| < 1/n. Thus σ(a) = limn→∞ an = a.

Corollary 16.2.4. The valuation | · | is non-archimedean on Kv if and only if it is
so on K. If | · | is non-archimedean, then the set of values taken by | · | on K and
Kv are the same.

Proof. The first part follows from Lemma 15.2.10 which asserts that a valuation is
non-archimedean if and only if |n| < 1 for all integers n. Since the valuation on Kv

extends the valuation on K, and all n are in K, the first statement follows.
For the second, suppose that | · | is non-archimedean (but not necessarily dis-

crete). Suppose b ∈ Kv with b 6= 0. First I claim that there is c ∈ K such that
|b − c| < |b|. To see this, let c′ = b− b

a , where a is some element of Kv with |a| > 1,

note that |b − c′| =
∣

∣

b
a

∣

∣ < |b|, and choose c ∈ K such that |c − c′| < |b − c′|, so

|b − c| =
∣

∣b − c′ − (c − c′)
∣

∣ ≤ max
(∣

∣b − c′
∣

∣ ,
∣

∣c − c′
∣

∣

)

=
∣

∣b − c′
∣

∣ < |b| .

Since | · | is non-archimedean, we have

|b| = |(b − c) + c| ≤ max (|b − c| , |c|) = |c| ,

where in the last equality we use that |b − c| < |b|. Also,

|c| = |b + (c − b)| ≤ max (|b| , |c − b|) = |b| ,

so |b| = |c|, which is in the set of values of | · | on K.

16.2.1 p-adic Numbers

This section is about the p-adic numbers Qp, which are the completion of Q with
respect to the p-adic valuation. Alternatively, to give a p-adic integer in Zp is the
same as giving for every prime power pr an element ar ∈ Z/prZ such that if s ≤ r
then as is the reduction of ar modulo ps. The field Qp is then the field of fractions
of Zp.
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We begin with the definition of the N -adic numbers for any positive integer N .
Section 16.2.1 is about the N -adics in the special case N = 10; these are fun because
they can be represented as decimal expansions that go off infinitely far to the left.
Section 16.2.3 is about how the topology of QN is nothing like the topology of R.
Finally, in Section 16.2.4 we state the Hasse-Minkowski theorem, which shows how
to use p-adic numbers to decide whether or not a quadratic equation in n variables
has a rational zero.

The N-adic Numbers

Lemma 16.2.5. Let N be a positive integer. Then for any nonzero rational num-
ber α there exists a unique e ∈ Z and integers a, b, with b positive, such that
α = N e · a

b with N - a, gcd(a, b) = 1, and gcd(N, b) = 1.

Proof. Write α = c/d with c, d ∈ Z and d > 0. First suppose d is exactly divisible
by a power of N , so for some r we have N r | d but gcd(N, d/N r) = 1. Then

c

d
= N−r c

d/N r
.

If N s is the largest power of N that divides c, then e = s − r, a = c/N s, b = d/N r

satisfy the conclusion of the lemma.
By unique factorization of integers, there is a smallest multiple f of d such that

fd is exactly divisible by N . Now apply the above argument with c and d replaced
by cf and df .

Definition 16.2.6 (N-adic valuation). Let N be a positive integer. For any
positive α ∈ Q, the N -adic valuation of α is e, where e is as in Lemma 16.2.5. The
N -adic valuation of 0 is ∞.

We denote the N -adic valuation of α by ordN (α). (Note: Here we are using
“valuation” in a different way than in the rest of the text. This valuation is not an
absolute value, but the logarithm of one.)

Definition 16.2.7 (N-adic metric). For x, y ∈ Q the N -adic distance between x
and y is

dN (x, y) = N− ordN (x−y).

We let dN (x, x) = 0, since ordN (x − x) = ordN (0) = ∞.

For example, x, y ∈ Z are close in the N -adic metric if their difference is divisible
by a large power of N . E.g., if N = 10 then 93427 and 13427 are close because their
difference is 80000, which is divisible by a large power of 10.

Proposition 16.2.8. The distance dN on Q defined above is a metric. Moreover,
for all x, y, z ∈ Q we have

d(x, z) ≤ max(d(x, y), d(y, z)).

(This is the “nonarchimedean” triangle inequality.)
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Proof. The first two properties of Definition 16.2.1 are immediate. For the third,
we first prove that if α, β ∈ Q then

ordN (α + β) ≥ min(ordN (α), ordN (β)).

Assume, without loss, that ordN (α) ≤ ordN (β) and that both α and β are nonzero.
Using Lemma 16.2.5 write α = N e(a/b) and β = Nf (c/d) with a or c possibly
negative. Then

α + β = N e
(a

b
+ Nf−e c

d

)

= N e

(

ad + bcNf−e

bd

)

.

Since gcd(N, bd) = 1 it follows that ordN (α + β) ≥ e. Now suppose x, y, z ∈ Q.
Then

x − z = (x − y) + (y − z),

so
ordN (x − z) ≥ min(ordN (x − y), ordN (y − z)),

hence dN (x, z) ≤ max(dN (x, y), dN (y, z)).

We can finally define the N -adic numbers.

Definition 16.2.9 (The N-adic Numbers). The set of N -adic numbers, denoted
QN , is the completion of Q with respect to the metric dN .

The set QN is a ring, but it need not be a field as you will show in Exercises 57
and 58. It is a field if and only if N is prime. Also, QN has a “bizarre” topology,
as we will see in Section 16.2.3.

The 10-adic Numbers

It’s a familiar fact that every real number can be written in the form

dn . . . d1d0.d−1d−2 . . . = dn10n + · · · + d110 + d0 + d−110−1 + d−210−2 + · · ·
where each digit di is between 0 and 9, and the sequence can continue indefinitely
to the right.

The 10-adic numbers also have decimal expansions, but everything is backward!
To get a feeling for why this might be the case, we consider Euler’s nonsensical
series ∞

∑

n=1

(−1)n+1n! = 1! − 2! + 3! − 4! + 5! − 6! + · · · .

One can prove (see Exercise 55) that this series converges in Q10 to some element
α ∈ Q10.

What is α? How can we write it down? First note that for all M ≥ 5, the terms
of the sum are divisible by 10, so the difference between α and 1! − 2! + 3! − 4! is
divisible by 10. Thus we can compute α modulo 10 by computing 1! − 2! + 3! − 4!
modulo 10. Likewise, we can compute α modulo 100 by compute 1!−2!+· · ·+9!−10!,
etc. We obtain the following table:
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α mod 10r

1 mod 10
81 mod 102

981 mod 103

2981 mod 104

22981 mod 105

422981 mod 106

Continuing we see that

1! − 2! + 3! − 4! + · · · = . . . 637838364422981 in Q10 !

Here’s another example. Reducing 1/7 modulo larger and larger powers of 10
we see that

1

7
= . . . 857142857143 in Q10.

Here’s another example, but with a decimal point.

1

70
=

1

10
· 1

7
= . . . 85714285714.3

We have
1

3
+

1

7
= . . . 66667 + . . . 57143 =

10

21
= . . . 23810,

which illustrates that addition with carrying works as usual.

Fermat’s Last Theorem in Z10

An amusing observation, which people often argued about on USENET news back
in the 1990s, is that Fermat’s last theorem is false in Z10. For example, x3 +y3 = z3

has a nontrivial solution, namely x = 1, y = 2, and z = . . . 60569. Here z is a cube
root of 9 in Z10. Note that it takes some work to prove that there is a cube root of
9 in Z10 (see Exercise 56).

16.2.2 The Field of p-adic Numbers

The ring Q10 of 10-adic numbers is isomorphic to Q2×Q5 (see Exercise 58), so it is
not a field. For example, the element . . . 8212890625 corresponding to (1, 0) under
this isomorphism has no inverse. (To compute n digits of (1, 0) use the Chinese
remainder theorem to find a number that is 1 modulo 2n and 0 modulo 5n.)

If p is prime then Qp is a field (see Exercise 57). Since p 6= 10 it is a little more
complicated to write p-adic numbers down. People typically write p-adic numbers
in the form

a−d

pd
+ · · · + a−1

p
+ a0 + a1p + a2p

2 + a3p
3 + · · ·

where 0 ≤ ai < p for each i.
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16.2.3 The Topology of QN (is Weird)

Definition 16.2.10 (Connected). Let X be a topological space. A subset S of X
is disconnected if there exist open subsets U1, U2 ⊂ X with U1 ∩ U2 ∩ S = ∅ and
S = (S ∩U1)∪ (S ∩U2) with S ∩U1 and S ∩U2 nonempty. If S is not disconnected
it is connected.

The topology on QN is induced by dN , so every open set is a union of open balls

B(x, r) = {y ∈ QN : dN (x, y) < r}.

Recall Proposition 16.2.8, which asserts that for all x, y, z,

d(x, z) ≤ max(d(x, y), d(y, z)).

This translates into the following shocking and bizarre lemma:

Lemma 16.2.11. Suppose x ∈ QN and r > 0. If y ∈ QN and dN (x, y) ≥ r, then
B(x, r) ∩ B(y, r) = ∅.

Proof. Suppose z ∈ B(x, r) and z ∈ B(y, r). Then

r ≤ dN (x, y) ≤ max(dN (x, z), dN (z, y)) < r,

a contradiction.

You should draw a picture to illustrates Lemma 16.2.11.

Lemma 16.2.12. The open ball B(x, r) is also closed.

Proof. Suppose y 6∈ B(x, r). Then r ≤ d(x, y) so

B(y, d(x, y)) ∩ B(x, r) ⊂ B(y, d(x, y)) ∩ B(x, d(x, y)) = ∅.

Thus the complement of B(x, r) is a union of open balls.

The lemmas imply that QN is totally disconnected, in the following sense.

Proposition 16.2.13. The only connected subsets of QN are the singleton sets {x}
for x ∈ QN and the empty set.

Proof. Suppose S ⊂ QN is a nonempty connected set and x, y are distinct elements
of S. Let r = dN (x, y) > 0. Let U1 = B(x, r) and U2 be the complement of
U1, which is open by Lemma 16.2.12. Then U1 and U2 satisfies the conditions of
Definition 16.2.10, so S is not connected, a contradiction.
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16.2.4 The Local-to-Global Principle of Hasse and Minkowski

Section 16.2.3 might have convinced you that QN is a bizarre pathology. In fact,
QN is omnipresent in number theory, as the following two fundamental examples
illustrate.

In the statement of the following theorem, a nontrivial solution to a homogeneous
polynomial equation is a solution where not all indeterminates are 0.

Theorem 16.2.14 (Hasse-Minkowski). The quadratic equation

a1x
2
1 + a2x

2
2 + · · · + anx2

n = 0, (16.2.1)

with ai ∈ Q×, has a nontrivial solution with x1, . . . , xn in Q if and only if (16.2.1)
has a solution in R and in Qp for all primes p.

This theorem is very useful in practice because the p-adic condition turns out to
be easy to check. For more details, including a complete proof, see [Ser73, IV.3.2].

The analogue of Theorem 16.2.14 for cubic equations is false. For example,
Selmer proved that the cubic

3x3 + 4y3 + 5z3 = 0

has a solution other than (0, 0, 0) in R and in Qp for all primes p but has no solution
other than (0, 0, 0) in Q (for a proof see [Cas91, §18]).

Open Problem. Give an algorithm that decides whether or not a cubic

ax3 + by3 + cz3 = 0

has a nontrivial solution in Q.

This open problem is closely related to the Birch and Swinnerton-Dyer Conjec-
ture for elliptic curves. The truth of the conjecture would follow if we knew that
“Shafarevich-Tate Groups” of elliptic curves were finite.

16.3 Weak Approximation

The following theorem asserts that inequivalent valuations are in fact almost totally
indepedent. For our purposes it will be superseded by the strong approximation
theorem (Theorem 20.4.4).

Theorem 16.3.1 (Weak Approximation). Let | · |n, for 1 ≤ n ≤ N , be inequiv-
alent nontrivial valuations of a field K. For each n, let Kn be the topological space
consisting of the set of elements of K with the topology induced by | · |n. Let ∆ be
the image of K in the topological product

A =
∏

1≤n≤N

Kn

equipped with the product topology. Then ∆ is dense in A.
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The conclusion of the theorem may be expressed in a less topological manner as
follows: given any an ∈ K, for 1 ≤ n ≤ N , and real ε > 0, there is an b ∈ K such
that simultaneously

|an − b|n < ε (1 ≤ n ≤ N).

If K = Q and the | · | are p-adic valuations, Theorem 16.3.1 is related to the Chi-
nese Remainder Theorem (Theorem 9.1.3), but the strong approximation theorem
(Theorem 20.4.4) is the real generalization.

Proof. We note first that it will be enough to find, for each n, an element cn ∈ K
such that

|cn|n > 1 and |cn|m < 1 for n 6= m,

where 1 ≤ n, m ≤ N . For then as r → +∞, we have

cr
n

1 + cr
n

=
1

1 +
(

1
cn

)r →
{

1 with respect to | · |n and

0 with respect to | · |m , for m 6= n.

It is then enough to take

b =
N

∑

n=1

cr
n

1 + cr
n

· an

By symmetry it is enough to show the existence of c = c1 with

|c|1 > 1 and |c|n < 1 for 2 ≤ n ≤ N.

We will do this by induction on N .
First suppose N = 2. Since | · |1 and | · |2 are inequivalent (and all absolute

values are assumed nontrivial) there is an a ∈ K such that

|a|1 < 1 and |a|2 ≥ 1 (16.3.1)

and similarly a b such that

|b|1 ≥ 1 and |b|2 < 1.

Then c =
b

a
will do.

Remark 16.3.2. It is not completely clear that one can choose an a such that (16.3.1)
is satisfied. Suppose it were impossible. Then because the valuations are nontrivial,
we would have that for any a ∈ K if |a|1 < 1 then |a|2 < 1. This implies the
converse statement: if a ∈ K and |a|2 < 1 then |a|1 < 1. To see this, suppose there
is an a ∈ K such that |a|2 < 1 and |a|1 ≥ 1. Choose y ∈ K such that |y|1 < 1.
Then for any integer n > 0 we have |y/an|1 < 1, so by hypothesis |y/an|2 < 1. Thus
|y|2 < |a|n2 < 1 for all n. Since |a|2 < 1 we have |a|n2 → 0 as n → ∞, so |y|2 = 0, a
contradiction since y 6= 0. Thus |a|1 < 1 if and only if |a|2 < 1, and we have proved
before that this implies that | · |1 is equivalent to | · |2.
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Next suppose N ≥ 3. By the case N − 1, there is an a ∈ K such that

|a|1 > 1 and |a|n < 1 for 2 ≤ n ≤ N − 1.

By the case for N = 2 there is a b ∈ K such that

|b|1 > 1 and |b|N < 1.

Then put

c =















a if |a|N < 1

ar · b if |a|N = 1
ar

1 + ar
· b if |a|N > 1

where r ∈ Z is sufficiently large so that |c|1 > 1 and |c|n < 1 for 2 ≤ n ≤ N .

Example 16.3.3. Suppose K = Q, let | · |1 be the archimedean absolute value and
let | · |2 be the 2-adic absolute value. Let a1 = −1, a2 = 8, and ε = 1/10, as in
the remark right after Theorem 16.3.1. Then the theorem implies that there is an
element b ∈ Q such that

|−1 − b|1 <
1

10
and |8 − b|2 <

1

10
.

As in the proof of the theorem, we can find such a b by finding a c1, c2 ∈ Q such
that |c1|1 > 1 and |c1|2 < 1, and a |c2|1 < 1 and |c2|2 > 1. For example, c1 = 2
and c2 = 1/2 works, since |2|1 = 2 and |2|2 = 1/2 and |1/2|1 = 1/2 and |1/2|2 = 2.
Again following the proof, we see that for sufficiently large r we can take

br =
cr
1

1 + cr
1

· a1 +
cr
2

1 + cr
2

· a2

=
2r

1 + 2r
· (−1) +

(1/2)r

1 + (1/2)r
· 8.

We have b1 = 2, b2 = 4/5, b3 = 0, b4 = −8/17, b5 = −8/11, b6 = −56/55. None of
the bi work for i < 6, but b6 works.
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Chapter 17

Adic Numbers: The Finite
Residue Field Case

17.1 Finite Residue Field Case

Let K be a field with a non-archimedean valuation v = | · |. Recall that the set of
a ∈ K with |a| ≤ 1 forms a ring O, the ring of integers for v. The set of u ∈ K
with |u| = 1 are a group U under multiplication, the group of units for v. Finally,
the set of a ∈ K with |a| < 1 is a maximal ideal p, so the quotient ring O/p is a
field. In this section we consider the case when O/p is a finite field of order a prime
power q. For example, K could be Q and | · | could be a p-adic valuation, or K
could be a number field and | · | could be the valuation corresponding to a maximal
ideal of the ring of integers. Among other things, we will discuss in more depth the
topological and measure-theoretic nature of the completion of K at v.

Suppose further for the rest of this section that | · | is discrete. Then by
Lemma 15.2.8, the ideal p is a principal ideal (π), say, and every a ∈ K is of
the form a = πnε, where n ∈ Z and ε ∈ U is a unit. We call

n = ord(a) = ordπ(a) = ordp(a) = ordv(a)

the ord of a at v. (Some authors, including me (!) also call this integer the valuation
of a with respect to v.) If p = (π′), then π/π′ is a unit, and conversely, so ord(a) is
independent of the choice of π.

Let Ov and pv be defined with respect to the completion Kv of K at v.

Lemma 17.1.1. There is a natural isomorphism

ϕ : Ov/pv → O/p,

and pv = (π) as an Ov-ideal.

Proof. We may view Ov as the set of equivalence classes of Cauchy sequences (an)
in K such that an ∈ O for n sufficiently large. For any ε, given such a sequence

129
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(an), there is N such that for n, m ≥ N , we have |an − am| < ε. In particular, we
can choose N such that n, m ≥ N implies that an ≡ am (mod p). Let ϕ((an)) =
aN (mod p), which is well-defined. The map ϕ is surjective because the constant
sequences are in Ov. Its kernel is the set of Cauchy sequences whose elements are
eventually all in p, which is exactly pv. This proves the first part of the lemma. The
second part is true because any element of pv is a sequence all of whose terms are
eventually in p, hence all a multiple of π (we can set to 0 a finite number of terms
of the sequence without changing the equivalence class of the sequence).

Assume for the rest of this section that K is complete with respect to | · |.

Lemma 17.1.2. Then ring O is precisely the set of infinite sums

a =
∞

∑

j=0

aj · πj (17.1.1)

where the aj run independently through some set R of representatives of O in O/p.

By (17.1.1) is meant the limit of the Cauchy sequence
∑n

j=0 aj · πj as j → ∞.

Proof. There is a uniquely defined a0 ∈ R such that |a − a0| < 1. Then a′ =
π−1 · (a − a0) ∈ O. Now define a1 ∈ R by |a′ − a1| < 1. And so on.

Example 17.1.3. Suppose K = Q and | · | = | · |p is the p-adic valuation, for some
prime p. We can take R = {0, 1, . . . , p − 1}. The lemma asserts that

O = Zp =







∞
∑

j=0

anpn : 0 ≤ an ≤ p − 1







.

Notice that O is uncountable since there are p choices for each p-adic “digit”. We
can do arithmetic with elements of Zp, which can be thought of “backwards” as
numbers in base p. For example, with p = 3 we have

(1 + 2 · 3 + 32 + · · · ) + (2 + 2 · 3 + 32 + · · · )
= 3 + 4 · 3 + 2 · 32 + · · · not in canonical form

= 0 + 2 · 3 + 3 · 3 + 2 · 32 + · · · still not canonical

= 0 + 2 · 3 + 0 · 32 + · · ·

Basic arithmetic with the p-adics in Magma is really weird (even weirder than it
was a year ago... There are presumably efficiency advantages to using the Magma

formalization, and it’s supposed to be better for working with extension fields. But
I can’t get it to do even the calculation below in a way that is clear.) In PARI (gp)
the p-adics work as expected:
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? a = 1 + 2*3 + 3^2 + O(3^3);

? b = 2 + 2*3 + 3^2 + O(3^3);

? a+b

%3 = 2*3 + O(3^3)

? sqrt(1+2*3+O(3^20))

%5 = 1 + 3 + 3^2 + 2*3^4 + 2*3^7 + 3^8 + 3^9 + 2*3^10 + 2*3^12

+ 2*3^13 + 2*3^14 + 3^15 + 2*3^17 + 3^18 + 2*3^19 + O(3^20)

? 1/sqrt(1+2*3+O(3^20))

%6 = 1 + 2*3 + 2*3^2 + 2*3^7 + 2*3^10 + 2*3^11 + 2*3^12 + 2*3^13

+ 2*3^14 + 3^15 + 2*3^16 + 2*3^17 + 3^18 + 3^19 + O(3^20)

Theorem 17.1.4. Under the conditions of the preceding lemma, O is compact with
respect to the | · | -topology.

Proof. Let Vλ, for λ running through some index set Λ, be some family of open sets
that cover O. We must show that there is a finite subcover. We suppose not.

Let R be a set of representatives for O/p. Then O is the union of the finite
number of cosets a + πO, for a ∈ R. Hence for at lest one a0 ∈ R the set a0 + πO
is not covered by finitely many of the Vλ. Then similarly there is an a1 ∈ R such
that a0 + a1π + π2O is not finitely covered. And so on. Let

a = a0 + a1π + a2π
2 + · · · ∈ O.

Then a ∈ Vλ0 for some λ0 ∈ Λ. Since Vλ0 is an open set, a+πJ ·O ⊂ Vλ0 for some J
(since those are exactly the open balls that form a basis for the topology). This is
a contradiction because we constructed a so that none of the sets a + πn · O, for
each n, are not covered by any finite subset of the Vλ.

Definition 17.1.5 (Locally compact). A topological space X is locally compact
at a point x if there is some compact subset C of X that contains a neighborhood
of x. The space X is locally compact if it is locally compact at each point in X.

Corollary 17.1.6. The complete local field K is locally compact.

Proof. If x ∈ K, then x ∈ C = x + O, and C is a compact subset of K by
Theorem 17.1.4. Also C contains the neighborhood x + πO = B(x, 1) of x. Thus
K is locally compact at x.

Remark 17.1.7. The converse is also true. If K is locally compact with respect to a
non-archimedean valuation | · | , then

1. K is complete,

2. the residue field is finite, and

3. the valuation is discrete.
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For there is a compact neighbourhood C of 0. Let π be any nonzero with |π| < 1.
Then πn ·O ⊂ C for sufficiently large n, so πn ·O is compact, being closed. Hence O
is compact. Since | · | is a metric, O is sequentially compact, i.e., every fundamental
sequence in O has a limit, which implies (1). Let aλ (for λ ∈ Λ) be a set of
representatives in O of O/p. Then Oλ = {z : |z − aλ| < 1} is an open covering of
O. Thus (2) holds since O is compact. Finally, p is compact, being a closed subset
of O. Let Sn be the set of a ∈ K with |a| < 1 − 1/n. Then Sn (for 1 ≤ n < ∞) is
an open covering of p, so p = Sn for some n, i.e., (3) is true.

If we allow | · | to be archimedean the only further possibilities are k = R and
k = C with | · | equivalent to the usual absolute value.

We denote by K+ the commutative topological group whose points are the
elements of K, whose group law is addition and whose topology is that induced by
| · |. General theory tells us that there is an invariant Haar measure defined on K+

and that this measure is unique up to a multiplicative constant.

Definition 17.1.8 (Haar Measure). A Haar measure on a locally compact topo-
logical group G is a translation invariant measure such that every open set can be
covered by open sets with finite measure.

Lemma 17.1.9. Haar measure of any compact subset C of G is finite.

Proof. The whole group G is open, so there is a covering Uα of G by open sets each
of which has finite measure. Since C is compact, there is a finite subset of the Uα

that covers C. The measure of C is at most the sum of the measures of these finitely
many Uα, hence finite.

Remark 17.1.10. Usually one defined Haar measure to be a translation invariant
measure such that the measure of compact sets is finite. Because of local com-
pactness, this definition is equivalent to Definition 17.1.8. We take this alternative
viewpoint because Haar measure is constructed naturally on the topological groups
we will consider by defining the measure on each member of a basis of open sets for
the topology.

We now deduce what any such measure µ on G = K+ must be. Since O
is compact (Theorem 17.1.4), the measure of O is finite. Since µ is translation
invariant,

µn = µ(a + πnO)

is independent of a. Further,

a + πnO =
⋃

1≤j≤q

a + πnaj + πn+1O, (disjoint union)

where aj (for 1 ≤ j ≤ q) is a set of representatives of O/p. Hence

µn = q · µn+1.
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If we normalize µ by putting

µ(O) = 1

we have µ0 = 1, hence µ1 = q, and in general

µn = q−n.

Conversely, without the theory of Haar measure, we could define µ to be the
necessarily unique measure on K+ such that µ(O) = 1 that is translation invariant.
This would have to be the µ we just found above.

Everything so far in this section has depended not on the valuation | · | but only
on its equivalence class. The above considerations now single out one valuation in
the equivalence class as particularly important.

Definition 17.1.11 (Normalized valuation). Let K be a field equipped with a
discrete valuation | · | and residue class field with q < ∞ elements. We say that | · |
is normalized if

|π| =
1

q
,

where p = (π) is the maximal ideal of O.

Example 17.1.12. The normalized valuation on the p-adic numbers Qp is |u · pn| =
p−n, where u is a rational number whose numerator and denominator are coprime
to p.

Next suppose K = Qp(
√

p). Then the p-adic valuation on Qp extends uniquely

to one on K such that
∣

∣

√
p
∣

∣

2
= |p| = 1/p. Since π =

√
p for K, this valuation is

not normalized. (Note that the ord of π =
√

p is 1/2.) The normalized valuation is

v = | · |′ = | · |2. Note that | · |′ p = 1/p2, or ordv(p) = 2 instead of 1.

Finally suppose that K = Qp(
√

q) where x2 − q has not root mod p. Then the
residue class field degree is 2, and the normalized valuation must satisfy

∣

∣

√
q
∣

∣ = 1/p2.

The following proposition makes clear why this is the best choice of normaliza-
tion.

Theorem 17.1.13. Suppose further that K is complete with respect to the normal-
ized valuation | · | . Then

µ(a + bO) = |b| ,

where µ is the Haar measure on K+ normalized so that µ(O) = 1.

Proof. Since µ is translation invariant, µ(a + bO) = µ(bO). Write b = u · πn, where
u is a unit. Then since u · O = O, we have

µ(bO) = µ(u · πn · O) = µ(πn · u · O) = µ(πn · O) = q−n = |πn| = |b| .

Here we have µ(πn · O) = q−n by the discussion before Definition 17.1.11.
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We can express the result of the theorem in a more suggestive way. Let b ∈ K
with b 6= 0, and let µ be a Haar measure on K+ (not necessarily normalized as
in the theorem). Then we can define a new Haar measure µb on K+ by putting
µb(E) = µ(bE) for E ⊂ K+. But Haar measure is unique up to a multiplicative
constant and so µb(E) = µ(bE) = c · µ(E) for all measurable sets E, where the
factor c depends only on b. Putting E = O, shows that the theorem implies that c
is just |b|, when | · | is the normalized valuation.

Remark 17.1.14. The theory of locally compact topological groups leads to the
consideration of the dual (character) group of K+. It turns out that it is isomorphic
to K+. We do not need this fact for class field theory, so do not prove it here. For
a proof and applications see Tate’s thesis or Lang’s Algebraic Numbers, and for
generalizations see Weil’s Adeles and Algebraic Groups and Godement’s Bourbaki
seminars 171 and 176. The determination of the character group of K∗ is local class
field theory.

The set of nonzero elements of K is a group K∗ under multiplication. Multipli-
cation and inverses are continuous with respect to the topology induced on K∗ as
a subset of K, so K∗ is a topological group with this topology. We have

U1 ⊂ U ⊂ K∗

where U is the group of units of O ⊂ K and U1 is the group of 1-units, i.e., those
units ε ∈ U with |ε − 1| < 1, so

U1 = 1 + πO.

The set U is the open ball about 0 of radius 1, so is open, and because the metric
is nonarchimedean U is also closed. Likewise, U1 is both open and closed.

The quotient K∗/U = {πn · U : n ∈ Z} is isomorphic to the additive group Z+

of integers with the discrete topology, where the map is

πn · U 7→ n for n ∈ Z.

The quotient U/U1 is isomorphic to the multiplicative group F∗ of the nonzero
elements of the residue class field, where the finite gorup F∗ has the discrete topol-
ogy. Note that F∗ is cyclic of order q − 1, and Hensel’s lemma implies that K∗

contains a primitive (q− 1)th root of unity ζ. Thus K∗ has the following structure:

K∗ = {πnζmε : n ∈ Z, m ∈ Z/(q − 1)Z, ε ∈ U1} ∼= Z × Z/(q − 1)Z × U1.

(How to apply Hensel’s lemma: Let f(x) = xq−1 − 1 and let a ∈ O be such that a
mod p generates K∗. Then |f(a)| < 1 and |f ′(a)| = 1. By Hensel’s lemma there is
a ζ ∈ K such that f(ζ) = 0 and ζ ≡ a (mod p).)

Since U is compact and the cosets of U cover K, we see that K∗ is locally
compact.
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Lemma 17.1.15. The additive Haar measure µ on K+, when restricted to U1 gives
a measure on U1 that is also invariant under multiplication, so gives a Haar measure
on U1.

Proof. It suffices to show that

µ(1 + πnO) = µ(u · (1 + πnO)),

for any u ∈ U1 and n > 0. Write u = 1 + a1π + a2π
2 + · · · . We have

u · (1 + πnO) = (1 + a1π + a2π
2 + · · · ) · (1 + πnO)

= 1 + a1π + a2π
2 + · · · + πnO

= a1π + a2π
2 + · · · + (1 + πnO),

which is an additive translate of 1 + πnO, hence has the same measure.

Thus µ gives a Haar measure on K∗ by translating U1 around to cover K∗.

Lemma 17.1.16. The topological spaces K+ and K∗ are totally disconnected (the
only connected sets are points).

Proof. The proof is the same as that of Proposition 16.2.13. The point is that the
non-archimedean triangle inequality forces the complement an open disc to be open,
hence any set with at least two distinct elements “falls apart” into a disjoint union
of two disjoint open subsets.

Remark 17.1.17. Note that K∗ and K+ are locally isomorphic if K has character-
istic 0. We have the exponential map

a 7→ exp(a) =
∞

∑

n=0

an

n!

defined for all sufficiently small a with its inverse

log(a) =

∞
∑

n=1

(−1)n−1(a − 1)n

n
,

which is defined for all a sufficiently close to 1.
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Chapter 18

Normed Spaces and Tensor
Products

Much of this chapter is preparation for what we will do later when we will prove
that if K is complete with respect to a valuation (and locally compact) and L is
a finite extension of K, then there is a unique valuation on L that extends the
valuation on K. Also, if K is a number field, v = | · | is a valuation on K, Kv is
the completion of K with respect to v, and L is a finite extension of K, we’ll prove
that

Kv ⊗K L =
J

⊕

j=1

Lj ,

where the Lj are the completions of L with respect to the equivalence classes of
extensions of v to L. In particular, if L is a number field defined by a root of
f(x) ∈ Q[x], then

Qp ⊗Q L =
J

⊕

j=1

Lj ,

where the Lj correspond to the irreducible factors of the polynomial f(x) ∈ Qp[x]
(hence the extensions of | · |p correspond to irreducible factors of f(x) over Qp[x]).

In preparation for this clean view of the local nature of number fields, we will
prove that the norms on a finite-dimensional vector space over a complete field are
all equivalent. We will also explicitly construct tensor products of fields and deduce
some of their properties.

18.1 Normed Spaces

Definition 18.1.1 (Norm). Let K be a field with valuation | · | and let V be a
vector space over K. A real-valued function ‖ · ‖ on V is called a norm if

1. ‖v‖ > 0 for all nonzero v ∈ V (positivity).

137
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2. ‖v + w‖ ≤ ‖v‖ + ‖w‖ for all v, w ∈ V (triangle inequality).

3. ‖av‖ = |a| ‖v‖ for all a ∈ K and v ∈ V (homogeneity).

Note that setting ‖v‖ = 1 for all v 6= 0 does not define a norm unless the absolute
value on K is trivial, as 1 = ‖av‖ = |a| ‖v‖ = |a|. We assume for the rest of this
section that | · | is not trivial.

Definition 18.1.2 (Equivalent). Two norms ‖ · ‖1 and ‖ · ‖2 on the same vector
space V are equivalent if there exists positive real numbers c1 and c2 such that for
all v ∈ V

‖v‖1 ≤ c1 ‖v‖2 and ‖v‖2 ≤ c2 ‖v‖1 .

Lemma 18.1.3. Suppose that K is a field that is complete with respect to a valua-
tion | · | and that V is a finite dimensional K vector space. Continue to assume, as
mentioned above, that K is complete with respect to | · | . Then any two norms on
V are equivalent.

Remark 18.1.4. As we shall see soon (see Theorem 19.1.8), the lemma is usually
false if we do not assume that K is complete. For example, when K = Q and | · |p is
the p-adic valuation, and V is a number field, then there may be several extensions
of | · |p to inequivalent norms on V .

If two norms are equivalent then the corresponding topologies on V are equal,
since very open ball for ‖ · ‖1 is contained in an open ball for ‖ · ‖2, and conversely.
(The converse is also true, since, as we will show, all norms on V are equivalent.)

Proof. Let v1, . . . , vN be a basis for V . Define the max norm ‖ · ‖0 by

∥

∥

∥

∥

∥

N
∑

n=1

anvn

∥

∥

∥

∥

∥

0

= max {|an| : n = 1, . . . , N} .

It is enough to show that any norm ‖ · ‖ is equivalent to ‖ · ‖0. We have

∥

∥

∥

∥

∥

N
∑

n=1

anvn

∥

∥

∥

∥

∥

≤
N

∑

n=1

|an| ‖vn‖

≤
N

∑

n=1

max |an| ‖vn‖

= c1 ·
∥

∥

∥

∥

∥

N
∑

n=1

anvn

∥

∥

∥

∥

∥

0

,

where c1 =
∑N

n=1 ‖vn‖.
To finish the proof, we show that there is a c2 ∈ R such that for all v ∈ V ,

‖v‖0 ≤ c2 · ‖v‖ .
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We will only prove this in the case when K is not just merely complete with respect
to | · | but also locally compact. This will be the case of primary interest to us. For
a proof in the general case, see the original article by Cassels (page 53).

By what we have already shown, the function ‖v‖ is continuous in the ‖ · ‖0-
topology, so by local compactness it attains its lower bound δ on the unit circle
{v ∈ V : ‖v‖0 = 1}. (Why is the unit circle compact? With respect to ‖ · ‖0, the
topology on V is the same as that of a product of copies of K. If the valuation
is archimedean then K ∼= R or C with the standard topology and the unit circle
is compact. If the valuation is non-archimedean, then we saw (see Remark 17.1.7)
that if K is locally compact, then the valuation is discrete, in which case we showed
that the unit disc is compact, hence the unit circle is also compact since it is closed.)
Note that δ > 0 by part 1 of Definition 18.1.1. Also, by definition of ‖ · ‖0, for any
v ∈ V there exists a ∈ K such that ‖v‖0 = |a| (just take the max coefficient in
our basis). Thus we can write any v ∈ V as a · w where a ∈ K and w ∈ V with
‖w‖0 = 1. We then have

‖v‖0

‖v‖ =
‖aw‖0

‖aw‖ =
|a| ‖w‖0

|a| ‖w‖ =
1

‖w‖ ≤ 1

δ
.

Thus for all v we have
‖v‖0 ≤ c2 · ‖v‖ ,

where c2 = 1/δ, which proves the theorem.

18.2 Tensor Products

We need only a special case of the tensor product construction. Let A and B be
commutative rings containing a field K and suppose that B is of finite dimension N
over K, say, with basis

1 = w1, w2, . . . , wN .

Then B is determined up to isomorphism as a ring over K by the multiplication
table (ci,j,n) defined by

wi · wj =
N

∑

n=1

ci,j,n · wn.

We define a new ring C containing K whose elements are the set of all expressions

N
∑

n=1

anwn

where the wn have the same multiplication rule

wi · wj =
N

∑

n=1

ci,j,n · wn



140 CHAPTER 18. NORMED SPACES AND TENSOR PRODUCTS

as the wn.
There are injective ring homomorphisms

i : A ↪→ C, i(a) = aw1 (note that w1 = 1)

and

j : B ↪→ C, j

(

N
∑

n=1

cnwn

)

=
N

∑

n=1

cnwn.

Moreover C is defined, up to isomorphism, by A and B and is independent of the
particular choice of basis wn of B (i.e., a change of basis of B induces a canonical
isomorphism of the C defined by the first basis to the C defined by the second
basis). We write

C = A ⊗K B

since C is, in fact, a special case of the ring tensor product.
Let us now suppose, further, that A is a topological ring, i.e., has a topology

with respect to which addition and multiplication are continuous. Then the map

C → A ⊕ · · · ⊕ A,
N

∑

m=1

amwm 7→ (a1, . . . , aN )

defines a bijection between C and the product of N copies of A (considered as
sets). We give C the product topology. It is readily verified that this topology is
independent of the choice of basis w1, . . . , wN and that multiplication and addition
on C are continuous, so C is a topological ring. We call this topology on C the
tensor product topology.

Now drop our assumption that A and B have a topology, but suppose that A
and B are not merely rings but fields. Recall that a finite extension L/K of fields
is separable if the number of embeddings L ↪→ K that fix K equals the degree of L
over K, where K is an algebraic closure of K. The primitive element theorem from
Galois theory asserts that any such extension is generated by a single element, i.e.,
L = K(a) for some a ∈ L.

Lemma 18.2.1. Let A and B be fields containing the field K and suppose that B is
a separable extension of finite degree N = [B : K]. Then C = A ⊗K B is the direct
sum of a finite number of fields Kj, each containing an isomorphic image of A and
an isomorphic image of B.

Proof. By the primitive element theorem, we have B = K(b), where b is a root of
some separable irreducible polynomial f(x) ∈ K[x] of degree N . Then 1, b, . . . , bN−1

is a basis for B over K, so

A ⊗K B = A[b] ∼= A[x]/(f(x))

where 1, b, b2, . . . , bN−1 are linearly independent over A and b satisfies f(b) = 0.
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Although the polynomial f(x) is irreducible as an element of K[x], it need not
be irreducible in A[x]. Since A is a field, we have a factorization

f(x) =
J

∏

j=1

gj(x)

where gj(x) ∈ A[x] is irreducible. The gj(x) are distinct because f(x) is separable
(i.e., has distinct roots in any algebraic closure).

For each j, let bj ∈ A be a root of gj(x), where A is a fixed algebraic closure of
the field A. Let Kj = A(bj). Then the map

ϕj : A ⊗K B → Kj (18.2.1)

given by sending any polynomial h(b) in b (where h ∈ A[x]) to h(bj) is a ring
homomorphism, because the image of b satisfies the polynomial f(x), and A⊗K B ∼=
A[x]/(f(x)).

By the Chinese Remainder Theorem, the maps from (18.2.1) combine to define
a ring isomorphism

A ⊗K B ∼= A[x]/(f(x)) ∼=
J

⊕

j=1

A[x]/(gj(x)) ∼=
J

⊕

j=1

Kj .

Each Kj is of the form A[x]/(gj(x)), so contains an isomorphic image of A. It
thus remains to show that the ring homomorphisms

λj : B
b 7→1⊗b−−−−→ A ⊗K B

ϕj−→ Kj

are injections. Since B and Kj are both fields, λj is either the 0 map or injective.
However, λj is not the 0 map since λj(1) = 1 ∈ Kj .

Example 18.2.2. If A and B are finite extensions of Q, then A ⊗Q B is an algebra
of degree [A : Q] · [B : Q]. For example, suppose A is generated by a root of
x2 + 1 and B is generated by a root of x3 − 2. We can view A ⊗Q B as either
A[x]/(x3 − 2) or B[x]/(x2 + 1). The polynomial x2 + 1 is irreducible over Q, and if
it factored over the cubic field B, then there would be a root of x2 +1 in B, i.e., the
quadratic field A = Q(i) would be a subfield of the cubic field B = Q( 3

√
2), which

is impossible. Thus x2 + 1 is irreducible over B, so A ⊗Q B = A.B = Q(i, 3
√

2) is
a degree 6 extension of Q. Notice that A.B contains a copy A and a copy of B.
By the primitive element theorem the composite field A.B can be generated by the
root of a single polynomial. For example, the minimal polynomial of i + 3

√
2 is

x6 + 3x4 − 4x3 + 3x2 + 12x + 5, hence Q(i + 3
√

2) = A.B.

Example 18.2.3. The case A ∼= B is even more exciting. For example, suppose
A = B = Q(i). Using the Chinese Remainder Theorem we have that

Q(i) ⊗Q Q(i) ∼= Q(i)[x]/(x2 + 1) ∼= Q(i)[x]/((x − i)(x + i)) ∼= Q(i) ⊕ Q(i),
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since (x − i) and (x + i) are coprime. The last isomorphism sends a + bx, with
a, b ∈ Q(i), to (a + bi, a − bi). Since Q(i) ⊕ Q(i) has zero divisors, the tensor
product Q(i) ⊗Q Q(i) must also have zero divisors. For example, (1, 0) and (0, 1)
is a zero divisor pair on the right hand side, and we can trace back to the elements
of the tensor product that they define. First, by solving the system

a + bi = 1 and a − bi = 0

we see that (1, 0) corresponds to a = 1/2 and b = −i/2, i.e., to the element

1

2
− i

2
x ∈ Q(i)[x]/(x2 + 1).

This element in turn corresponds to

1

2
⊗ 1 − i

2
⊗ i ∈ Q(i) ⊗Q Q(i).

Similarly the other element (0, 1) corresponds to

1

2
⊗ 1 +

i

2
⊗ i ∈ Q(i) ⊗Q Q(i).

As a double check, observe that

(

1

2
⊗ 1 − i

2
⊗ i

)

·
(

1

2
⊗ 1 +

i

2
⊗ i

)

=
1

4
⊗ 1 +

i

4
⊗ i − i

4
⊗ i − i2

4
⊗ i2

=
1

4
⊗ 1 − 1

4
⊗ 1 = 0 ∈ Q(i) ⊗Q Q(i).

Clearing the denominator of 2 and writing 1⊗1 = 1, we have (1−i⊗i)(1+i⊗i) = 0,
so i⊗ i is a root of the polynomimal x2 − 1, and i⊗ i is not ±1, so x2 − 1 has more
than 2 roots.

In general, to understand A ⊗K B explicitly is the same as factoring either the
defining polynomial of B over the field A, or factoring the defining polynomial of A
over B.

Corollary 18.2.4. Let a ∈ B be any element and let f(x) ∈ K[x] be the char-
acteristic polynomials of a over K and let gj(x) ∈ A[x] (for 1 ≤ j ≤ J) be the
characteristic polynomials of the images of a under B → A ⊗K B → Kj over A,
respectively. Then

f(x) =
J

∏

j=1

gj(X). (18.2.2)

Proof. We show that both sides of (18.2.2) are the characteristic polynomial T (x) of
the image of a in A ⊗K B over A. That f(x) = T (x) follows at once by computing
the characteristic polynomial in terms of a basis w1, . . . , wN of A ⊗K B, where
w1, . . . , wN is a basis for B over K (this is because the matrix of left multiplication



18.2. TENSOR PRODUCTS 143

by b on A⊗K B is exactly the same as the matrix of left multiplication on B, so the
characteristic polynomial doesn’t change). To see that T (X) =

∏

gj(X), compute
the action of the image of a in A ⊗K B with respect to a basis of

A ⊗K B ∼=
J

⊕

j=1

Kj (18.2.3)

composed of basis of the individual extensions Kj of A. The resulting matrix will
be a block direct sum of submatrices, each of whose characteristic polynomials is
one of the gj(X). Taking the product gives the claimed identity (18.2.2).

Corollary 18.2.5. For a ∈ B we have

NormB/K(a) =
J

∏

j=1

NormKj/A(a),

and

TrB/K(a) =
J

∑

j=1

TrKj/A(a),

Proof. This follows from Corollary 18.2.4. First, the norm is ± the constant term of
the characteristic polynomial, and the constant term of the product of polynomials is
the product of the constant terms (and one sees that the sign matches up correctly).
Second, the trace is minus the second coefficient of the characteristic polynomial,
and second coefficients add when one multiplies polynomials:

(xn+an−1x
n−1+· · · )·(xm+am−1x

m−1+· · · ) = xn+m+xn+m−1(am−1+an−1)+· · · .

One could also see both the statements by considering a matrix of left multiplication
by a first with respect to the basis of wn and second with respect to the basis coming
from the left side of (18.2.3).
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Chapter 19

Extensions and Normalizations
of Valuations

19.1 Extensions of Valuations

In this section we continue to tacitly assume that all valuations are nontrivial. We
do not assume all our valuations satisfy the triangle

Suppose K ⊂ L is a finite extension of fields, and that | · | and ‖ · ‖ are valuations
on K and L, respectively.

Definition 19.1.1 (Extends). We say that ‖ · ‖ extends | · | if |a| = ‖a‖ for all
a ∈ K.

Theorem 19.1.2. Suppose that K is a field that is complete with respect to | · | and
that L is a finite extension of K of degree N = [L : K]. Then there is precisely one
extension of | · | to K, namely

‖a‖ =
∣

∣NormL/K(a)
∣

∣

1/N
, (19.1.1)

where the N th root is the non-negative real N th root of the nonnegative real number
∣

∣NormL/K(a)
∣

∣.

Proof. We may assume that | · | is normalized so as to satisfy the triangle inequality.
Otherwise, normalize | · | so that it does, prove the theorem for the normalized
valuation | · |c, then raise both sides of (19.1.1) to the power 1/c. In the uniqueness
proof, by the same argument we may assume that ‖ · ‖ also satisfies the triangle
inequality.

Uniqueness. View L as a finite-dimensional vector space over K. Then ‖ · ‖ is a
norm in the sense defined earlier (Definition 18.1.1). Hence any two extensions ‖ · ‖1

and ‖ · ‖2 of | · | are equivalent as norms, so induce the same topology on K. But as
we have seen (Proposition 16.1.4), two valuations which induce the same topology
are equivalent valuations, i.e., ‖ · ‖1 = ‖ · ‖c

2, for some positive real c. Finally c = 1
since ‖a‖1 = |a| = ‖a‖2 for all a ∈ K.
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Existence. We do not give a proof of existence in the general case. Instead we give
a proof, which was suggested by Dr. Geyer at the conference out of which [Cas67]
arose. It is valid when K is locally compact, which is the only case we will use later.

We see at once that the function defined in (19.1.1) satisfies the condition (i)
that ‖a‖ ≥ 0 with equality only for a = 0, and (ii) ‖ab‖ = ‖a‖ · ‖b‖ for all a, b ∈ L.
The difficult part of the proof is to show that there is a constant C > 0 such that

‖a‖ ≤ 1 =⇒ ‖1 + a‖ ≤ C.

Note that we do not know (and will not show) that ‖ · ‖ as defined by (19.1.1) is a
norm as in Definition 18.1.1, since showing that ‖ · ‖ is a norm would entail showing
that it satisfies the triangle inequality, which is not obvious.

Choose a basis b1, . . . , bN for L over K. Let ‖ · ‖0 be the max norm on L, so for

a =
∑N

i=1 cibi with ci ∈ K we have

‖a‖0 =

∥

∥

∥

∥

∥

N
∑

i=1

cibi

∥

∥

∥

∥

∥

0

= max{|ci| : i = 1, . . . , N}.

(Note: in Cassels’s original article he let ‖ · ‖0 be any norm, but we don’t because
the rest of the proof does not work, since we can’t use homogeneity as he claims
to do. This is because it need not be possible to find, for any nonzero a ∈ L some
element c ∈ K such that ‖ac‖0 = 1. This would fail, e.g., if ‖a‖0 6= |c| for any
c ∈ K.) The rest of the argument is very similar to our proof from Lemma 18.1.3
of uniqueness of norms on vector spaces over complete fields.

With respect to the ‖ · ‖0-topology, L has the product topology as a product of
copies of K. The function a 7→ ‖a‖ is a composition of continuous functions on L
with respect to this topology (e.g., NormL/K is the determinant, hence polynomial),
hence ‖ · ‖ defines nonzero continuous function on the compact set

S = {a ∈ L : ‖a‖0 = 1}.

By compactness, there are real numbers δ, ∆ ∈ R>0 such that

0 < δ ≤ ‖a‖ ≤ ∆ for all a ∈ S.

For any nonzero a ∈ L there exists c ∈ K such that ‖a‖0 = |c|; to see this take c to

be a ci in the expression a =
∑N

i=1 cibi with |ci| ≥ |cj | for any j. Hence ‖a/c‖0 = 1,
so a/c ∈ S and

0 ≤ δ ≤ ‖a/c‖
‖a/c‖0

≤ ∆.

Then by homogeneity

0 ≤ δ ≤ ‖a‖
‖a‖0

≤ ∆.
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Suppose now that ‖a‖ ≤ 1. Then ‖a‖0 ≤ δ−1, so

‖1 + a‖ ≤ ∆ · ‖1 + a‖0

≤ ∆ · (‖1‖0 + ‖a‖0)

≤ ∆ ·
(

‖1‖0 + δ−1
)

= C (say),

as required.

Example 19.1.3. Consider the extension C of R equipped with the archimedean
valuation. The unique extension is the ordinary absolute value on C:

‖x + iy‖ =
(

x2 + y2
)1/2

.

Example 19.1.4. Consider the extension Q2(
√

2) of Q2 equipped with the 2-adic
absolute value. Since x2 − 2 is irreducible over Q2 we can do some computations
by working in the subfield Q(

√
2) of Q2(

√
2).

> K<a> := NumberField(x^2-2);

> K;

Number Field with defining polynomial x^2 - 2 over the Rational Field

> function norm(x) return Sqrt(2^(-Valuation(Norm(x),2))); end function;

> norm(1+a);

1.0000000000000000000000000000

> norm(1+a+1);

0.70710678118654752440084436209

> z := 3+2*a;

> norm(z);

1.0000000000000000000000000000

> norm(z+1);

0.353553390593273762200422181049

Remark 19.1.5. Geyer’s existence proof gives (19.1.1). But it is perhaps worth
noting that in any case (19.1.1) is a consequence of unique existence, as follows.
Suppose L/K is as above. Suppose M is a finite Galois extension of K that con-
tains L. Then by assumption there is a unique extension of | · | to M , which we
shall also denote by ‖ · ‖. If σ ∈ Gal(M/K), then

‖a‖σ := ‖σ(a)‖

is also an extension of | · | to M , so ‖ · ‖σ = ‖ · ‖, i.e.,

‖σ(a)‖ = ‖a‖ for all a ∈ M.

But now
NormL/K(a) = σ1(a) · σ2(a) · · ·σN (a)
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for a ∈ K, where σ1, . . . , σN ∈ Gal(M/K) extend the embeddings of L into M .
Hence

∣

∣NormL/K(a)
∣

∣ =
∥

∥NormL/K(a)
∥

∥

=
∏

1≤n≤N

‖σn(a)‖

= ‖a‖N ,

as required.

Corollary 19.1.6. Let w1, . . . , wN be a basis for L over K. Then there are positive
constants c1 and c2 such that

c1 ≤

∥

∥

∥

∥

∥

N
∑

n=1

bnwn

∥

∥

∥

∥

∥

max{|bn| : n = 1, . . . , N} ≤ c2

for any b1, . . . , bN ∈ K not all 0.

Proof. For
∣

∣

∣

∑N
n=1 bnwn

∣

∣

∣
and max |bn| are two norms on L considered as a vector

space over K.

I don’t believe this proof, which I copied from Cassels’s article. My problem
with it is that the proof of Theorem 19.1.2 does not give that C ≤ 2, i.e., that the
triangle inequality holds for ‖ · ‖. By changing the basis for L/K one can make any
nonzero vector a ∈ L have ‖a‖0 = 1, so if we choose a such that |a| is very large,
then the ∆ in the proof will also be very large. One way to fix the corollary is to
only claim that there are positive constants c1, c2, c3, c4 such that

c1 ≤

∥

∥

∥

∥

∥

N
∑

n=1

bnwn

∥

∥

∥

∥

∥

c3

max{|bn|c4 : n = 1, . . . , N} ≤ c2.

Then choose c3, c4 such that ‖ · ‖c3 and | · |c4 satisfies the triangle inequality, and
prove the modified corollary using the proof suggested by Cassels.

Corollary 19.1.7. A finite extension of a completely valued field K is complete
with respect to the extended valuation.

Proof. By the proceeding corollary it has the topology of a finite-dimensional vector
space over K. (The problem with the proof of the previous corollary is not an issue,
because we can replace the extended valuation by an inequivalent one that satisfies
the triangle inequality and induces the same topology.)

When K is no longer complete under | · | the position is more complicated:
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Theorem 19.1.8. Let L be a separable extension of K of finite degree N = [L : K].
Then there are at most N extensions of a valuation | · | on K to L, say ‖ · ‖j, for
1 ≤ j ≤ J . Let Kv be the completion of K with respect to | · |, and for each j let Lj

be the completion of L with respect to ‖ · ‖j. Then

Kv ⊗K L ∼=
⊕

1≤j≤J

Lj (19.1.2)

algebraically and topologically, where the right hand side is given the product topol-
ogy.

Proof. We already know (Lemma 18.2.1) that Kv ⊗K L is of the shape (19.1.2),
where the Lj are finite extensions of Kv. Hence there is a unique extension | · |∗j
of | · | to the Lj , and by Corollary 19.1.7 the Lj are complete with respect to the
extended valuation. Further, the ring homomorphisms

λj : L → Kv ⊗K L → Lj

are injections. Hence we get an extension ‖ · ‖j of | · | to L by putting

‖b‖j = |λj(b)|∗j .

Further, L ∼= λj(L) is dense in Lj with respect to ‖ · ‖j because L = K ⊗K L is
dense in Kv ⊗K L (since K is dense in Kv). Hence Lj is exactly the completion of
L.

It remains to show that the ‖ · ‖j are distinct and that they are the only exten-
sions of | · | to L.

Suppose ‖ · ‖ is any valuation of L that extends | · |. Then ‖ · ‖ extends by
continuity to a real-valued function on Kv ⊗K L, which we also denote by ‖ · ‖.
(We are again using that L is dense in Kv ⊗K L.) By continuity we have for all
a, b ∈ Kv ⊗K L,

‖ab‖ = ‖a‖ · ‖b‖
and if C is the constant in axiom (iii) for L and ‖ · ‖, then

‖a‖ ≤ 1 =⇒ ‖1 + a‖ ≤ C.

(In Cassels, he inexplicable assume that C = 1 at this point in the proof.)
We consider the restriction of ‖ · ‖ to one of the Lj . If ‖a‖ 6= 0 for some a ∈ Lj ,

then ‖a‖ = ‖b‖ ·
∥

∥ab−1
∥

∥ for every b 6= 0 in Lj so ‖b‖ 6= 0. Hence either ‖ · ‖ is
identically 0 on Lj or it induces a valuation on Lj .

Further, ‖ · ‖ cannot induce a valuation on two of the Lj . For

(a1, 0, . . . , 0) · (0, a2, 0, . . . , 0) = (0, 0, 0, . . . , 0),

so for any a1 ∈ L1, a2 ∈ L2,
‖a1‖ · ‖a2‖ = 0.
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Hence ‖ · ‖ induces a valuation in precisely one of the Lj , and it extends the given
valuation | · | of Kv. Hence ‖ · ‖ = ‖ · ‖j for precisely one j.

It remains only to show that (19.1.2) is a topological homomorphism. For

(b1, . . . , bJ) ∈ L1 ⊕ · · · ⊕ LJ

put
‖(b1, . . . , bJ)‖0 = max

1≤j≤J
‖bj‖j .

Then ‖ · ‖0 is a norm on the right hand side of (19.1.2), considered as a vector space
over Kv and it induces the product topology. On the other hand, any two norms
are equivalent, since Kv is complete, so ‖ · ‖0 induces the tensor product topology
on the left hand side of (19.1.2).

Corollary 19.1.9. Suppose L = K(a), and let f(x) ∈ K[x] be the minimal polyno-
mial of a. Suppose that

f(x) =
∏

1≤j≤J

gj(x)

in Kv[x], where the gj are irreducible. Then Lj = Kv(bj), where bj is a root of gj.

19.2 Extensions of Normalized Valuations

Let K be a complete field with valuation | · |. We consider the following three cases:

(1) | · | is discrete non-archimedean and the residue class field is finite.

(2i) The completion of K with respect to | · | is R.

(2ii) The completion of K with respect to | · | is C.

(Alternatively, these cases can be subsumed by the hypothesis that the completion
of K is locally compact.)

In case (1) we defined the normalized valuation to be the one such that if Haar
measure of the ring of integers O is 1, then µ(aO) = |a| (see Definition 17.1.11). In
case (2i) we say that | · | is normalized if it is the ordinary absolute value, and in
(2ii) if it is the square of the ordinary absolute value:

|x + iy| = x2 + y2 (normalized).

In every case, for every a ∈ K, the map

a : x 7→ ax

on K+ multiplies any choice of Haar measure by |a|, and this characterizes the
normalized valuations among equivalent ones.

We have already verified the above characterization for non-archimedean valu-
ations, and it is clear for the ordinary absolute value on R, so it remains to verify
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it for C. The additive group C+ is topologically isomorphic to R+ ⊕ R+, so a
choice of Haar measure of C+ is the usual area measure on the Euclidean plane.
Multiplication by x + iy ∈ C is the same as rotation followed by scaling by a factor
of

√

x2 + y2, so if we rescale a region by a factor of x + iy, the area of the region
changes by a factor of the square of

√

x2 + y2. This explains why the normalized
valuation on C is the square of the usual absolute value. Note that the normalized
valuation on C does not satisfy the triangle inequality:

|1 + (1 + i)| = |2 + i| = 22 + 12 = 5 6≤ 3 = 12 + (12 + 12) = |1| + |1 + i| .

The constant C in axiom (3) of a valuation for the ordinary absolute value on C is
2, so the constant for the normalized valuation | · | is C ≤ 4:

|x + iy| ≤ 1 =⇒ |x + iy + 1| ≤ 4.

Note that x2 + y2 ≤ 1 implies

(x + 1)2 + y2 = x2 + 2x + 1 + y2 ≤ 1 + 2x + 1 ≤ 4

since x ≤ 1.

Lemma 19.2.1. Suppose K is a field that is complete with respect to a normalized
valuation | · | and let L be a finite extension of K of degree N = [L : K]. Then the
normalized valuation ‖ · ‖ on L which is equivalent to the unique extension of | · |
to L is given by the formula

‖a‖ =
∣

∣NormL/K(a)
∣

∣ all a ∈ L. (19.2.1)

Proof. Let ‖ · ‖ be the normalized valuation on L that extends | · |. Our goal is to
identify ‖ · ‖, and in particular to show that it is given by (19.2.1).

By the preceding section there is a positive real number c such that for all a ∈ L
we have

‖a‖ =
∣

∣NormL/K(a)
∣

∣

c
.

Thus all we have to do is prove that c = 1. In case 2 the only nontrivial situation
is L = C and K = R, in which case

∣

∣NormC/R(x + iy)
∣

∣ =
∣

∣x2 + y2
∣

∣, which is the
normalized valuation on C defined above.

One can argue in a unified way in all cases as follows. Let w1, . . . , wN be a basis
for L/K. Then the map

ϕ : L+ →
N

⊕

n=1

K+,
∑

anwn 7→ (a1, . . . , aN )

is an isomorphism between the additive group L+ and the direct sum ⊕N
n=1K

+,
and this is a homeomorphism if the right hand side is given the product topology.
In particular, the Haar measures on L+ and on ⊕N

n=1K
+ are the same up to a

multiplicative constant in Q∗.
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Let b ∈ K. Then the left-multiplication-by-b map

b :
∑

anwn 7→
∑

banwn

on L+ is the same as the map

(a1, . . . , aN ) 7→ (ba1, . . . , baN )

on ⊕N
n=1K

+, so it multiplies the Haar measure by |b|N , since | · | on K is assumed
normalized (the measure of each factor is multiplied by |b|, so the measure on the
product is multiplied by |b|N ). Since ‖ · ‖ is assumed normalized, so multiplication
by b rescales by ‖b‖, we have

‖b‖ = |b|N .

But b ∈ K, so NormL/K(b) = bN . Since | · | is nontrivial and for a ∈ K we have

‖a‖ = |a|N =
∣

∣aN
∣

∣ =
∣

∣NormL/K(a)
∣

∣ ,

so we must have c = 1 in (19.2.1), as claimed.

In the case when K need not be complete with respect to the valuation | · | on K,
we have the following theorem.

Theorem 19.2.2. Suppose | · | is a (nontrivial as always) normalized valuation of
a field K and let L be a finite extension of K. Then for any a ∈ L,

∏

1≤j≤J

‖a‖j =
∣

∣NormL/K(a)
∣

∣

where the ‖ · ‖j are the normalized valuations equivalent to the extensions of | · |
to K.

Proof. Let Kv denote the completion of K with respect to | · |. Write

Kv ⊗K L =
⊕

1≤j≤J

Lj .

Then Theorem 19.2.2 asserts that

NormL/K(a) =
∏

1≤j≤J

NormLj/Kv
(a). (19.2.2)

By Theorem 19.1.8, the ‖ · ‖j are exactly the normalizations of the extensions of | · |
to the Lj (i.e., the Lj are in bijection with the extensions of valuations, so there are
no other valuations missed). By Lemma 19.1.1, the normalized valuation ‖ · ‖j on

Lj is |a| =
∣

∣NormLJ/Kv
(a)

∣

∣. The theorem now follows by taking absolute values of
both sides of (19.2.2).

What next?! We’ll building up to giving a new proof of finiteness of the class
group that uses that the class group naturally has the discrete topology and is the
continuous image of a compact group.



Chapter 20

Global Fields and Adeles

20.1 Global Fields

Definition 20.1.1 (Global Field). A global field is a number field or a finite
separable extension of F(t), where F is a finite field, and t is transcendental over F.

Below we will focus attention on number fields leaving the function field case to
the reader.

The following lemma essentially says that the denominator of an element of a
global field is only “nontrivial” at a finite number of valuations.

Lemma 20.1.2. Let a ∈ K be a nonzero element of a global field K. Then there
are only finitely many inequivalent valuations | · | of K for which

|a| > 1.

Proof. If K = Q or F(t) then the lemma follows by Ostrowski’s classification of all
the valuations on K (see Theorem 15.3.2). For example, when a = n

d ∈ Q, with
n, d ∈ Z, then the valuations where we could have |a| > 1 are the archimedean one,
or the p-adic valuations | · |p for which p | d.

Suppose now that K is a finite extension of Q, so a satisfies a monic polynomial

an + cn−1a
n−1 + · · · + c0 = 0,

for some n and c0, . . . , cn−1 ∈ Q. If | · | is a non-archimedean valuation on K, we
have

|a|n =
∣

∣−(cn−1a
n−1 + · · · + c0)

∣

∣

≤ max(1, |a|n−1) · max(|c0| , . . . , |cn−1|).

Dividing each side by |a|n−1, we have that

|a| ≤ max(|c0| , . . . , |cn−1|),

153
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so in all cases we have

|a| ≤ max(1, |c0| , . . . , |cn−1|)1/(n−1). (20.1.1)

We know the lemma for Q, so there are only finitely many valuations | · | on Q such
that the right hand side of (20.1.1) is bigger than 1. Since each valuation of Q
has finitely many extensions to K, and there are only finitely many archimedean
valuations, it follows that there are only finitely many valuations on K such that
|a| > 1.

Any valuation on a global field is either archimedean, or discrete non-archimedean
with finite residue class field, since this is true of Q and F(t) and is a property pre-
served by extending a valuation to a finite extension of the base field. Hence it
makes sense to talk of normalized valuations. Recall that the normalized p-adic
valuation on Q is |x|p = p− ordp(x), and if v is a valuation on a number field K
equivalent to an extension of | · |p, then the normalization of v is the composite of
the sequence of maps

K ↪→ Kv
Norm−−−→ Qp

| · |p−−→ R,

where Kv is the completion of K at v.

Example 20.1.3. Let K = Q(
√

2), and let p = 2. Because
√

2 6∈ Q2, there is exactly
one extension of | · |2 to K, and it sends a = 1/

√
2 to

∣

∣

∣
NormQ2(

√
2)/Q2

(1/
√

2)
∣

∣

∣

1/2

2
=

√
2.

Thus the normalized valuation of a is 2.
There are two extensions of | · |7 to Q(

√
2), since Q(

√
2) ⊗Q Q7

∼= Q7 ⊕ Q7, as
x2 − 2 = (x − 3)(x − 4) (mod 7). The image of

√
2 under each embedding into Q7

is a unit in Z7, so the normalized valuation of a = 1/
√

2 is, in both cases, equal
to 1. More generally, for any valuation of K of characteristic an odd prime p, the
normalized valuation of a is 1.

Since K = Q(
√

2) ↪→ R in two ways, there are exactly two normalized archimedean
valuations on K, and both of their values on a equal 1/

√
2. Notice that the product

of the absolute values of a with respect to all normalized valuations is

2 · 1√
2
· 1√

2
· 1 · 1 · 1 · · · = 1.

This “product formula” holds in much more generality, as we will now see.

Theorem 20.1.4 (Product Formula). Let a ∈ K be a nonzero element of a
global field K. Let | · |v run through the normalized valuations of K. Then |a|v = 1
for almost all v, and

∏

all v

|a|v = 1 (the product formula).
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We will later give a more conceptual proof of this using Haar measure (see
Remark 20.3.9).

Proof. By Lemma 20.1.2, we have |a|v ≤ 1 for almost all v. Likewise, 1/ |a|v =
|1/a|v ≤ 1 for almost all v, so |a|v = 1 for almost all v.

Let w run through all normalized valuations of Q (or of F(t)), and write v | w
if the restriction of v to Q is equivalent to w. Then by Theorem 19.2.2,

∏

v

|a|v =
∏

w





∏

v|w
|a|v



 =
∏

w

∣

∣NormK/Q(a)
∣

∣

w
,

so it suffices to prove the theorem for K = Q.

By multiplicativity of valuations, if the theorem is true for b and c then it is
true for the product bc and quotient b/c (when c 6= 0). The theorem is clearly true
for −1, which has valuation 1 at all valuations. Thus to prove the theorem for Q
it suffices to prove it when a = p is a prime number. Then we have |p|∞ = p,
|p|p = 1/p, and for primes q 6= p that |p|q = 1. Thus

∏

v

|p|v = p · 1

p
· 1 · 1 · 1 · · · = 1,

as claimed.

If v is a valuation on a field K, recall that we let Kv denote the completion of
K with respect to v. Also when v is non-archimedean, let

Ov = OK,v = {x ∈ Kv : |x| ≤ 1}

be the ring of integers of the completion.

Definition 20.1.5 (Almost All). We say a condition holds for almost all elements
of a set if it holds for all but finitely many elements.

We will use the following lemma later (see Lemma 20.3.3) to prove that formation
of the adeles of a global field is compatible with base change.

Lemma 20.1.6. Let ω1, . . . , ωn be a basis for L/K, where L is a finite separable
extension of the global field K of degree n. Then for almost all normalized non-
archimedean valuations v on K we have

ω1Ov ⊕ · · · ⊕ ωnOv = Ow1 ⊕ · · · ⊕ Owg ⊂ Kv ⊗K L, (20.1.2)

where w1, . . . , wg are the extensions of v to L. Here we have identified a ∈ L with
its canonical image in Kv ⊗K L, and the direct sum on the left is the sum taken
inside the tensor product (so directness means that the intersections are trivial).
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Proof. The proof proceeds in two steps. First we deduce easily from Lemma 20.1.2
that for almost all v the left hand side of (20.1.2) is contained in the right hand
side. Then we use a trick involving discriminants to show the opposite inclusion for
all but finitely many primes.

Since Ov ⊂ Owi
for all i, the left hand side of (20.1.2) is contained in the right

hand side if |ωi|wj
≤ 1 for 1 ≤ i ≤ n and 1 ≤ j ≤ g. Thus by Lemma 20.1.2, for all

but finitely many v the left hand side of (20.1.2) is contained in the right hand side.
We have just eliminated the finitely many primes corresponding to “denominators”
of some ωi, and now only consider v such that ω1, . . . , ωn ∈ Ow for all w | v.

For any elements a1, . . . , an ∈ Kv ⊗K L, consider the discriminant

D(a1, . . . , an) = Det(Tr(aiaj)) ∈ Kv,

where the trace is induced from the L/K trace. Since each ωi is in each Ow, for
w | v, the traces lie in Ov, so

d = D(ω1, . . . , ωn) ∈ Ov.

Also note that d ∈ K since each ωi is in L. Now suppose that

α =
n

∑

i=1

aiωi ∈ Ow1 ⊕ · · · ⊕ Owg ,

with ai ∈ Kv. Then by properties of determinants for any m with 1 ≤ m ≤ n, we
have

D(ω1, . . . , ωm−1, α, ωm+1, . . . , ωn) = a2
mD(ω1, . . . , ωn). (20.1.3)

The left hand side of (20.1.3) is in Ov, so the right hand side is well, i.e.,

a2
m · d ∈ Ov, (for m = 1, . . . , n),

where d ∈ K. Since ω1, . . . , ωn are a basis for L over K and the trace pairing is
nondegenerate, we have d 6= 0, so by Theorem 20.1.4 we have |d|v = 1 for all but
finitely many v. Then for all but finitely many v we have that a2

m ∈ Ov. For these
v, that a2

m ∈ Ov implies am ∈ Ov since am ∈ Kv, i.e., α is in the left hand side of
(20.1.2).

Example 20.1.7. Let K = Q and L = Q(
√

2). Let ω1 = 1/3 and ω2 = 2
√

2. In the
first stage of the above proof we would eliminate | · |3 because ω2 is not integral at
3. The discriminant is

d = D

(

1

3
, 2
√

2

)

= Det

(

2
9 0
0 16

)

=
32

9
.

As explained in the second part of the proof, as long as v 6= 2, 3, we have equality
of the left and right hand sides in (20.1.2).
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20.2 Restricted Topological Products

In this section we describe a topological tool, which we need in order to define adeles
(see Definition 20.3.1).

Definition 20.2.1 (Restricted Topological Products). Let Xλ, for λ ∈ Λ, be
a family of topological spaces, and for almost all λ let Yλ ⊂ Xλ be an open subset
of Xλ. Consider the space X whose elements are sequences x = {xλ}λ∈Λ, where
xλ ∈ Xλ for every λ, and xλ ∈ Yλ for almost all λ. We give X a topology by taking
as a basis of open sets the sets

∏

Uλ, where Uλ ⊂ Xλ is open for all λ, and Uλ = Yλ

for almost all λ. We call X with this topology the restricted topological product of
the Xλ with respect to the Yλ.

Corollary 20.2.2. Let S be a finite subset of Λ, and let XS be the set of x ∈ X
with xλ ∈ Yλ for all λ 6∈ S, i.e.,

XS =
∏

λ∈S

Xλ ×
∏

λ6∈S

Yλ ⊂ X.

Then XS is an open subset of X, and the topology induced on XS as a subset of X
is the same as the product topology.

The restricted topological product depends on the totality of the Yλ, but not on
the individual Yλ:

Lemma 20.2.3. Let Y ′
λ ⊂ Xλ be open subsets, and suppose that Yλ = Y ′

λ for
almost all λ. Then the restricted topological product of the Xλ with respect to the
Y ′

λ is canonically isomorphic to the restricted topological product with respect to the
Yλ.

Lemma 20.2.4. Suppose that the Xλ are locally compact and that the Yλ are com-
pact. Then the restricted topological product X of the Xλ is locally compact.

Proof. For any finite subset S of Λ, the open subset XS ⊂ X is locally compact,
because by Lemma 20.2.2 it is a product of finitely many locally compact sets with
an infinite product of compact sets. (Here we are using Tychonoff’s theorem from
topology, which asserts that an arbitrary product of compact topological spaces is
compact (see Munkres’s Topology, a first course, chapter 5).) Since X = ∪SXS ,
and the XS are open in X, the result follows.

The following measure will be extremely important in deducing topological prop-
erties of the ideles, which will be used in proving finiteness of class groups. See, e.g.,
the proof of Lemma 20.4.1, which is a key input to the proof of strong approximation
(Theorem 20.4.4).
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Definition 20.2.5 (Product Measure). For all λ ∈ Λ, suppose µλ is a measure
on Xλ with µλ(Yλ) = 1 when Yλ is defined. We define the product measure µ on X
to be that for which a basis of measurable sets is

∏

λ

Mλ

where each Mλ ⊂ Xλ has finite µλ-measure and Mλ = Yλ for almost all λ, and
where

µ

(

∏

λ

Mλ

)

=
∏

λ

µλ(Mλ).

20.3 The Adele Ring

Let K be a global field. For each normalization | · |v of K, let Kv denote the
completion of K. If | · |v is non-archimedean, let Ov denote the ring of integers of
Kv.

Definition 20.3.1 (Adele Ring). The adele ring AK of K is the topological
ring whose underlying topological space is the restricted topological product of
the Kv with respect to the Ov, and where addition and multiplication are defined
componentwise:

(xy)v = xvyv (x + y)v = xv + yv for x,y ∈ AK . (20.3.1)

It is readily verified that (i) this definition makes sense, i.e., if x,y ∈ AK ,
then xy and x + y, whose components are given by (20.3.1), are also in AK , and
(ii) that addition and multiplication are continuous in the AK-topology, so AK

is a topological ring, as asserted. Also, Lemma 20.2.4 implies that AK is locally
compact because the Kv are locally compact (Corollary 17.1.6), and the Ov are
compact (Theorem 17.1.4).

There is a natural continuous ring inclusion

K ↪→ AK (20.3.2)

that sends x ∈ K to the adele every one of whose components is x. This is an adele
because x ∈ Ov for almost all v, by Lemma 20.1.2. The map is injective because
each map K → Kv is an inclusion.

Definition 20.3.2 (Principal Adeles). The image of (20.3.2) is the ring of prin-
cipal adeles.

It will cause no trouble to identify K with the principal adeles, so we shall speak
of K as a subring of AK .

Formation of the adeles is compatibility with base change, in the following sense.
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Lemma 20.3.3. Suppose L is a finite (separable) extension of the global field K.
Then

AK ⊗K L ∼= AL (20.3.3)

both algebraically and topologically. Under this isomorphism,

L ∼= K ⊗K L ⊂ AK ⊗K L

maps isomorphically onto L ⊂ AL.

Proof. Let ω1, . . . , ωn be a basis for L/K and let v run through the normalized
valuations on K. The left hand side of (20.3.3), with the tensor product topology,
is the restricted product of the tensor products

Kv ⊗K L ∼= Kv · ω1 ⊕ · · · ⊕ Kv · ωn

with respect to the integers

Ov · ω1 ⊕ · · · ⊕ Ov · ωn. (20.3.4)

(An element of the left hand side is a finite linear combination
∑

xi ⊗ ai of adeles
xi ∈ AK and coefficients ai ∈ L, and there is a natural isomorphism from the ring
of such formal sums to the restricted product of the Kv ⊗K L.)

We proved before (Theorem 19.1.8) that

Kv ⊗K L ∼= Lw1 ⊕ · · · ⊕ Lwg ,

where w1, . . . , wg are the normalizations of the extensions of v to L. Furthermore, as
we proved using discriminants (see Lemma 20.1.6), the above identification identifies
(20.3.4) with

OLw1
⊕ · · · ⊕ OLwg

,

for almost all v. Thus the left hand side of (20.3.3) is the restricted product of
the Lw1 ⊕ · · · ⊕Lwg with respect to the OLw1

⊕ · · · ⊕ OLwg
. But this is canonically

isomorphic to the restricted product of all completions Lw with respect to Ow, which
is the right hand side of (20.3.3). This establishes an isomorphism between the two
sides of (20.3.3) as topological spaces. The map is also a ring homomorphism, so
the two sides are algebraically isomorphic, as claimed.

Corollary 20.3.4. Let A+
K denote the topological group obtained from the additive

structure on AK . Suppose L is a finite seperable extension of K. Then

A+
L = A+

K ⊕ · · · ⊕ A+
K , ([L : K] summands).

In this isomorphism the additive group L+ ⊂ A+
L of the principal adeles is mapped

isomorphically onto K+ ⊕ · · · ⊕ K+.
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Proof. For any nonzero ω ∈ L, the subgroup ω · A+
K of A+

L is isomorphic as a topo-
logical group to A+

K (the isomorphism is multiplication by 1/ω). By Lemma 20.3.3,
we have isomorphisms

A+
L = A+

K ⊗K L ∼= ω1 · A+
K ⊕ · · · ⊕ ωn · A+

K
∼= A+

K ⊕ · · · ⊕ A+
K .

If a ∈ L, write a =
∑

biωi, with bi ∈ K. Then a maps via the above map to

x = (ω1 · {b1}, . . . , ωn · {bn}),

where {bi} denotes the principal adele defined by bi. Under the final map, x maps
to the tuple

(b1, . . . , bn) ∈ K ⊕ · · · ⊕ K ⊂ A+
K ⊕ · · · ⊕ A+

K .

The dimensions of L and of K ⊕ · · · ⊕ K over K are the same, so this proves the
final claim of the corollary.

Theorem 20.3.5. The global field K is discrete in AK and the quotient A+
K/K+

of additive groups is compact in the quotient topology.

At this point Cassels remarks

“It is impossible to conceive of any other uniquely defined topology on
K. This metamathematical reason is more persuasive than the argument
that follows!”

Proof. Corollary 20.3.4, with K for L and Q or F(t) for K, shows that it is enough
to verify the theorem for Q or F(t), and we shall do it here for Q.

To show that Q+ is discrete in A+
Q it is enough, because of the group structure,

to find an open set U that contains 0 ∈ A+
Q, but which contains no other elements

of Q+. (If α ∈ Q+, then U + α is an open subset of A+
Q whose intersection with

Q+ is {α}.) We take for U the set of x = {xv}v ∈ A+
Q with

|x∞|∞ < 1 and |xp|p ≤ 1 (all p),

where | · |p and | · |∞ are respectively the p-adic and the usual archimedean absolute
values on Q. If b ∈ Q ∩ U , then in the first place b ∈ Z because |b|p ≤ 1 for all

p, and then b = 0 because |b|∞ < 1. This proves that K+ is discrete in A+
Q. (If

we leave out one valuation, as we will see later (Theorem 20.4.4), this theorem is
false—what goes wrong with the proof just given?)

Next we prove that the quotient A+
Q/Q+ is compact. Let W ⊂ A+

Q consist of

the x = {xv}v ∈ A+
Q with

|x∞|∞ ≤ 1

2
and |xp|p ≤ 1 for all primes p.

We show that every adele y = {yv}v is of the form

y = a + x, a ∈ Q, x ∈ W,
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which will imply that the compact set W maps surjectively onto A+
Q/Q+. Fix an

adele y = {yv} ∈ A+
Q. Since y is an adele, for each prime p we can find a rational

number

rp =
zp

pnp
with zp ∈ Z and np ∈ Z≥0

such that

|yp − rp|p ≤ 1,

and

rp = 0 almost all p.

More precisely, for the finitely many p such that

yp =
∑

n≥−|s|
anpn 6∈ Zp,

choose rp to be a rational number that is the value of an appropriate truncation of
the p-adic expansion of yp, and when yp ∈ Zp just choose rp = 0. Hence r =

∑

p rp ∈
Q is well defined. The rq for q 6= p do not mess up the inequality |yp − r|p ≤ 1
since the valuation | · |p is non-archimedean and the rq do not have any p in their
denominator:

|yp − r|p =

∣

∣

∣

∣

∣

∣

yp − rp −
∑

q 6=p

rq

∣

∣

∣

∣

∣

∣

p

≤ max



|yp − rp|p ,

∣

∣

∣

∣

∣

∣

∑

q 6=p

rq

∣

∣

∣

∣

∣

∣

p



 ≤ max(1, 1) = 1.

Now choose s ∈ Z such that

|b∞ − r − s| ≤ 1

2
.

Then a = r + s and x = y − a do what is required, since y − a = y − r − s has the
desired property (since s ∈ Z and the p-adic valuations are non-archimedean).

Hence the continuous map W → A+
Q/Q+ induced by the quotient map A+

Q →
A+

Q/Q+ is surjective. But W is compact (being the topological product of the

compact spaces |x∞|∞ ≤ 1/2 and the Zp for all p), hence A+
Q/Q+ is also compact.

Corollary 20.3.6. There is a subset W of AK defined by inequalities of the type
|xv|v ≤ δv, where δv = 1 for almost all v, such that every y ∈ AK can be put in the
form

y = a + x, a ∈ K, x ∈ W,

i.e., AK = K + W .

Proof. We constructed such a set for K = Q when proving Theorem 20.3.5. For
general K the W coming from the proof determines compenent-wise a subset of
A+

K
∼= A+

Q ⊕ · · · ⊕ A+
Q that is a subset of a set with the properties claimed by the

corollary.
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As already remarked, A+
K is a locally compact group, so it has an invariant

Haar measure. In fact one choice of this Haar measure is the product of the Haar
measures on the Kv, in the sense of Definition 20.2.5.

Corollary 20.3.7. The quotient A+
K/K+ has finite measure in the quotient measure

induced by the Haar measure on A+
K .

Remark 20.3.8. This statement is independent of the particular choice of the multi-
plicative constant in the Haar measure on A+

K . We do not here go into the question
of finding the measure A+

K/K+ in terms of our explicitly given Haar measure. (See
Tate’s thesis, [Cp86, Chapter XV].)

Proof. This can be reduced similarly to the case of Q or F(t) which is immediate,
e.g., the W defined above has measure 1 for our Haar measure.

Alternatively, finite measure follows from compactness. To see this, cover AK/K+

with the translates of U , where U is a nonempty open set with finite measure. The
existence of a finite subcover implies finite measure.

Remark 20.3.9. We give an alternative proof of the product formula
∏ |a|v = 1

for nonzero a ∈ K. We have seen that if xv ∈ Kv, then multiplication by xv

magnifies the Haar measure in K+
v by a factor of |xv|v. Hence if x = {xv} ∈ AK ,

then multiplication by x magnifies the Haar measure in A+
K by

∏ |xv|v. But now
multiplication by a ∈ K takes K+ ⊂ A+

K into K+, so gives a well-defined bijection
of A+

K/K+ onto A+
K/K+ which magnifies the measure by the factor

∏ |a|v. Hence
∏ |a|v = 1 Corollary 20.3.7. (The point is that if µ is the measure of A+

K/K+, then
µ =

∏ |a|v · µ, so because µ is finite we must have
∏ |a|v = 1.)

20.4 Strong Approximation

We first prove a technical lemma and corollary, then use them to deduce the strong
approximation theorem, which is an extreme generalization of the Chinese Remain-
der Theorem; it asserts that K+ is dense in the analogue of the adeles with one
valuation removed.

The proof of Lemma 20.4.1 below will use in a crucial way the normalized Haar
measure on AK and the induced measure on the compact quotient A+

K/K+. Since
I am not formally developing Haar measure on locally compact groups, and since I
didn’t explain induced measures on quotients well in the last chapter, hopefully the
following discussion will help clarify what is going on.

The real numbers R+ under addition is a locally compact topological group.
Normalized Haar measure µ has the property that µ([a, b]) = b − a, where a ≤ b
are real numbers and [a, b] is the closed interval from a to b. The subset Z+ of R+

is discrete, and the quotient S1 = R+/Z+ is a compact topological group, which
thus has a Haar measure. Let µ be the Haar measure on S1 normalized so that the
natural quotient π : R+ → S1 preserves the measure, in the sense that if X ⊂ R+

is a measurable set that maps injectively into S1, then µ(X) = µ(π(X)). This
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determine µ and we have µ(S1) = 1 since X = [0, 1) is a measurable set that maps
bijectively onto S1 and has measure 1. The situation for the map AK → AK/K+

is pretty much the same.

Lemma 20.4.1. There is a constant C > 0 that depends only on the global field K
with the following property:

Whenever x = {xv}v ∈ AK is such that
∏

v

|xv|v > C, (20.4.1)

then there is a nonzero principal adele a ∈ K ⊂ AK such that

|a|v ≤ |xv|v for all v.

Proof. This proof is modelled on Blichfeldt’s proof of Minkowski’s Theorem in the
Geometry of Numbers, and works in quite general circumstances.

First we show that (20.4.1) implies that |xv|v = 1 for almost all v. Because x is
an adele, we have |xv|v ≤ 1 for almost all v. If |xv|v < 1 for infinitely many v, then
the product in (20.4.1) would have to be 0. (We prove this only when K is a finite
extension of Q.) Excluding archimedean valuations, this is because the normalized
valuation |xv|v = |Norm(xv)|p, which if less than 1 is necessarily ≤ 1/p. Any infinite
product of numbers 1/pi must be 0, whenever pi is a sequence of primes.

Let c0 be the Haar measure of A+
K/K+ induced from normalized Haar measure

on A+
K , and let c1 be the Haar measure of the set of y = {yv}v ∈ A+

K that satisfy

|yv|v ≤ 1

2
if v is real archimedean,

|yv|v ≤ 1

2
if v is complex archimedean,

|yv|v ≤ 1 if v is non-archimedean.

(As we will see, any positive real number ≤ 1/2 would suffice in the definition of
c1 above. For example, in Cassels’s article he uses the mysterious 1/10. He also
doesn’t discuss the subtleties of the complex archimedean case separately.)

Then 0 < c0 < ∞ since AK/K+ is compact, and 0 < c1 < ∞ because the
number of archimedean valuations v is finite. We show that

C =
c0

c1

will do. Thus suppose x is as in (20.4.1).
The set T of t = {tv}v ∈ A+

K such that

|tv|v ≤ 1

2
|xv|v if v is real archimedean,

|tv|v ≤ 1

2

√

|xv|v if v is complex archimedean,

|tv|v ≤ |xv|v if v is non-archimedean
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has measure
c1 ·

∏

v

|xv|v > c1 · C = c0. (20.4.2)

(Note: If there are complex valuations, then the some of the |xv|v’s in the product
must be squared.)

Because of (20.4.2), in the quotient map A+
K → A+

K/K+ there must be a pair of
distinct points of T that have the same image in A+

K/K+, say

t′ = {t′v}v ∈ T and t′′ = {t′′v}v ∈ T

and
a = t′ − t′′ ∈ K+

is nonzero. Then

|a|v =
∣

∣t′v − t′′v
∣

∣

v
≤

{

|t′v| + |t′′v | ≤ 2 · 1
2 |xv|v ≤ |xv|v if v is real archimedean, or

max(|t′v| , |t′′v |) ≤ |xv|v if v is non-archimedean,

for all v. In the case of complex archimedean v, we must be careful because the
normalized valuation | · |v is the square of the usual archimedean complex valuation
| · |∞ on C, so e.g., it does not satisfy the triangle inequality. In particular, the
quantity |t′v − t′′v |v is at most the square of the maximum distance between two
points in the disc in C of radius 1

2

√

|xv|v, where by distance we mean the usual

distance. This maximum distance in such a disc is at most
√

|xv|v, so |t′v − t′′v |v is
at most |xv|v, as required. Thus a satisfies the requirements of the lemma.

Corollary 20.4.2. Let v0 be a normalized valuation and let δv > 0 be given for all
v 6= v0 with δv = 1 for almost all v. Then there is a nonzero a ∈ K with

|a|v ≤ δv (all v 6= v0).

Proof. This is just a degenerate case of Lemma 20.4.1. Choose xv ∈ Kv with
0 < |xv|v ≤ δv and |xv|v = 1 if δv = 1. We can then choose xv0 ∈ Kv0 so that

∏

all v including v0

|xv|v > C.

Then Lemma 20.4.1 does what is required.

Remark 20.4.3. The character group of the locally compact group A+
K is isomorphic

to A+
K and K+ plays a special role. See Chapter XV of [Cp86], Lang’s [Lan64],

Weil’s [Wei82], and Godement’s Bourbaki seminars 171 and 176. This duality lies
behind the functional equation of ζ and L-functions. Iwasawa has shown [Iwa53]
that the rings of adeles are characterized by certain general topologico-algebraic
properties.

We proved before that K is discrete in AK . If one valuation is removed, the
situation is much different.
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Theorem 20.4.4 (Strong Approximation). Let v0 be any normalized nontrivial
valuation of the global field K. Let AK,v0 be the restricted topological product of the
Kv with respect to the Ov, where v runs through all normalized valuations v 6= v0.
Then K is dense in AK,v0 .

Proof. This proof was suggested by Prof. Kneser at the Cassels-Frohlich conference.
Recall that if x = {xv}v ∈ AK,v0 then a basis of open sets about x is the

collection of products
∏

v∈S

B(xv, εv) ×
∏

v 6∈S, v 6=v0

Ov,

where B(xv, εv) is an open ball in Kv about xv, and S runs through finite sets of
normalized valuations (not including v0). Thus denseness of K in AK,v0 is equivalent
to the following statement about elements. Suppose we are given (i) a finite set S
of valuations v 6= v0, (ii) elements xv ∈ Kv for all v ∈ S, and (iii) an ε > 0. Then
there is an element b ∈ K such that |b − xv|v < ε for all v ∈ S and |b|v ≤ 1 for all
v 6∈ S with v 6= v0.

By the corollary to our proof that A+
K/K+ is compact (Corollary 20.3.6), there

is a W ⊂ AK that is defined by inequalities of the form |yv|v ≤ δv (where δv = 1 for
almost all v) such that ever z ∈ AK is of the form

z = y + c, y ∈ W, c ∈ K. (20.4.3)

By Corollary 20.4.2, there is a nonzero a ∈ K such that

|a|v <
1

δv
· ε for v ∈ S,

|a|v ≤ 1

δv
for v 6∈ S, v 6= v0.

Hence on putting z = 1
a · x in (20.4.3) and multiplying by a, we see that every

x ∈ AK is of the shape

x = w + b, w ∈ a · W, b ∈ K,

where a ·W is the set of ay for y ∈ W . If now we let x have components the given
xv at v ∈ S, and (say) 0 elsewhere, then b = x−w has the properties required.

Remark 20.4.5. The proof gives a quantitative form of the theorem (i.e., with a
bound for |b|v0

). For an alternative approach, see [Mah64].

In the next chapter we’ll introduce the ideles A∗
K . Finally, we’ll relate ideles to

ideals, and use everything so far to give a new interpretation of class groups and
their finiteness.
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Chapter 21

Ideles and Ideals

In this chapter, we introduce the ideles IK , and relate ideles to ideals, and use what
we’ve done so far to give an alternative interpretation of class groups and their
finiteness, thus linking the adelic point of view with the classical point of view of
the first part of this course.

21.1 The Idele Group

The invertible elements of any commutative topological ring R are a group R∗ under
multiplication. In general R∗ is not a topological group if it is endowed with the
subset topology because inversion need not be continuous (only multiplication and
addition on R are required to be continuous). It is usual therefore to give R∗ the
following topology. There is an injection

x 7→
(

x,
1

x

)

(21.1.1)

of R∗ into the topological product R × R. We give R∗ the corresponding subset
topology. Then R∗ with this topology is a topological group and the inclusion map
R∗ ↪→ R is continous. To see continuity of inclusion, note that this topology is finer
(has at least as many open sets) than the subset topology induced by R∗ ⊂ R, since
the projection maps R × R → R are continuous.

Example 21.1.1. This is a “non-example”. The inverse map on Z∗
p is continuous

with respect to the p-adic topology. If a, b ∈ Z∗
p, then |a| = |b| = 1, so if |a − b| < ε,

then
∣

∣

∣

∣

1

a
− 1

b

∣

∣

∣

∣

=

∣

∣

∣

∣

b − a

ab

∣

∣

∣

∣

=
|b − a|
|ab| <

ε

1
= ε.

Definition 21.1.2 (Idele Group). The idele group IK of K is the group A∗
K of

invertible elements of the adele ring AK .

We shall usually speak of IK as a subset of AK , and will have to distinguish
between the IK and AK-topologies.
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Example 21.1.3. For a rational prime p, let xp ∈ AQ be the adele whose pth compo-
nent is p and whose vth component, for v 6= p, is 1. Then xp → 1 as p → ∞ in AQ,
for the following reason. We must show that if U is a basic open set that contains
the adele 1 = {1}v, the xp for all sufficiently large p are contained in U . Since U
contains 1 and is a basic open set, it is of the form

∏

v∈S

Uv ×
∏

v 6∈S

Zv,

where S if a finite set, and the Uv, for v ∈ S, are arbitrary open subsets of Qv

that contain 1. If q is a prime larger than any prime in S, then xp for p ≥ q, is in
U . This proves convergence. If the inverse map were continuous on IK , then the
sequence of x−1

p would converge to 1−1 = 1. However, if U is an open set as above
about 1, then for sufficiently large p, none of the adeles xp are contained in U .

Lemma 21.1.4. The group of ideles IK is the restricted topological project of the
K∗

v with respect to the units Uv = O∗
v ⊂ Kv, with the restricted product topology.

We omit the proof of Lemma 21.1.4, which is a matter of thinking carefully
about the definitions. The main point is that inversion is continuous on O∗

v for
each v. (See Example 21.1.1.)

We have seen that K is naturally embedded in AK , so K∗ is naturally embedded
in IK .

Definition 21.1.5 (Principal Ideles). We call K∗, considered as a subgroup of
IK , the principal ideles.

Lemma 21.1.6. The principal ideles K∗ are discrete as a subgroup of IK .

Proof. For K is discrete in AK , so K∗ is embedded in AK × AK by (21.1.1) as
a discrete subset. (Alternatively, the subgroup topology on IK is finer than the
topology coming from IK being a subset of AK , and K is already discrete in AK .)

Definition 21.1.7 (Content of an Idele). The content of x = {xv}v ∈ IK is

c(x) =
∏

all v

|xv|v ∈ R>0.

Lemma 21.1.8. The map x → c(x) is a continuous homomorphism of the topo-
logical group IK into R>0, where we view R>0 as a topological group under multi-
plication. If K is a number field, then c is surjective.

Proof. That the content map c satisfies the axioms of a homomorphisms follows
from the multiplicative nature of the defining formula for c. For continuity, suppose
(a, b) is an open interval in R>0. Suppose x ∈ IK is such that c(x) ∈ (a, b). By
considering small intervals about each non-unit component of x, we find an open
neighborhood U ⊂ IK of x such that c(U) ⊂ (a, b). It follows the c−1((a, b)) is open.

For surjectivity, use that each archimedean valuation is surjective, and choose
an idele that is 1 at all but one archimedean valuation.
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Remark 21.1.9. Note also that the IK-topology is that appropriate to a group of
operators on A+

K : a basis of open sets is the S(C, U), where C, U ⊂ A+
K are, re-

spectively, AK-compact and AK-open, and S consists of the x ∈ IJ such that
(1 − x)C ⊂ U and (1 − x−1)C ⊂ U .

Definition 21.1.10 (1-Ideles). The subgroup I1K of 1-ideles is the subgroup of
ideles x = {xv} such that c(x) = 1. Thus I1K is the kernel of c, so we have an exact
sequence

1 → I1K → IK
c−→ R>0 → 1,

where the surjectivity on the right is only if K is a number field.

Lemma 21.1.11. The subset I1K of AK is closed as a subset, and the AK-subset
topology on I1K coincides with the IK-subset topology on I1K .

Proof. Let x ∈ AK with x 6∈ I1K . To prove that I1K is closed in AK , we find an
AK-neighborhood W of x that does not meet I1K .

1st Case. Suppose that
∏

v |xv|v < 1 (possibly = 0). Then there is a finite set S
of v such that

1. S contains all the v with |xv|v > 1, and

2.
∏

v∈S |xv|v < 1.

Then the set W can be defined by

|wv − xv|v < ε v ∈ S

|wv|v ≤ 1 v 6∈ S

for sufficiently small ε.

2nd Case. Suppose that C :=
∏

v |xv|v > 1. Then there is a finite set S of v
such that

1. S contains all the v with |xv|v > 1, and

2. if v 6∈ S an inequality |wv|v < 1 implies |wv|v < 1
2C . (This is because for a non-

archimedean valuation, the largest absolute value less than 1 is 1/p, where p
is the residue characteristic. Also, the upper bound in Cassels’s article is 1

2C
instead of 1

2C , but I think he got it wrong.)

We can choose ε so small that |wv − xv|v < ε (for v ∈ S) implies 1 <
∏

v∈S |wv|v <
2C. Then W may be defined by

|wv − xv|v < ε v ∈ S

|wv|v ≤ 1 v 6∈ S.
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This works because if w ∈ W , then either |wv|v = 1 for all v 6∈ S, in which case
1 < c(w) < 2c, so w 6∈ I1K , or |wv0 |v0

< 1 for some v0 6∈ S, in which case

c(w) =

(

∏

v∈S

|wv|v

)

· |wv0 | · · · < 2C · 1

2C
· · · < 1,

so again w 6∈ I1K .
We next show that the IK- and AK-topologies on I1K are the same. If x ∈ I1K ,

we must show that every AK-neighborhood of x contains an AK-neighborhood and
vice-versa.

Let W ⊂ I1K be an AK-neighborhood of x. Then it contains an AK-neighborhood
of the type

|wv − xv|v < ε v ∈ S (21.1.2)

|wv|v ≤ 1 v 6∈ S (21.1.3)

where S is a finite set of valuations v. This contains the IK-neighborhood in which
≤ in (21.1.2) is replaced by =.

Next let H ⊂ I1K be an IK-neighborhood. Then it contains an IK-neighborhood
of the form

|wv − xv|v < ε v ∈ S (21.1.4)

|wv|v = 1 v 6∈ S, (21.1.5)

where the finite set S contains at least all archimedean valuations v and all valua-
tions v with |xv|v 6= 1. Since

∏ |xv|v = 1, we may also suppose that ε is so small
that (21.1.4) implies

∏

v

|wv|v < 2.

Then the intersection of (21.1.4) with I1K is the same as that of (21.1.2) with I1K ,
i.e., (21.1.4) defines an AK-neighborhood.

By the product formula we have that K∗ ⊂ I1K . The following result is of vital
importance in class field theory.

Theorem 21.1.12. The quotient I1K/K∗ with the quotient topology is compact.

Proof. After the preceeding lemma, it is enough to find an AK-compact set W ⊂ AK

such that the map
W ∩ I1K → I1K/K∗

is surjective. We take for W the set of w = {wv}v with

|wv|v ≤ |xv|v ,

where x = {xv}v is any idele of content greater than the C of Lemma 20.4.1.
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Let y = {yv}v ∈ I1K . Then the content of x/y equals the content of x, so by
Lemma 20.4.1 there is an a ∈ K∗ such that

|a|v ≤
∣

∣

∣

∣

xv

yv

∣

∣

∣

∣

v

all v.

Then ay ∈ W , as required.

Remark 21.1.13. The quotient I1K/K∗ is totally disconnected in the function field
case. For the structure of its connected component in the number field case, see
papers of Artin and Weil in the “Proceedings of the Tokyo Symposium on Algebraic
Number Theory, 1955” (Science Council of Japan) or [AT90]. The determination
of the character group of IK/K∗ is global class field theory.

21.2 Ideals and Divisors

Suppose that K is a finite extension of Q. Let FK be the the free abelian group on
a set of symbols in bijection with the non-archimedean valuation v of K. Thus an
element of FK is a formal linear combination

∑

v non arch.

nv · v

where nv ∈ Z and all but finitely many nv are 0.

Lemma 21.2.1. There is a natural bijection between FK and the group of nonzero
fractional ideals of OK . The correspondence is induced by

v 7→ ℘v = {x ∈ OK : v(x) < 1},

where v is a non-archimedean valuation.

Endow FK with the discrete topology. Then there is a natural continuous map
π : IK → FK given by

x = {xv}v 7→
∑

v

ordv(xv) · v.

This map is continuous since the inverse image of a valuation v (a point) is the
product

π−1(v) = πO∗
v ×

∏

w archimedean

K∗
w ×

∏

w 6=v non-arch.

O∗
w,

which is an open set in the restricted product topology on IK . Moreover, the image
of K∗ in FK is the group of nonzero principal fractional ideals.

Recall that the class group CK of the number field K is by definition the quotient
of FK by the image of K∗.

Theorem 21.2.2. The class group CK of a number field K is finite.
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Proof. We first prove that the map I1K → FK is surjective. Let ∞ be an archimedean
valuation on K. If v is a non-archimedean valuation, let x ∈ I1K be a 1-idele such that
xw = 1 at ever valuation w except v and ∞. At v, choose xv = π to be a generator
for the maximal ideal of Ov, and choose x∞ to be such that |x∞|∞ = 1/ |xv|v. Then
x ∈ IK and

∏

w |xw|w = 1, so x ∈ I1K . Also x maps to v ∈ FK .
Thus the group of ideal classes is the continuous image of the compact group

I1K/K∗ (see Theorem 21.1.12), hence compact. But a compact discrete group is
finite.

21.2.1 The Function Field Case

When K is a finite separable extension of F(t), we define the divisor group DK

of K to be the free abelian group on all the valuations v. For each v the number
of elements of the residue class field Fv = Ov/℘v of v is a power, say qnv , of the
number q of elements in Fv. We call nv the degree of v, and similarly define

∑

nvdv

to be the degree of the divisor
∑

nv · v. The divisors of degree 0 form a group D0
K .

As before, the principal divisor attached to a ∈ K∗ is
∑

ordv(a) · v ∈ DK . The
following theorem is proved in the same way as Theorem 21.2.2.

Theorem 21.2.3. The quotient of D0
K modulo the principal divisors is a finite

group.

21.2.2 Jacobians of Curves

For those familiar with algebraic geometry and algebraic curves, one can prove
Theorem 21.2.3 from an alternative point of view. There is a bijection between
nonsingular geometrically irreducible projective curves over F and function fields K
over F (which we assume are finite separable extensions of F(t) such that F∩K = F).
Let X be the curve corresponding to K. The group D0

K is in bijection with the
divisors of degree 0 on X, a group typically denoted Div0(X). The quotient of
Div0(X) by principal divisors is denoted Pic0(X). The Jacobian of X is an abelian
variety J = Jac(X) over the finite field F whose dimension is equal to the genus
of X. Moreover, assuming X has an F-rational point, the elements of Pic0(X)
are in natural bijection with the F-rational points on J . In particular, with these
hypothesis, the class group of K, which is isomorphic to Pic0(X), is in bijection
with the group of F-rational points on an algebraic variety over a finite field. This
gives an alternative more complicated proof of finiteness of the degree 0 class group
of a function field.

Without the degree 0 condition, the divisor class group won’t be finite. It is an
extension of Z by a finite group.

0 → Pic0(X) → Pic(X)
deg−−→ nZ → 0,

where n is the greatest common divisor of the degrees of elements of Pic(X), which
is 1 when X has a rational point.



Chapter 22

Exercises

1. Let A =





4 7 2
2 4 6
0 0 0



.

(a) Find invertible integer matrices P and Q such that PAQ is in Smith
normal form.

(b) What is the group structure of the cokernel of the map Z3 → Z3 defined
by multiplication by A?

2. Let G be the abelian group generated by x, y, z with relatoins 2x + y = 0 and
x − y + 3z = 0. Find a product of cyclic groups that is isomorphic to G.

3. Prove that each of the following rings have infinitely many prime ideals:

(a) The integers Z. [Hint: Euclid gave a famous proof of this long ago.]

(b) The ring Q[x] of polynomials over Q.

(c) The ring Z[x] of polynomials over Z.

(d) The ring Z of all algebraic integers. [Hint: Use Zorn’s lemma, which
implies that every ideal is contained in a maximal ideal. See, e.g., Prop
1.12 on page 589 of Artin’s Algebra.]

4. (This problem was on the graduate qualifying exam on Tuesday.) Let Z
denote the subset of all elements of Q that satisfy a monic polynomial with
coefficients in the ring Z of integers. We proved in class that Z is a ring.

(a) Show that the ideals (2) and (
√

2) in Z are distinct.

(b) Prove that Z is not Noetherian.

5. Show that neither Z[
√
−6] nor Z[

√
5] is a unique factorization domain. [Hint:

Consider the factorization into irreducible elements of 6 in the first case and 4
in the second. A nonzero element a in a ring R is an irreducible element if it
is not a unit and if whenever a = qr, then one of q or r is a unit.]
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6. Find the ring of integers of each of the following number fields:

(a) Q(
√
−3),

(b) Q(
√

3), and

(c) Q( 3
√

2).

Do not use a computer for the first two.

7. Find the discriminants of the rings of integers of the numbers fields in the
previous problem. (Do not use a computer.)

8. Let R be a finite integral domain. Prove that R is a field. [Hint: Show that
if x is a nonzero element, then x has an inverse by considering powers of x.]

9. Suppose K ⊂ L ⊂ M is a tower of number fields and let σ : L ↪→ Q be a
field embedding of L into Q that fixes K elementwise. Show that σ extends
in exactly [M : L] ways to a field embedding M ↪→ Q.

10. (a) Suppose I and J are principal ideals in a ring R. Show that the set
{ab : a ∈ I, b ∈ J} is an ideal.

(b) Give an example of ideals I and J in the polynomial ring Q[x, y] in two
variables such that {ab : a ∈ I, b ∈ J} is not an ideal. Your example
illustrates why it is necessary to define the product of two ideals to be
the ideal generated by {ab : a ∈ I, b ∈ J}.

(c) Give an example of a ring of integers OK of a number field, and ideals I
and J such that {ab : a ∈ I, b ∈ J} is not an ideal.

11. (a) Let k be a field. Prove that k[x] is a Dedekind domain.

(b) (Problem 1.12 from Swinnerton-Dyer) Let x be an indeterminate. Show
that the ring Z[x] is Noetherian and integrally closed in its field of frac-
tions, but is not a Dedekind domain.

12. Use Magma to write each of the following (fractional) ideals as a product of
explicitly given prime ideals:

(a) The ideal (2004) in Q(
√
−1).

(b) The ideals I = (7) and J = (3) in the ring of integers of Q(ζ7), where ζ7

is a root of the irreducible polynomial x6 + x5 + x4 + x3 + x2 + x + 1.
(The field Q(ζ7) is called the 7th cyclotomic field.)

(c) The principal fractional ideal (3/8) in Q(
√

5).

13. Suppose R is an order in the ring OK of integers of a number field. (Recall
that an order is a subring of finite index in OK .) For each of the following
questions, either explain why the answer is yes for any possible order R in any
OK , or find one specific counterexample:
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(a) Is R necessarily Noetherian?

(b) Is R necessarily integrally closed in its field of fractions?

(c) Is every nonzero prime ideal of R necessarily maximal?

(d) Is it always possible to write every ideal of R uniquely as a product of
prime ideals of R?

14. Let OK be the ring of integers of a number field K. Prove that the group of
fractional ideals of OK , under multiplication is (non-canonically) isomorphic
to the group of positive rational numbers under multiplication.

15. (a) Suppose K is a number field of degree 2. Prove that OK = Z[a] for some
a ∈ OK .

(b) Prove that if K and K ′ are two number fields of degree 2 and Disc(OK) =
Disc(OK′) then K = K ′.

16. (*) Does there exist a number field K of degree 4 such that OK 6= Z[a] for all
a ∈ OK? If so, give an explicit example.

17. Let K be the quintic number field generated by a root of x5+7x4+3x2−x+1.
Draw a diagram (be creative) that illustrates the factorization of every prime
p ∈ Z, with p < 100, in OK .

18. (Problem 1.9 in Swinnerton-Dyer) Show that the only solutions x, y ∈ Z to
y2 = x3 − 13 are given by x = 17, y = ±70, as follows. Factor the equation
y2 + 13 = x3 in the number field Q(

√
−13), which has class number 2. Show

that if x, y is an integer solution then the ideal (y +
√
−13) must be the cube

of an ideal, and hence y +
√
−13 = (a + b

√
−13)3; thus 1 = b(3a2 − 13b2).

19. Suppose I and J are ideals in the ring OK of integers of a number field K.
Does IJ = I ∩ J? Prove or give a counterexample.

20. Let OK be the ring of integers Q(
√

5), and let

I = (5, 2 +
√

5) and J = (209, (389 +
√

5)/2)

be integral ideals of OK .

(a) Find an element of OK that is congruent to
√

5 modulo I and is congruent
to 1 −

√
5 modulo J .

(b) What is the cardinality of (OK/I) ⊕ (OK/J)?

(c) Find an element a ∈ I such that (a)/I is coprime to J .

21. Let OK be the ring of integers of a number field K, and suppose K has exactly
2s complex embeddings. Prove that the sign of Disc(OK) is (−1)s.
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22. (*) Suppose O is an order in the ring of integers OK of a number field. Is every
ideal in O necessarily generated by two elements? (Answer: No. Challenge:
Given an example.)

23. Find representative ideals for each element of the class group of Q(
√
−23).

Illustrate how to use the Minkowski bound to prove that your list of repre-
sentatives is complete.

24. Suppose O is an order in the ring of integers OK of a number field. Is every
ideal in O necessarily generated by two elements?

25. Let K be a number field of degree n > 1 with s pairs of complex conjugate
embeddings. Prove that

(π

4

)s
· nn

n!
> 1.

26. Do the exercise on page 19 of Swinnerton-Dyer, which shows that the quantity
Cr,s in the finiteness of class group theorem can be taken to be

(

4
π

)s n!
nn .

27. Let α denote a root of x3 − x + 2 and let K = Q(α). Show that OK = Z[α]
and that K has class number 1 (don’t just read this off from the output of the
Magma commands MaximalOrder and ClassNumber). [Hint: consider the
square factors of the discriminant of x3 −x+2 and show that 1

2(a+ bα+ cα2)
is an algebra integer if and only if a, b, and c are all even.]

28. If S is a closed, bounded, convex, symmetric set in Rn with Vol(S) ≥ m2n,
for some positive integer m, show that S contains at least 2m nonzero points
in Zn.

29. Prove that any finite subgroup of the multiplicative group of a field is cyclic.

30. For a given number field K, which seems more difficult for Magma to com-
pute, the class groups or explicit generators for the group of units? It is very
difficult (but not impossible) to not get full credit on this problem. Play
around with some examples, see what seems more difficult, and justify your
response with examples. (This problem might be annoying to do using the
Magma web page, since it kills your Magma job after 30 seconds. Feel free
to request a binary of Magma from me, or an account on MECCAH (Math-
ematics Extreme Computation Cluster at Harvard).)

31. (a) Prove that there is no number field K such that UK
∼= Z/10Z.

(b) Is there a number field K such that UK
∼= Z × Z/6Z?

32. Prove that the rank of UK is unbounded as K varies over all number fields.

33. Let K = Q(ζ5).

(a) Show that r = 0 and s = 2.
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(b) Find explicitly generators for the group of units of UK (you can use
Magma for this).

(c) Draw an illustration of the log map ϕ : UK → R2, including the hyper-
plane x1+x2 = 0 and the lattice in the hyperplane spanned by the image
of UK .

34. Find the group of units of Q(ζn) as an abstract group as a function of n. (I.e.,
find the number of cyclic factors and the size of the torsion subgroup. You do
not have to find explicit generators!)

35. Let K = Q(a), where a is a root x3 − 3x + 1.

(a) Show that r = 3.

(b) Find explicitly the log embedding of UK into a 2-dimensional hyperplane
in R3, and draw a picture.

36. Prove that if K is a quadratic field and the torsion subgroup of UK has order
bigger than 2, then K = Q(

√
−3) or K = Q(

√
−1).

37. A Salem number is a real algebraic integer, greater than 1, with the property
that all of its conjugates lie on or within the unit circle, and at least one
conjugate lies on the unit circle. By any method (including “google”), give
two examples of Salem numbers.

38. Let p ∈ Z and let K be a number field. Show that NormK/Q(pOK) = p[K:Q].

39. A totally real number field is a number field in which all embeddings into
C have image in R. Prove there are totally real number fields of degree p,
for every prime p. [Hint: Let ζn denote a primitive nth root of unity. For
n ≥ 3, show that Q(ζn + 1/ζn) is totally real of degree ϕ(n)/2. Now prove
that ϕ(n)/2 can be made divisible by any prime.]

40. Give an example of a number field K/Q and a prime p such that the ei in the
factorization of pOK are not all the same.

41. Let K be a number field. Give the “simplest” proof you can think of that
there are only finitely many primes that ramify (i.e., have some ei > 1) in K.
[The meaning of “simplest” is a matter of taste.]

42. Give examples to show that for K/Q a Galois extension, the quantity e can
be arbirarily large and f can be arbitrarily large.

43. Suppose K/Q is Galois and p is a prime such that pOK is also prime (i.e., p
is inert in K). Show that Gal(K/Q) is a cyclic group.

44. (Problem 7, page 116, from Marcus Number Fields) For each of the following,
find a prime p and quadratic extensions K and L of Q that illustrates the
assertion:
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(a) The prime p can be totally ramified in K and L without being totally
ramified in KL.

(b) The fields K and L can each contain unique primes lying over p while
KL does not.

(c) The prime p can be inert in K and L without being inert in KL.

(d) The residue field extensions of Fp can be trivial for K and L without
being trivial for KL.

45. Let S3 by the symmetric group on three symbols, which has order 6.

(a) Observe that S3
∼= D3, where D3 is the dihedral group of order 6, which

is the group of symmetries of an equilateral triangle.

(b) Use (45a) to write down an explicit embedding S3 ↪→ GL2(C).

(c) Let K be the number field Q( 3
√

2, ω), where ω3 = 1 is a nontrivial cube
root of unity. Show that K is a Galois extension with Galois group
isomorphic to S3.

(d) We thus obtain a 2-dimensional irreducible complex Galois representation

ρ : Gal(Q/Q) → Gal(K/Q) ∼= S3 ⊂ GL2(C).

Compute a representative matrix of Frobp and the characteristic polyno-
mial of Frobp for p = 5, 7, 11, 13.

46. Let K = Q(
√

2,
√

3,
√

5,
√

7). Show that K is Galois over Q, compute the
Galois group of K, and compute Frob37.

47. Let k be any field. Prove that the only nontrivial valuations on k(t) which are
trivial on k are equivalent to the valuation (15.3.3) or (15.3.4) of page 115.

48. A field with the topology induced by a valuation is a topological field, i.e., the
operations sum, product, and reciprocal are continuous.

49. Give an example of a non-archimedean valuation on a field that is not discrete.

50. Prove that the field Qp of p-adic numbers is uncountable.

51. Prove that the polynomial f(x) = x3 − 3x2 + 2x + 5 has all its roots in Q5,
and find the 5-adic valuations of each of these roots. (You might need to use
Hensel’s lemma, which we don’t discuss in detail in this book. See [Cas67,
App. C].)

52. In this problem you will compute an example of weak approximation, like I
did in the Example 16.3.3. Let K = Q, let | · |7 be the 7-adic absolute value,
let | · |11 be the 11-adic absolute value, and let | · |∞ be the usual archimedean
absolute value. Find an element b ∈ Q such that |b − ai|i < 1

10 , where a7 = 1,
a11 = 2, and a∞ = −2004.
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53. Prove that −9 has a cube root in Q10 using the following strategy (this is a
special case of Hensel’s Lemma, which you can read about in an appendix to
Cassel’s article).

(a) Show that there is an element α ∈ Z such that α3 ≡ 9 (mod 103).

(b) Suppose n ≥ 3. Use induction to show that if α1 ∈ Z and α3 ≡ 9
(mod 10n), then there exists α2 ∈ Z such that α3

2 ≡ 9 (mod 10n+1).
(Hint: Show that there is an integer b such that (α1 + b · 10n)3 ≡ 9
(mod 10n+1).)

(c) Conclude that 9 has a cube root in Q10.

54. Compute the first 5 digits of the 10-adic expansions of the following rational
numbers:

13

2
,

1

389
,

17

19
, the 4 square roots of 41.

55. Let N > 1 be an integer. Prove that the series

∞
∑

n=1

(−1)n+1n! = 1! − 2! + 3! − 4! + 5! − 6! + · · · .

converges in QN .

56. Prove that −9 has a cube root in Q10 using the following strategy (this is a
special case of “Hensel’s Lemma”).

(a) Show that there is α ∈ Z such that α3 ≡ 9 (mod 103).

(b) Suppose n ≥ 3. Use induction to show that if α1 ∈ Z and α3 ≡ 9
(mod 10n), then there exists α2 ∈ Z such that α3

2 ≡ 9 (mod 10n+1).
(Hint: Show that there is an integer b such that (α1 + b10n)3 ≡ 9
(mod 10n+1).)

(c) Conclude that 9 has a cube root in Q10.

57. Let N > 1 be an integer.

(a) Prove that QN is equipped with a natural ring structure.

(b) If N is prime, prove that QN is a field.

58. (a) Let p and q be distinct primes. Prove that Qpq
∼= Qp × Qq.

(b) Is Qp2 isomorphic to either of Qp × Qp or Qp?

59. Prove that every finite extension of Qp “comes from” an extension of Q, in
the following sense. Given an irreducible polynomial f ∈ Qp[x] there exists an
irreducible polynomial g ∈ Q[x] such that the fields Qp[x]/(f) and Qp[x]/(g)
are isomorphic. [Hint: Choose each coefficient of g to be sufficiently close to
the corresponding coefficient of f , then use Hensel’s lemma to show that g
has a root in Qp[x]/(f).]
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60. Find the 3-adic expansion to precision 4 of each root of the following polyno-
mial over Q3:

f = x3 − 3x2 + 2x + 3 ∈ Q3[x].

Your solution should conclude with three expressions of the form

a0 + a1 · 3 + a2 · 32 + a3 · 33 + O(34).

61. (a) Find the normalized Haar measure of the following subset of Q+
7 :

U = B

(

28,
1

50

)

=

{

x ∈ Q7 : |x − 28| <
1

50

}

.

(b) Find the normalized Haar measure of the subset Z∗
7 of Q∗

7.

62. Suppose that K is a finite extension of Qp and L is a finite extension of Qq,
with p 6= q and assume that K and L have the same degree. Prove that there
is a polynomial g ∈ Q[x] such that Qp[x]/(g) ∼= K and Qq[x]/(g) ∼= L. [Hint:
Combine your solution to 59 with the weak approximation theorem.]

63. Prove that the ring C defined in Section 9 really is the tensor product of A
and B, i.e., that it satisfies the defining universal mapping property for tensor
products. Part of this problem is for you to look up a functorial definition of
tensor product.

64. Find a zero divisor pair in Q(
√

5) ⊗Q Q(
√

5).

65. (a) Is Q(
√

5) ⊗Q Q(
√
−5) a field?

(b) Is Q( 4
√

5) ⊗Q Q( 4
√
−5) ⊗Q Q(

√
−1) a field?

66. Suppose ζ5 denotes a primitive 5th root of unity. For any prime p, consider
the tensor product Qp ⊗Q Q(ζ5) = K1 ⊕ · · · ⊕ Kn(p). Find a simple formula
for the number n(p) of fields appearing in the decomposition of the tensor
product Qp ⊗Q Q(ζ5). To get full credit on this problem your formula must
be correct, but you do not have to prove that it is correct.

67. Suppose ‖ · ‖1 and ‖ · ‖2 are equivalent norms on a finite-dimensional vector
space V over a field K (with valuation | · |). Carefully prove that the topology
induced by ‖ · ‖1 is the same as that induced by ‖ · ‖2.

68. Suppose K and L are number fields (i.e., finite extensions of Q). Is it possible
for the tensor product K ⊗Q L to contain a nilpotent element? (A nonzero
element a in a ring R is nilpotent if there exists n > 1 such that an = 0.)

69. Let K be the number field Q( 5
√

2).

(a) In how many ways does the 2-adic valuation | · |2 on Q extend to a valu-
ation on K?
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(b) Let v = | · | be a valuation on K that extends | · |2. Let Kv be the
completion of K with respect to v. What is the residue class field F of
Kv?

70. Prove that the product formula holds for F(t) similar to the proof we gave
in class using Ostrowski’s theorem for Q. You may use the analogue of Os-
trowski’s theorem for F(t), which you had on a previous homework assignment.
(Don’t give a measure-theoretic proof.)

71. Prove Theorem 20.3.5, that “The global field K is discrete in AK and the
quotient A+

K/K+ of additive groups is compact in the quotient topology.” in
the case when K is a finite extension of F(t), where F is a finite field.
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