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We start with a quick review of last time:
Suppose K is a number field that is Galois over Q with group G =

Gal(K/Q). Fix a prime p ⊂ OK lying over p ∈ Z. The decomposition group
of p is the subgroup

Dp = {σ ∈ G : σ(p) = p} ≤ G.

Recall that G acts on the set of primes p lying over p. Thus the decompo-
sition group is the stabilizer in G of p. The orbit-stabilizer theorem implies
that [G : Dp] equals the orbit of p, which we proved last time equals the
number g of primes lying over p, so [G : Dp] = g. (This clarifies the key
point that was confusing me last time.)

We proved:

Lemma 0.1. The decomposition subgroups Dp corresponding to primes p

lying over a given p are all conjugate in G.

Proposition 0.2. The fixed field KD of D

KD = {a ∈ K : σ(a) = a for all σ ∈ D}

is the smallest subfield L ⊂ K such that p ∩ L does not split in K (i.e.,
g(K/L) = 1).

Proposition 0.3. Let L = KD for our fixed prime p and Galois extension
K/Q. Let e = e(L/Q), f = f(L/Q), g = g(L/Q) be for L/Q and p. Then
e = f = 1 and g = [L : Q], i.e., p does not ramify and splits completely
in L. Also f(K/Q) = f(K/L) and e(K/Q) = e(K/L).
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There is a natural reduction homomorphism

ϕ : Dp → Gal(Fp/Fp), (0.1)

and we proved last time that it is surjective. The key point was that the
reduction of the characteristic polynomial of a certain lift of a generator of
Fp was in Fp[x]. Now, back to our story....

1 The Inertia Group

Definition 1.1 (Inertia Group). The inertia group is the kernel Ip of
Dp → Gal(Fp/Fp).

Thus we have an exact sequence of groups

1 → Ip → Dp → Gal(Fp/Fp) → 1. (1.1)

The inertia group is a measure of how p ramifies in K.

Corollary 1.2. We have #Ip = e(p/p), where p is a prime of K over p.

Proof. The sequence (1.1) implies that #Ip = #Dp/f(K/Q). Applying
Propositions 0.2–0.3, we have

#Dp = [K : L] =
[K : Q]

g
=

efg

g
= ef.

Dividing both sides by f = f(K/Q) proves the corollary.

We have the following characterization of Ip.

Proposition 1.3. Let K/Q be a Galois extension with group G, let p be a
prime lying over a prime p. Then

Ip = {σ ∈ G : σ(a) = a (mod p) for all a ∈ OK}.

Proof. By definition Ip = {σ ∈ Dp : σ(a) = a (mod p) for all a ∈ OK},
so it suffices to show that if σ 6∈ Dp, then there exists a ∈ OK such that
σ(a) = a (mod p). If σ 6∈ Dp, we have σ−1(p) 6= p, so since both are
maximal ideals, there exists a ∈ p with a 6∈ σ−1(p), i.e., σ(a) 6∈ p. Thus
σ(a) 6≡ a (mod p).
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2 Frobenius Elements

Suppose that K/Q is a finite Galois extension with group G and p is a prime
such that e = 1 (i.e., an unramified prime). Then I = Ip = 1 for any p | p,
so the map ϕ of (0.1) is a canonical isomorphism Dp

∼= Gal(Fp/Fp). The
group Gal(Fp/Fp) is cyclic with canonical generator Frobp. The Frobenius
element corresponding to p is Frobp ∈ Dp. It is the unique element of G
such that for all a ∈ OK we have

Frobp(a) ≡ ap (mod p).

(To see this argue as in the proof of Proposition 1.3.) Just as the primes p

and decomposition groups D are all conjugate, the Frobenius elements over
a given prime are conjugate.

Proposition 2.1. For each σ ∈ G, we have

Frobσp = σ Frobp σ−1.

In particular, the Frobenius elements lying over a given prime are all con-
jugate.

Proof. Fix σ ∈ G. For any a ∈ OK we have Frobp(σ
−1(a)) − σ−1(a) ∈ p.

Multiply by σ we see that σ Frobp(σ
−1(a)) − a ∈ σp, which proves the

proposition.

Thus the conjugacy class of Frobp in G is a well defined function of p. For
example, if G is abelian, then Frobp does not depend on the choice of p lying

over p and we obtain a well defined symbol
(

K/Q
p

)

= Frobp ∈ G called the

Artin symbol. It extends to a map from the free abelian group on unramified
primes to the group G (the fractional ideals of Z). Class field theory (for Q)
sets up a natural bijection between abelian Galois extensions of Q and cer-
tain maps from certain subgroups of the group of fractional ideals for Z.
We have just described one direction of this bijection, which associates to
an abelian extension the Artin symbol (which induces a homomorphism).
The Kronecker-Weber theorem asserts that the abelian extensions of Q are
exactly the subfields of the fields Q(ζn), as n varies over all positive inte-
gers. By Galois theory there is a correspondence between the subfields of
Q(ζn) (which has Galois group (Z/nZ)∗) and the subgroups of (Z/nZ)∗.
Giving an abelian extension of Q is exactly the same as giving an integer n
and a subgroup of (Z/nZ)∗. Even more importantly, the reciprocity map

p 7→
(

Q(ζn)/Q
p

)

is simply p 7→ p ∈ (Z/nZ)∗. This is a nice generalization of
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quadratic reciprocity: for Q(ζn), the efg for a prime p depends in a simple
way on nothing but p mod n.

3 Galois Representations and a Major Conjecture

of Artin

The Galois group Gal(Q/Q) is an object of central importance in number
theory, and I’ve often heard that in some sense number theory is the study
of this group. A good way to study a group is to study how it acts on various
objects, that is, to study its representations.

Endow Gal(Q/Q) with the topology which has as a basis of open neigh-
borhoods of the origin the subgroups Gal(Q/K), where K varies over finite
Galois extensions of Q. (Note: This is not the topology got by taking as a
basis of open neighborhoods the collection of finite-index normal subgroups
of Gal(Q/Q).) Fix a positive integer n and let GLn(C) be the group of
n × n invertible matrices over C with the discrete topology.

Definition 3.1. A complex n-dimensional representation of Gal(Q/Q) is a
continuous homomorphism

ρ : Gal(Q/Q) → GLn(C).

For ρ to be continuous means that there is a finite Galois extension K/Q
such that ρ factors through Gal(K/Q):

Gal(Q/Q)
ρ

//

''NNNNNNNNNNN
GLn(C)

Gal(K/Q)

ρ′

88qqqqqqqqqqq

For example, one could take K to be the fixed field of ker(ρ). (Note that
continous implies that the image of ρ is finite, but using Zorn’s lemma one
can show that there are homomorphisms Gal(Q/Q) → {±1} with finite
image that are not continuous, since they do not factor through the Galois
group of any finite Galois extension.)

Fix a Galois representation ρ and a finite Galois extension K such that ρ
factors through Gal(K/Q). For each prime p ∈ Z that is not ramified in K,
there is an element Frobp ∈ Gal(K/Q) that is well-defined up to conjugation
by elements of Gal(K/Q). This means that ρ′(Frobp) ∈ GLn(C) is well-
defined up to conjugation. Thus the characteristic polynomial Fp ∈ C[x] is
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a well-defined invariant of p and ρ. Let

Rp(x) = xdeg(Fp) · Fp(1/x) = 1 + · · · + Det(Frobp) · x
deg(Fp)

be the polynomial obtain by reversing the order of the coefficients of Fp.
Following E. Artin, set

L(ρ, s) =
∏

p unramified

1

Rp(p−s)
. (3.1)

(Note: Please change what’s in the handout for day13 to (3.1).) We view.
L(ρ, s) as a function of a single complex variable s. One can prove that
L(ρ, s) is holomorphic on some right half plane, and extends to a meromor-
phic function on all C.

Conjecture 3.2 (Artin). The L-series of any continuous representation
Gal(Q/Q) → GLn(C) is an entire function on all C, except possibly at 1.

This conjecture asserts that there is some way to analytically continue
L(ρ, s) to the whole complex plane, except possibly at 1. (A standard fact
from complex analysis is that this analytic continuation must be unique.)
The simple pole at s = 1 corresponds to the trivial representation (the
Riemann zeta function), and if n ≥ 2 and ρ is irreducible, then the conjecture
is that ρ extends to a holomorphic function on all C.

The conjecture follows from class field theory for Q when n = 1. When
n = 2 and the image of ρ in PGL2(C) is a solvable group, the conjecture is
known, and is a deep theorem of Langlands and others (see Base Change for
GL2), which played a crucial roll in Wiles’s proof of Fermat’s Last Theorem.
When n = 2 and the projective image is not solvable, the only possibility
is that the projective image is isomorphic to the alternating group A5. Be-
cause A5 is the symmetric group of the icosahedron, these representations
are called icosahedral. In this case, Joe Buhler’s Harvard Ph.D. thesis gave
the first example, there is a whole book (Springer Lecture Notes 1585, by
Frey, Kiming, Merel, et al.), which proves Artin’s conjecture for 7 icosahe-
dral representation (none of which are twists of each other). Kevin Buzzard
and I (Stein) proved the conjecture for 8 more examples. Subsequently,
Richard Taylor, Kevin Buzzard, and Mark Dickinson proved the conjecture
for an infinite class of icosahedral Galois representations (disjoint from the
examples). The general problem for n = 2 is still open, but perhaps Taylor
and others are still making progress toward it.
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4 Absolute Values

We will now move onto something different: absolute values, completions,
local fields, adeles, and ideles. A common technique in mathematics is to
“reduce to the local case” in order to gain a much clearer understanding of
what is going on, and the methods we will introduce next, which are basic
to much modern number theory, allow us to do that for number fields.

Fix a field K for the rest of this section.

Definition 4.1 (Absolute Value). An absolute value on K is a map ‖·‖ :
K → R such that there is some α > 0 such that for all a, b ∈ K, we have

• ‖a‖ ≥ 0 and ‖a‖ = 0 if and only if a = 0,

• ‖a‖ · ‖b‖ = ‖ab‖, and

• ‖a + b‖α ≤ ‖a‖α + ‖b‖α.

Example 4.2. Suppose σ : K ↪→ C. Let ‖a‖ = |σ(a)|, where |σ(a)| is the
usual absolute value on C.

On any field K, the trivial absolute value is the one given by

‖a‖ =

{

0 if a = 0

1 if a 6= 0.

Definition 4.3 (Places). Two absolute values ‖·‖1 and ‖·‖2 on a field K
are equivalent if there exists a c > 0 such that ‖·‖1 = ‖·‖c

2. A place for a
field K is an equivalence class of absolute values on K.

Recall that a metric space is a set X equipped with a metric d : X×X →
R≥0, which is a function such that there is an α so that for all x, y, z ∈ X
we have d(x, x) = 0, d(x, y) = d(y, x), d(x, z)α ≤ d(x, y)α + d(y, z)α, and
d(x, y) = 0 =⇒ x = y. A metric on a space induces a topology, in which a
basis of open sets is the collection of all open balls

B(a, r) = {x ∈ K : d(x, a) < r}.

If ‖·‖ is an absolute value on a field K, then d(x, y) = ‖x − y‖ is a
metric on K, and hence ‖·‖ induces a topology on K. For example, the
trivial absolute value induces the discrete topology, since every point set is
open, as B(a, 1

2) = {a}.

Proposition 4.4. Two valuations ‖·‖1 and ‖·‖2 are equivalent if and only
if they induce the same topology on K.
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Proof. (=⇒) First suppose ‖·‖1 and ‖·‖2 are equivalent. Then there is a
c > 0 such that ‖·‖1 = ‖·‖c

2. Thus

B1(a, r) = {x ∈ K : ‖x − a‖1 < r}

= {x ∈ K : ‖x − a‖2 < r1/c} = B2(a, r1/c).

Thus the collection of all open balls for ‖·‖1 is exactly the same as the set
of open balls for ‖·‖2, hence the topologies are the same.

(⇐=) Next suppose ‖·‖1 and ‖·‖2 induce the same topology on K. To
deduce that the two absolute values are equivalent, we prove a lemma.

Lemma 4.5. For any sequence {xn} in K we have

‖xn‖1 → 0 ⇐⇒ ‖xn‖2 → 0.

Proof. It suffices to prove that if ‖xn‖1 → 0 then ‖xn‖2 → 0, since the proof
of the other implication is the same. Let ε > 0. The topologies induced by
the two absolute values are the same, so B2(0, ε) can be covered by open
balls B1(ai, ri). One of these open balls B1(a, r) contains 0, and using the
triangle inequality we see that there is ε′ > 0 such that

B1(0, ε
′) ⊂ B1(a, r) ⊂ B2(0, ε).

Since ‖xn‖1 → 0, there exists N such that for n ≥ N we have ‖xn‖1 < ε′.
For such n, we have xn ∈ B1(0, ε

′), so xn ∈ B2(0, ε), so ‖xn‖2 < ε. Thus
‖xn‖2 → 0.

If x ∈ K and i = 1, 2, then ‖xn‖i → 0 if and only if ‖x‖n
i → 0, which is

the case if and only if ‖x‖i < 1. Thus Lemma 4.5 implies that ‖x‖1 < 1 if
and only if ‖x‖2 < 1.

If there is no nonzero x ∈ K with ‖x‖1 < 1, then ‖x‖1 = 1 for all
x 6= 0 (otherwise ‖x‖1 > 1 =⇒ ‖1/x‖1 < 1), so ‖·‖1 induces the discrete
topology. Since ‖·‖1 and ‖·‖2 induce the same topology, ‖·‖2 also induces
the discrete topology. If ‖·‖2 is nontrivial then there exists a nonzero x ∈ K
with ‖x‖2 < 1. Then ‖xn‖2 → 0, so for all ε > 0 there exists N such that
for n ≥ N we have xn ∈ B(0, ε). In the discrete topology every point is
open, so there exists ε > 0 such that B(0, ε) = {0}. But then xn = 0 for n
sufficiently large, hence x = 0, a contradiction. This completes the proof of
the proposition when ‖·‖1 is trivial.

We may assume there is a nonzero x0 ∈ K with ‖x0‖1 < 1. As mentioned
above ‖x0‖2 < 1 as well. We will use this x0 to show that ‖·‖1 and ‖·‖2

are equivalent. Let γ > 0 be the real number such that ‖x0‖2 = ‖x0‖
γ
1 , so
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γ = log(‖x0‖2)/ log(‖x0‖1). For any nonzero x ∈ K with ‖x‖1 < 1, let λ be

such that ‖x‖1 = ‖x0‖
λ
1 . We now prove that ‖x‖2 = ‖x0‖

λ
2 . If a/b is any

nonzero rational number with a/b > λ, then

∥

∥

∥

∥

xa
0

xb

∥

∥

∥

∥

1

=
‖x0‖

a
1

‖x‖b
1

=
‖x0‖

a
1

‖x0‖
λb
1

= ‖x0‖
a−λb
1 < 1

(since a−λb > 0 and ‖x0‖1 < 1), so
∥

∥xa
0/x

b
∥

∥

2
< 1 also. Hence ‖x0‖

a
2 < ‖x‖b

2,

so ‖x0‖
a/b
2 < ‖x‖2. Likewise, if a/b is a nonzero rational number with

a/b < λ, arguing as above we see that ‖x0‖
a/b
2 > ‖x‖2. Combining these

two facts, we see that ‖x‖2 = ‖x0‖
λ
2 . Thus

‖x‖2 = ‖x0‖
λ
2 = ‖x0‖

cλ
1 = ‖x‖c

1 ,

hence ‖·‖1 is equivalent to ‖·‖2, as claimed.

Assume henceforth that K has characteristic 0.

Definition 4.6 (Archimedean). An absolute value is archimedean if there
is an integer n ∈ K such that ‖n‖ > 1. An absolute value is non-archimedean
if it is not archimedean.

Proposition 4.7. Let K be a number field. The archimedean valuations
are all of the form ‖a‖ = |σ(a)|c, where σ : K ↪→ C is an embedding, c > 0,
and | · | is the usual absolute value on C.

Proof.

Proposition 4.8. Suppose ‖·‖ is a non-archimedean valuation on a number
field K. Then there is a prime p of OK and a constant C > 1 such that

‖a‖ = C− ordp(a),

where ordp(a) is the largest power of p that divides the ideal aOK . (Note
that when a = 0, ‖a‖ = C−∞ = 0, as expected.)

5 Completions and Local Fields

Completion of K at p. Hensel’s Lemma. Weak Approximation.
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