
Math 129: Algebraic Number Theory

Lecture 7

William Stein

Thursday, February 26, 2004

In this lecture we will prove the Chinese Remainder Theorem for rings of integers,
deduce several surprising and useful consequences, then learn about discriminants,
and finally norms of ideals. We will also define the class group of OK and state the
main theorem about it. The tools we develop today illustrate the power of what we
have already proved about rings of integers, and will be used over and over again to
prove other deeper results in algebraic number theory. It is essentially to understand
everything we discuss today very well.

1 The Chinese Remainder Theorem

Recall that the Chinese Remainder Theorem from elementary number theory asserts
that if n1, . . . , nr are integers that are coprime in pairs, and a1, . . . , ar are integers,
then there exists an integer a such that a ≡ ai (mod ni) for each i = 1, . . . , r. In
terms of rings, the Chinese Remainder Theorem asserts that the natural map

Z/(n1 · · ·nr)Z → (Z/n1Z) ⊕ · · · ⊕ (Z/nrZ)

is an isomorphism. This result generalizes to rings of integers of number fields.

Lemma 1.1. If I and J are coprime ideals in OK, then I ∩ J = IJ .

Proof. The ideal I ∩ J is the largest ideal of OK that is divisible by (contained in)
both I and J . Since I and J are coprime, I ∩ J is divisible by IJ , i.e., I ∩ J ⊂ IJ .
By definition of ideal IJ ⊂ I ∩ J , which completes the proof.

Note: This lemma is true for any ring R and ideals I, J ⊂ R such that I+J = R.
For the general proof, choose x ∈ I and y ∈ J such that x+ y = 1. If c ∈ I ∩ J then

c = c · 1 = c · (x+ y) = cx+ cy ∈ IJ + IJ = IJ,

so I ∩ J ⊂ IJ , and the other inclusion is obvious by definition.
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Theorem 1.2 (Chinese Remainder Theorem). Suppose I1, . . . , Ir are ideals of

OK such that Im + In = OK for any m 6= n. Then the natural homomorphism

OK →
⊕r

n=1
(OK/In) induces an isomorphism

OK/

(

r
∏

n=1

In

)

→
r
⊕

n=1

(OK/In).

Thus given any an ∈ In then there exists a ∈ OK such that a ≡ an (mod In) for

n = 1, . . . , r.

Proof. First assume that we know the theorem in the case when the In are powers
of prime ideals. Then we can deduce the general case by noting that each OK/In is
isomorphic to a product

∏OK/p
em

m , where In =
∏

pem

m , and OK/(
∏

n In) is isomor-
phic to the product of the OK/p

e, where the p and e run through the same prime
powers as appear on the right hand side.

It thus suffices to prove that if p1, . . . , pr are distinct prime ideals of OK and
e1, . . . , er are positive integers, then

ψ : OK/

(

r
∏

n=1

p
en

n

)

→
r
⊕

n=1

(OK/p
en

n )

is an isomorphism. Let ϕ : OK → ⊕r
n=1(OK/p

en

n ) be the natural map induced by
reduction mod pen

n . Then kernel of ϕ is ∩r
n=1p

en

n , which by Lemma 1.1 is equal to
∏r

n=1
pen

n , so ψ is injective. Note that the projection OK → OK/p
en

n of ϕ onto each
factor is obviously surjective, so it suffices to show that the element (1, 0, . . . , 0) is in
the image of ϕ (and the similar elements for the other factors). Since J =

∏r

n=2
pen

n

is not divisible by p1, hence not contained in p1, there is an element a ∈ J with
a 6∈ p1. Since p1 is maximal, OK/p1 is a field, so there exists b ∈ OK such that
ab = 1 − c, for some c ∈ p1. Then

1 − cn1 = (1 − c)(1 + c+ c2 + · · · + cn1−1) = ab(1 + c+ c2 + · · · + cn1−1)

is congruent to 0 mod pen

n for each n ≥ 2 since it is in
∏r

n=2
pen

n , and it is congruent
to 1 modulo p

n1

1 .
Note: Surjectivity is easy to prove and holds for any ring. Suppose R is a ring

and I, J are ideals in R such that I + J = R. Choose x ∈ I and y ∈ J such that
x + y = 1. Then x = 1 − y maps to (0, 1) in R/I ⊕ R/J and y = 1 − x maps to
(1, 0) in R/I ⊕ R/J . Thus the map R/(I ∩ J) → R/I ⊕ R/J is surjective. Also, as
mentioned above, R/(I ∩ J) = R/(IJ).

Example 1.3. The MAGMA command ChineseRemainderTheorem implements the
algorithm suggested by the above theorem. In the following example, we compute
a prime over (3) and a prime over (5) of the ring of integers of Q( 3

√
2), and find an

element of OK that is congruent to 3
√

2 modulo one prime and 1 modulo the other.
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> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2);

> OK := MaximalOrder(K);

> I := Factorization(3*OK)[1][1];

> J := Factorization(5*OK)[1][1];

> I;

Prime Ideal of OK

Two element generators:

[3, 0, 0]

[4, 1, 0]

> J;

Prime Ideal of OK

Two element generators:

[5, 0, 0]

[7, 1, 0]

> b := ChineseRemainderTheorem(I, J, OK!a, OK!1);

> b - a in I;

true

> b - 1 in J;

true

> K!b;

-4

The element found by the Chinese Remainder Theorem algorithm in this case is −4.

The following lemma is a nice application of the Chinese Remainder Theorem.
We will use it to prove that every ideal of OK can be generated by two elements.
Suppose I is a nonzero integral ideals of OK . If a ∈ I, then (a) ⊂ I, so I divides
(a) and the quotient (a)/I is an integral ideal. The following lemma asserts that (a)
can be chosen so the quotient (a)/I is coprime to any given ideal.

Lemma 1.4. If I, J are nonzero integral ideals in OK, then there exists an a ∈ I
such that (a)/I is coprime to J .

Proof. Let p1, . . . , pr be the prime divisors of J . For each n, let vn be the largest
power of pn that divides I. Choose an element an ∈ pvn

n that is not in pvn+1
n (there is

such an element since pvn

n 6= pvn+1
n , by unique factorization). By Theorem 1.2, there

exists a ∈ OK such that
a ≡ an (mod p

vn+1

n )

for all n = 1, . . . , r and also

a ≡ 0 (mod I/
∏

p
vn

n ).

(We are applying the theorem with the coprime integral ideals pvn+1
n , for n = 1, . . . , r

and the integral ideal I/
∏

pvn

n .)
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To complete the proof we must show that (a)/I is not divisible by any pn, or
equivalently, that the pvn

n exactly divides (a). Because a ≡ an (mod pvn+1
n ), there

is b ∈ pvn+1
n such that a = an + b. Since an ∈ pvn

n , it follows that a ∈ pvn

n , so pvn

n

divides (a). If a ∈ pvn+1
n , then an = a− b ∈ pvn+1

n , a contradiction, so pvn+1
n does not

divide (a), which completes the proof.

Suppose I is a nonzero ideal of OK . As an abelian group OK is free of rank equal
to the degree [K : Q] of K, and I is of finite index in OK , so I can be generated as an
abelian group, hence as an ideal, by [K : Q] generators. The following proposition
asserts something much better, namely that I can be generated as an ideal in OK

by at most two elements.

Proposition 1.5. Suppose I is a fractional ideal in the ring OK of integers of a

number field. Then there exist a, b ∈ K such that I = (a, b).

Proof. If I = (0), then I is generated by 1 element and we are done. If I is not an
integral ideal, then there is x ∈ K such that xI is an integral ideal, and the number
of generators of xI is the same as the number of generators of I, so we may assume
that I is an integral ideal.

Let a be any nonzero element of the integral ideal I. We will show that there is
some b ∈ I such that I = (a, b). Let J = (b). By Lemma 1.4, there exists a ∈ I
such that (a)/I is coprime to (b). The ideal (a, b) = (a)+(b) is the greatest common
divisor of (a) and (b), so I divides (a, b), since I divides both (a) and (b). Suppose
pn is a prime power that divides (a, b), so pn divides both (a) and (b). Because (a)/I
and (b) are coprime and pn divides (b), we see that pn does not divide (a)/I, so pn

must divide I. Thus (a, b) divides I, so (a, b) = I as claimed.

We can also use Theorem 1.2 to determine the OK-module structure of the suc-
cessive quotients pn/pn+1.

Proposition 1.6. Let p be a nonzero prime ideal of OK, and let n ≥ 0 be an integer.

Then pn/pn+1 ∼= OK/p as OK-modules.

Proof. (Compare page 13 of Swinnerton-Dyer.) Since pn 6= pn+1 (by unique factor-
ization), we can fix an element b ∈ pn such that b 6∈ pn+1. Let ϕ : OK → pn/pn+1

be the OK-module morphism defined by ϕ(a) = ab. The kernel of ϕ is p since
clearly ϕ(p) = 0 and if ϕ(a) = 0 then ab ∈ pn+1, so pn+1 | (a)(b), so p | (a), since
pn+1 does not divide (b). Thus ϕ induces an injective OK-module homomorphism
OK/p ↪→ pn/pn+1.

It remains to show that ϕ is surjective, and this is where we will use Theorem 1.2.
Suppose c ∈ pn. By Theorem 1.2 there exists d ∈ OK such that

d ≡ c (mod p
n+1) and d ≡ 0 (mod (b)/pn).

We have pn | (c) since c ∈ pn and (b)/pn | (d) by the second displayed condition, so
(b) = pn · (b)/pn | (d), hence d/b ∈ OK . Finally

ϕ

(

d

b

)

=
d

b
· b (mod p

n+1) = b (mod pn+1) = c (mod pn+1),
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so ϕ is surjective.

2 Discriminants

(Compare pages 3–4 of Swinnerton-Dyer.)
Let K be a number field of degree n. Then there are n embeddings

σ1, . . . , σn : K ↪→ C.

Let σ : K → Cn be the product map a 7→ (σ1(a), . . . , σn(a)). Let V = Rσ(K) be
the R-span of σ(K) inside Cn.

Proposition 2.1. The R-vector space V = Rσ(K) spanned by the image σ(K) has

dimension n.

Proof. We prove this by showing that the image σ(OK) is discrete. If σ(OK) were
not discrete it would contain elements all of whose coordinates are simultaneously
arbitrarily small. The norm of an element a ∈ OK is the product of the entries of
σ(a), so the norms of nonzero elements of OK would go to 0. This is a contradiction,
since the norms of elements of OK are integers.

The fact that σ(OK) is discrete in Cn implies that Rσ(OK) has dimension equal
to the rank n of σ(OK), as claimed. This last assertion is not obvious, and requires
observing that if L if a free abelian group that is discrete in a real vector space W
and RL = W , then the rank of L equals the dimension of W . Here’s why this is
true. If x1, . . . , xm ∈ L are a basis for RL, then Zx1 + · · · + Zxm has finite index
in L, since otherwise there would be infinitely many elements of L in a fundamental
domain for Zx1 + · · · + Zxm, which would contradict discreteness of L. Thus the
rank of L is m = dim(RL), as claimed.

Since σ(OK) is a lattice in V , the volume of V/σ(OK) is finite. Suppose w1, . . . , wn

is a basis for OK . Then if A is the matrix whose ith row is σ(wi), then | det(A)| is
the volume of V/σ(OK). (Take this determinant as the definition of the volume—we
won’t be using “volume” here except in a formal motivating way.)

Example 2.2. Let OK = Z[i] be the ring of integers of K = Q(i). Then w1 = 1,
w2 = i is a basis for OK . The map σ : K → C2 is given by

σ(a+ bi) = (a+ bi, a− bi) ∈ C2.

The image σ(OK) is spanned by (1, 1) and (i,−i). The volume determinant is
∣

∣

∣

∣

(

1 1
i −i

)
∣

∣

∣

∣

= | − 2i| = 2.

Let OK = Z[
√

2] be the ring of integers of K = Q(
√

2). The map σ is

σ(a+ b
√

2) = (a+ b
√

2, a− b
√

2) ∈ R2,
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and

A =

(

1 1√
2 −

√
2

)

,

which has determinant −2
√

2, so the volume of the ring of integers is 2
√

2.

As the above example illustrates, the volume of the ring of integers is not a
great invariant of OK . For example, it need not be an integer. If we consider
det(A)2 instead, we obtain a number that is a well-defined integer which can be
either positive or negative. Note that

det(A)2 = det(AA) = det(AAt) = det

(

∑

k=1,...,n

σk(wi)σk(wj)

)

= det(Tr(wiwj)),

so det(A)2 can be defined purely in terms of the trace without mentioning the em-
beddings σi. Also, changing the basis for OK is the same as left multiplying A by
an integer matrix U of determinant ±1, which does not change the squared deter-
minant, since det(UA)2 = det(U)2 det(A)2 = det(A)2. Thus det(A)2 is well defined,
as does not depend on the choice of basis.

Definition 2.3 (Discriminant). Suppose a1, . . . , an is any Q-basis of K. The
discriminant of a1, . . . , an is

Disc(a1, . . . , an) = det(Tr(aiaj)i,j=1,n) ∈ Q.

The discriminant Disc(O) of an order O in OK is the discriminant of any basis
for O. The discriminant Disc(K) of the number field K is the discrimimant of OK

(Warning: MAGMA does not define Disc(K) this way!!).

The following proposition asserts that the discriminant of an order O in OK is
bigger than disc(OK) by the square of the index.

Proposition 2.4. Suppose O is an order in OK. Then

Disc(O) = [OK : O]2 · Disc(OK).

Proof. Let A be a matrix whose rows are the images via σ of a basis for OK , and let B
be a matrix whose rows are the images via σ of a basis for O. Since O ⊂ OK has finite
index, there is an integer matrix C such that CA = B, and | det(C)| = [OK : O].
Then

Disc(O) = det(B)2 = det(CA)2 = det(C)2 det(A)2 = [OK : O]2 · Disc(OK).

This result is already enough to give a (horrible) algorithm for computing OK .
Given K, find some order O ⊂ K, and compute d = Disc(O). Write d = s · f 2,
where f 2 is the largest square that divides d. Then the index of O in OK is a divisor
of f , and we can tediously enumerate all rings R with O ⊂ R ⊂ K and [R : O] | f ,
until we find the largest one all of whose elements are integral.
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Example 2.5. Consider the ring OK = Z[(1+
√

5)/2] of integers of K = Q(
√

5). The
discriminant of the basis 1, a = (1 +

√
5)/2 is

Disc(OK) =

∣

∣

∣

∣

(

2 1
1 3

)∣

∣

∣

∣

= 5.

One can show that the discriminant of a quadratic field determines that field.

3 Norms of Ideals

In this section we extend the notion of norm to ideals. This will be helpful in
understanding class groups later.

Definition 3.1 (Lattice Index). If L and M are two lattices in vector space V ,
then the lattice index [L : M ] is by definition the absolute value of the determinant
of any linear automorphism of V (e.g., invertible matrix after choice of basis for V )
that sends a basis of L onto a basis for M .

The lattice index has the following properties:

• If M ⊂ L, then [L : M ] = #(L/M).

• If M,L,N are lattices then [L : N ] = [L : M ] · [M : N ].

Definition 3.2 (Norm of Fractional Ideal). Suppose I is a fractional ideal of
OK . The norm of I is the lattice index

Norm(I) = [OK : I] ∈ Q≥0,

or 0 if I = 0.

Note that if I is an integral ideal, then Norm(I) = #(OK/I).

Lemma 3.3. Suppose a ∈ K and I is an integral ideal. Then

Norm(aI) = |Norm(a)|Norm(I).

Proof. By properties of the lattice index mentioned above we have

[OK : aI] = [OK : I] · [I : aI] = Norm(I) · |Norm(a)|.
Here we have used that [I : aI] = |Norm(a)|, which is because left multiplication `a is
an automorphism of K that sends I onto aI, so [I : aI] = | det(`a)| = |Norm(a)|.
Proposition 3.4. If I and J are fractional ideals, then

Norm(IJ) = Norm(I) · Norm(J).

Proof. By Lemma 3.3, it suffices to prove this when I and J are integral ideals. If I
and J are coprime, then Theorem 1.2 implies that Norm(IJ) = Norm(I) Norm(J).
Thus we reduce to the case when I = pm and J = pk for some prime ideal p. By
Proposition 1.6, the maximal filtration of pn given by powers of p has successive
quotients isomorphic to OK/p, so pulling this filtration back to OK/p

n we see that
#(OK/p

n) = #(OK/p)n, which proves that Norm(pn) = Norm(p)n.
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4 The Class Group

We have seen examples in which OK is not a unique factorization domain. If OK is
a principal ideal domain, then it is a unique factorization domain, so it is of interest
to understand how badly OK fails to be a unique factorization domain. The class
group of OK measures this failure. As one sees in a course on Class Field Theory,
the class group and its generalizations also yield deep incite into the possible abelian
Galois extensions of K.

Definition 4.1 (Class Group). Let OK be the ring of integers of a number field K.
The class group CK of K is the group of nonzero fractional ideals modulo the sugroup
of principal fractional ideals (a), for a ∈ K.

Note that if we let Div(K) denote the group of nonzero fractional ideals, then
there is an exact sequence

0 → O∗
K → K∗ → Div(K) → CK → 0.

A basic theorem in algebraic number theory is that the class group CK is finite,
which follows from the first part of the following theorem and the fact that there are
only finitely many ideals of norm less than a given integer.

Theorem 4.2 (Finiteness of the Class Group). Every ideal class in CK contains

an integral ideal of norm at most

√

|Disc(K)| ·
(

4

π

)s
n!

nn
,

where s is the number of complex conjugate embeddings of K. Thus the class group

CK of any number field K is finite.

The bound in the theorem is called the Minkowski bound, and I think it is the
best known unconditional general bound (though there are better bounds in certain
special cases). We will prove this important theorem on Tuesday, March 2.

Conjecture 4.3. There are infinitely many number fields K such that the class

group of K has order 1.
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