
Math 129: Algebraic Number Theory

Lecture 3

William Stein

Thursday, February 12, 2004

Announcements: I will be giving a talk on my research on computing with mod-
ular abelian varieties at 3pm in SC 507 today. If you’re interested in finding out
what my research is about, feel free to attend. The first half will be less technical,
and you could leave halfway through.

---------------------------------------------------------------------

Today we will learn about rings of algebraic integers and discuss some of their
properties.

1 Rings of Algebraic Integers

Fix an algebraic closure Q of Q. For example, Q could be the subfield of the complex
numbers C generated by all roots in C of all polynomials with coefficients in Q.

Much of this course is about algebraic integers.

Definition 1.1 (Algebraic Integer). An element α ∈ Q is an algebraic integer if
it is a root of some monic polynomial with coefficients in Z.

Definition 1.2 (Minimal Polynomial). The minimal polynomial of α ∈ Q is the
monic polynomial f ∈ Q[x] of least positive degree such that f(α) = 0.

The minimal polynomial of α divides any polynomial h such that h(α) = 0, for
the following reason. If h(α) = 0, use the division algorithm to write h = qf + r,
where 0 ≤ deg(r) < deg(f). We have r(α) = h(α) − q(α)f(α) = 0, so α is a root
of r. However, f is the polynomial of least positive degree with root α, so r = 0.

Lemma 1.3. If α is an algebraic integer, then the minimal polynomial of α has

coefficients in Z.

Proof. Suppose f ∈ Q[x] is the minimal polynomial of α and g ∈ Z[x] is a monic
integral polynomial such that g(α) = 0. As mentioned after the definition of minimal
polynomial, we have g = fh, for some h ∈ Q[x]. If f 6∈ Z[x], then some prime p
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divides the denominator of some coefficient of f . Let pi be the largest power of p
that divides some denominator of some coefficient f , and likewise let pj be the
largest power of p that divides some denominator of a coefficient of g. Then pi+jg =
(pif)(pjg), and if we reduce both sides modulo p, then the left hand side is 0 but the
right hand side is a product of two nonzero polynomials in Fp[x], hence nonzero, a
contradiction.

Proposition 1.4. An element α ∈ Q is integral if and only if Z[α] is finitely gen-

erated as a Z-module.

Proof. Suppose α is integral and let f ∈ Z[x] be the monic minimal polynomial of α
(that f ∈ Z[x] is Lemma 1.3). Then Z[α] is generated by 1, α, α2, . . . , αd−1, where d
is the degree of f . Conversely, suppose α ∈ Q is such that Z[α] is finitely generated,
say by elements f1(α), . . . , fn(α). Let d be any integer bigger than the degree of
any fi. Then there exist integers ai such that αd =

∑
aifi(α), hence α satisfies the

monic polynomial xd −
∑

aifi(x) ∈ Z[x], so α is integral.

The rational number α = 1/2 is not integral. Note that G = Z[1/2] is not a
finitely generated Z-module, since G is infinite and G/2G = 0.

Proposition 1.5. The set Z of all algebraic integers is a ring, i.e., the sum and

product of two algebraic integers is again an algebraic integer.

Proof. Suppose α, β ∈ Z, and let m,n be the degrees of the minimal polynomials
of α, β, respectively. Then 1, α, . . . , αm−1 span Z[α] and 1, β, . . . , βn−1 span Z[β] as
Z-module. Thus the elements αiβj for i ≤ m, j ≤ n span Z[α, β]. Since Z[α+β] is a
submodule of the finitely-generated module Z[α, β], it is finitely generated, so α + β
is integral. Likewise, Z[αβ] is a submodule of Z[α, β], so it is also finitely generated
and αβ is integral.

Recall that a number field is a subfield K of Q such that the degree [K : Q] :=
dimQ(K) is finite.

Definition 1.6 (Ring of Integers). The ring of integers of a number field K is
the ring

OK = K ∩ Z = {x ∈ K : x is an algebraic integer}.

The field Q of rational numbers is a number field of degree 1, and the ring of
integers of Q is Z. The field K = Q(i) of Gaussian integers has degree 2 and
OK = Z[i]. The field K = Q(

√
5) has ring of integers OK = Z[(1 +

√
5)/2]. Note

that the Golden ratio (1 +
√

5)/2 satisfies x2 − x − 1. According to MAGMA, the
ring of integers of K = Q( 3

√
9) is Z[ 3

√
3], where 3

√
3 = 1

3
( 3
√

9)2.

Definition 1.7 (Order). An order in OK is any subring R of OK such that the
quotient OK/R of abelian groups is finite. (Note that R must contain 1 because it
is a ring, and for us every ring has a 1.)
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As noted above, Z[i] is the ring of integers of Q(i). For every nonzero integer
n, the subring Z + niZ of Z[i] is an order. The subring Z of Z[i] is not an order,
because Z does not have finite index in Z[i]. Also the subgroup 2Z + iZ of Z[i] is
not an order because it is not a ring.

We will frequently consider orders in practice because they are often much easier
to write down explicitly than OK . For example, if K = Q(α) and α is an algebraic
integer, then Z[α] is an order in OK , but frequently Z[α] 6= OK .

Lemma 1.8. Let OK be the ring of integers of a number field. Then OK ∩ Q = Z
and QOK = K.

Proof. Suppose α ∈ OK ∩ Q with α = a/b in lowest terms and b > 0. The monic
minimal polynomial of α is bx − a ∈ Z[x], so if b 6= 1 then Lemma 1.3 implies that
α is not an algebraic integer, a contradiction.

To prove that QOK = K, suppose α ∈ K, and let f(x) ∈ Q[x] be the minimal
monic polynomial of α. For any positive integer d, the minimal monic polynomial
of dα is ddeg(f)f(x/d), i.e., the polynomial obtained from f(x) by multiplying the
coefficient of xdeg(f) by 1, multiplying the coefficient of xdeg(f)−1 by d, multiplying
the coefficient of xdeg(f)−2 by d2, etc. If d is the least common multiple of the
denominators of the coefficients of f , then the minimal monic polynomial of dα has
integer coefficients, so dα is integral and dα ∈ OK . This proves that QOK = K.

In the next two sections we will develop some basic properties of norms and
traces, and deduce further properties of rings of integers.

2 Norms and Traces

Before discussing norms and traces we introduce some notation for field extensions.
If K ⊂ L are number fields, we let [L : K] denote the dimension of L viewed as a
K-vector space. If K is a number field and a ∈ Q, let K(a) be the number field
generated by a, which is the smallest number field that contains a. If a ∈ Q then a
has a minimal polynomial f(x) ∈ Q[x], and the Galois conjugates of a are the roots
of f . For example the element

√
2 has minimal polynomial x2 − 2 and the Galois

conjugates of
√

2 are ±
√

2.
Suppose K ⊂ L is an inclusion of number fields and let a ∈ L. Then left multi-

plication by a defines a K-linear transformation `a : L → L. (The transformation `a

is K-linear because L is commutative.)

Definition 2.1 (Norm and Trace). The norm and trace of a from L to K are

normL/K(a) = det(`a) and trL/K(a) = tr(`a).

It is standard from linear algebra that determinants are multiplicative and traces
are additive, so for a, b ∈ L we have

normL/K(ab) = normL/K(a) · normL/K(b)
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and
trL/K(a + b) = trL/K(a) + trL/K(b).

Note that if f ∈ Q[x] is the characteristic polynomial of `a, then the constant
term of f is (−1)deg(f) det(`a), and the coefficient of xdeg(f)−1 is − tr(`a).

Proposition 2.2. Let a ∈ L and let σ1, . . . , σd, where d = [L : K], be the distinct

field embeddings L ↪→ Q that fix every element of K. Then

normL/K(a) =
d∏

i=1

σi(a) and trL/K(a) =
d∑

i=1

σi(a).

Proof. We prove the proposition by computing the characteristic polynomial F of a.
Let f ∈ K[x] be the minimal polynomial of a over K, and note that f has distinct
roots (since it is the polynomial in K[x] of least degree that is satisfied by a). Since f
is irreducible, [K(a) : K] = deg(f), and a satisfies a polynomial if and only if `a does,
the characteristic polynomial of `a acting on K(a) is f . Let b1, . . . , bn be a basis for
L over K(a) and note that 1, . . . , am is a basis for K(a)/K, where m = deg(f) − 1.
Then aibj is a basis for L over K, and left multiplication by a acts the same way on
the span of bj, abj, . . . , a

mbj as on the span of bk, abk, . . . , a
mbk, for any pair j, k ≤ n.

Thus the matrix of `a on L is a block direct sum of copies of the matrix of `a acting
on K(a), so the characteristic polynomial of `a on L is f [L:K(a)]. The proposition
follows because the roots of f [L:K(a)] are exactly the images σi(a), with multiplicity
[L : K(a)] (since each embedding of K(a) into Q extends in exactly [L : K(a)] ways
to L by Exercise ??).

The following corollary asserts that the norm and trace behave well in towers.

Corollary 2.3. Suppose K ⊂ L ⊂ M is a tower of number fields, and let a ∈ M .

Then

normM/K(a) = normL/K(normM/L(a)) and trM/K(a) = trL/K(trM/L(a)).

Proof. For the first equation, both sides are the product of σi(a), where σi runs
through the embeddings of M into K. To see this, suppose σ : L → Q fixes K. If σ ′

is an extension of σ to M , and τ1, . . . , τd are the embeddings of M into Q that fix L,
then τ1σ

′, . . . , τdσ
′ are exactly the extensions of σ to M . For the second statement,

both sides are the sum of the σi(a).

The norm and trace down to Q of an algebraic integer a is an element of Z,
because the minimal polynomial of a has integer coefficients, and the characteristic
polynomial of a is a power of the minimal polynomial, as we saw in the proof of
Proposition 2.2.

Proposition 2.4. Let K be a number field. The ring of integers OK is a lattice

in K, i.e., QOK = K and OK is an abelian group of rank [K : Q].

4



Proof. We saw in Lemma 1.8 that QOK = K. Thus there exists a basis a1, . . . , an

for K, where each ai is in OK . Suppose that as x =
∑

ciai ∈ OK varies over all
elements of OK the denominators of the coefficients ci are arbitrarily large. Then
subtracting off integer multiples of the ai, we see that as x =

∑
ciai ∈ OK varies

over elements of OK with ci between 0 and 1, the denominators of the ci are also
arbitrarily large. This implies that there are infinitely many elements of OK in the
bounded subset

S = {c1a1 + · · · + cnan : ci ∈ Q, 0 ≤ ci ≤ 1} ⊂ K.

Thus for any ε > 0, there are elements a, b ∈ OK such that the coefficients of a − b
are all less than ε (otherwise the elements of OK would all be a “distance” of least
ε from each other, so only finitely many of them would fit in S).

As mentioned above, the norms of elements of OK are integers. Since the norm
of an element is the determinant of left multiplication by that element, the norm
is a homogenous polynomial of degree n in the indeterminate coefficients ci. If the
ci get arbitrarily small for elements of OK , then the values of the norm polynomial
get arbitrarily small, which would imply that there are elements of OK with positive
norm too small to be in Z, a contradiction. So the set S contains only finitely many
elements of OK . Thus the denominators of the ci are bounded, so for some d, we
have that OK has finite index in A = 1

d
Za1 + · · · + 1

d
Zan. Since A is isomorphic to

Zn, it follows from the structure theorem for finitely generated abelian groups that
OK is isomorphic as a Z-module to Zn, as claimed.

Corollary 2.5. The ring of integers OK of a number field is Noetherian.

Proof. By Proposition 2.4, the ring OK is finitely generated as a module over Z, so
it is certainly finitely generated as a ring over Z. By the Hilbert Basis Theorem, OK

is Noetherian.

Definition 2.6 (Integrally Closed). An integral domain R is integrally closed

if whenever α is in the field of fractions of R and α satisfies a monic polynomial
f ∈ R[x], then α ∈ R.

Proposition 2.7. If K is any number field, then OK is integrally closed. Also, Z is

integrally closed.

Proof. It suffices to prove that Z is integrally closed, since if c ∈ K is integral over
OK , then c would be an element of Z, so c ∈ K ∩ Z = OK , as required.

Now suppose c ∈ Q is integral over Z, so there is a monic polynomial f(x) =
xn + an−1x

n−1 + · · · + a1x + a0 with ai ∈ Z and f(c) = 0. The ai all lie in the
ring of integers OK of the number field K = Q(a0, a1, . . . an−1), and OK is finitely
generated as a Z-module by Proposition 2.4, so Z[a0, . . . , an−1] is finitely generated as
a Z-module. Since f(c) = 0, we can write cn as a Z[a0, . . . , an−1]-linear combination
of ci for i < n, so the ring Z[a0, . . . , an−1, c] is also finitely generated as a Z-module.
Then Z[c] is finitely generated as Z-module because it is a submodule of a finitely
generated Z-module, which implies that c is integral over Z.
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3 Dedekind Domains

Definition 3.1 (Dedekind Domain). A ring R is a Dedekind domain if it is
Noetherian, integrally closed, and every nonzero prime ideal of R is maximal.

Proposition 3.2. The ring of integers OK of a number field is a Dedekind domain.

Proof. By Proposition 2.7, the ring OK is integrally closed, and by Proposition 2.5
it is Noetherian. Suppose that p is a nonzero prime ideal of OK . Let α ∈ p be a
nonzero element, and let f(x) ∈ Z[x] be the minimal polynomial of α. Then

f(α) = αn + an−1α
n−1 + · · · + a1α + a0 = 0,

so a0 = −(αn + an−1α
n−1 + · · · + a1α) ∈ p. Since f is irreducible, a0 is a nonzero

element of Z that lies in p. Every element of the finitely generated abelian group
OK/p is killed by a0, so OK/p is a finite set. Since p is prime, OK/p is an integral
domain. Every finite integral domain is a field (see Exercise ?), so p is maximal,
which completes the proof.

If I and J are ideals in a ring R, the product IJ is the ideal generated by all
products of elements in I with elements in J :

IJ = (ab : a ∈ I, b ∈ J)R.

Note that the set of all products ab, with a ∈ I and b ∈ J , need not be an ideal, so
it is important to take the ideal generated by that set.

Next Tuesday we will start by proving the crucial Theorem 3.4 below, which will
allow us to show that any nonzero ideal of a Dedekind domain can be expressed
uniquely as a product of primes (up to order). Thus unique factorization holds
for ideals in a Dedekind domain, and it is this unique factorization that initially
motivated the introduction of rings of integers of number fields over a century ago.

Definition 3.3 (Fractional Ideal). A fractional ideal is an OK-submodule of K
that is finitely generated. Every fractional ideal is of the form aI = {ab : b ∈ I} for
some a ∈ K and ideal I ⊂ OK . For emphasis, we will sometimes call a genuine ideal
I ⊂ OK an integral ideal.

For example, the set 1
2
Z of rational numbers with denominator 1 or 2 is a frac-

tional ideal of Z.

Theorem 3.4. The set of nonzero fractional ideals of a Dedekind domain R is an

abelian group under ideal multiplication.
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