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Lecture 17: Topology, Completeness

William Stein
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Before starting Section 4, I discuss a question from last time...

Remark 2.1. This definition differs from the one on page 46 of [Cassels-Frohlich,
Ch. 2] in two ways. First, we assume that c > 1 instead of c < 1, since otherwise
| · |p does not satisfy Axiom 3 of a valuation. Here’s why: Recall that Axiom 3 for
a non-archimedean valuation on K asserts that whenever a ∈ K and |a| ≤ 1, then
|a + 1| ≤ 1. Set a = p−1, where p = p(t) ∈ K[t] is an irreducible polynomial. Then
|a| = c0 = 1, since ordp(p − 1) = 0. However, |a + 1| = |p − 1 + 1| = |p| = c1 < 1,
since ordp(p) = 1. If we take c > 1 instead of c < 1, as I propose, then |p| = c1 > 1,
as required.

4 Topology

A valuation | · | on a field K induces a topology in which a basis for the neighbor-
hoods of a are the open balls

B(a, d) = {x ∈ K : |x − a| < d}

for d > 0.

Lemma 4.1. Equivalent valuations induce the same topology.

Proof. If | · |1 = | · |r2, then |x − a|1 < d if and only if |x − a|r2 < d if and only if
|x − a|2 < d1/r so B1(a, d) = B2(a, d1/r). Thus the basis of open neighborhoods of
a for | · |1 and | · |2 are identical.

A valuation satisfying the triangle inequality gives a metric for the topology on
defining the distance from a to b to be |a − b|. Assume for the rest of this section
that we only consider valuations that satisfy the triangle inequality.

Lemma 4.2. A field with the topology induced by a valuation is a topological field,
i.e., the operations sum, product, and reciprocal are continuous.
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Proof. For example (product) the triangle inequality implies that

|(a + ε)(b + δ) − ab| ≤ |ε| |δ| + |a| |δ| + |b| |ε|

is small when |ε| and |δ| are small (for fixed a, b).

Lemma 4.3. Suppose two valuations | · |1 and | · |2 on the same field K induce the
same topology. Then for any sequence {xn} in K we have

|xn|1 → 0 ⇐⇒ |xn|2 → 0.

Proof. It suffices to prove that if |xn|1 → 0 then |xn|2 → 0, since the proof of
the other implication is the same. Let ε > 0. The topologies induced by the two
absolute values are the same, so B2(0, ε) can be covered by open balls B1(ai, ri).
One of these open balls B1(a, r) contains 0. There is ε′ > 0 such that

B1(0, ε′) ⊂ B1(a, r) ⊂ B2(0, ε).

Since |xn|1 → 0, there exists N such that for n ≥ N we have |xn|1 < ε′. For such n,
we have xn ∈ B1(0, ε′), so xn ∈ B2(0, ε), so |xn|2 < ε. Thus |xn|2 → 0.

Proposition 4.4. If two valuations | · |1 and | · |2 on the same field induce the same
topology, then they are equivalent in the sense that there is a positive real α such
that | · |1 = | · |α2 .

Proof. If x ∈ K and i = 1, 2, then |xn|i → 0 if and only if |x|ni → 0, which is the
case if and only if |x|i < 1. Thus Lemma 4.3 implies that |x|1 < 1 if and only if
|x|2 < 1. On taking reciprocals we see that |x|1 > 1 if and only if |x|2 > 1, so finally
|x|1 = 1 if and only if |x|2 = 1.

Let now w, z ∈ K be nonzero elements with |w|i 6= 1 and |z|i 6= 1. On applying
the foregoing to

x = wmzn (m, n ∈ Z)

we see that
m log |w|1 + n log |z|1 ≥ 0

if and only if
m log |w|2 + n log |z|2 ≥ 0.

Dividing through by log |z|i, and rearranging, we see that for every rational number
α = −n/m,

log |w|1
log |z|1

≥ α ⇐⇒
log |w|2
log |z|2

≥ α.

Thus
log |w|1
log |z|1

=
log |w|2
log |z|2

,

so
log |w|1
log |w|2

=
log |z|1
log |z|2

.

2



Since this equality does not depend on the choice of z, we see that there is a
constant c (= log |z|1 / log |z|2) such that log |w|1 / log |w|2 = c for all w. Thus
log |w|1 = c ·log |w|2, so |w|1 = |w|c2, which implies that | · |1 is equivalent to | · |2.

5 Completeness

We recall the definition of metric on a set X.

Definition 5.1 (Metric). A metric on a set X is a map

d : X × X → R

such that for all x, y, z ∈ X,

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x), and

3. d(x, z) ≤ d(x, y) + d(y, z).

A Cauchy sequence is a sequence (xn) in X such that for all ε > 0 there exists M
such that for all n, m > M we have d(xn, xm) < ε. The completion of X is the set of
Cauchy sequences (xn) in X modulo the equivalence relation in which two Cauchy
sequences (xn) and (yn) are equivalent if limn→∞ d(xn, yn) = 0. A metric space is
complete if every Cauchy sequence converges, and one can show that the completion
of X with respect to a metric is complete.

For example, d(x, y) = |x − y| (usual archimedean absolute value) defines a
metric on Q. The completion of Q with respect to this metric is the field R of real
numbers. More generally, whenever | · | is a valuation on a field K that satisfies the
triangle inequality, then d(x, y) = |x − y| defines a metric on K. Consider for the
rest of this section only valuations that satisfy the triangle inequality.

Definition 5.2 (Complete). A field K is complete with respect to a valuation | · |
if given any Cauchy sequence an, (n = 1, 2, . . .), i.e., one for which

|am − an| → 0 (m, n → ∞,∞),

there is an a∗ ∈ K such that

an → a∗ w.r.t. | · |

(i.e., |an − a∗| → 0).

Theorem 5.3. Every field K with valuation v = | · | can be embedded in a complete
field Kv with a valuation | · | extending the original one in such a way that Kv is the
closure of K with respect to | · | . Further Kv is unique up to a unique isomorphism
fixing K.
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Proof. Define Kv to be the completion of K with respect to the metric defined by | · |.
Thus Kv is the set of equivalence classes of Cauchy sequences, and there is a natural
injective map from K to Kv sending an element a ∈ K to the constant Cauchy
sequence (a). Because the field operations on K are continuous, they induce well-
defined field operations on equivalence classes of Cauchy sequences componentwise.
Also, define a valuation on Kv by

|(an)∞n=1| = lim
n→∞

|an| ,

and note that this is well defined and extends the valuation on K.
To see that Kv is unique up to a unique isomorphism fixing K, we observe that

there are no nontrivial continuous automorphisms Kv → Kv that fix K. This is
because, by denseness, a continuous automorphism σ : Kv → Kv is determined by
what it does to K, and by assumption σ is the identity map on K. More precisely,
suppose a ∈ Kv and n is a positive integer. Then by continuity there is δ > 0 (with
δ < 1/n) such that if an ∈ Kv and |a − an| < δ then |σ(a) − σ(an)| < 1/n. Since
K is dense in Kv, we can choose the an above to be an element of K. Then by
hypothesis σ(an) = an, so |σ(a) − an| < 1/n. Thus σ(a) = limn→∞ an = a.

Corollary 5.4. The valuation | · | is non-archimedean on Kv if and only if it is so
on K. If | · | is non-archimedean, then the set of values taken by | · | on K and Kv

are the same.

Proof. The first part follows from the fact proved earlier that a valuation is non-
archimedean if and only if |n| < 1 for all integers n. Since the valuation on Kv

extends the valuation on K, and all n are in K, the first statement follows.
For the second, suppose that | · | is non-archimedean (but not necessarily dis-

crete). Suppose b ∈ Kv with b 6= 0. First I claim that there is c ∈ K such that
|b − c| < |b|. To see this, let c′ = b− b

a , where a is some element of Kv with |a| > 1,

note that |b − c′| =
∣

∣

b
a

∣

∣ < |b|, and choose c ∈ K such that |c − c′| < |b − c′|, so

|b − c| =
∣

∣b − c′ − (c − c′)
∣

∣ ≤ max
(∣

∣b − c′
∣

∣ ,
∣

∣c − c′
∣

∣

)

=
∣

∣b − c′
∣

∣ < |b| .

Since | · | is non-archimedean, we have

|b| = |(b − c) + c| ≤ max (|b − c| , |c|) = |c| ,

where in the last equality we use that |b − c| < |b|. Also,

|c| = |b + (c − b)| ≤ max (|b| , |c − b|) = |b| ,

so |b| = |c|, which is in the set of values of | · | on K.
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5.1 p-adic Numbers

This section is about the p-adic numbers Qp, which are the completion of Q with
respect to the p-adic valuation. Alternatively, to give a p-adic integer in Zp is the
same as giving for every prime power pr an element ar ∈ Z/prZ such that if s ≤ r
then as is the reduction of ar modulo ps. The field Qp is then the field of fractions
of Zp.

We begin with the definition of the N -adic numbers for any positive integer N .
Section 5.1.2 is about the N -adics in the special case N = 10; these are fun because
they can be represented as decimal expansions that go off infinitely far to the left.
Section 5.3 is about how the topology of QN is nothing like the topology of R.
Finally, in Section 5.4 we state the Hasse-Minkowski theorem, which shows how to
use p-adic numbers to decide whether or not a quadratic equation in n variables has
a rational zero.

5.1.1 The N-adic Numbers

Lemma 5.5. Let N be a positive integer. Then for any nonzero rational number α
there exists a unique e ∈ Z and integers a, b, with b positive, such that α = N e · a

b
with N - a, gcd(a, b) = 1, and gcd(N, b) = 1.

Proof. Write α = c/d with c, d ∈ Z and d > 0. First suppose d is exactly divisible
by a power of N , so for some r we have N r | d but gcd(N, d/N r) = 1. Then

c

d
= N−r c

d/N r
.

If N s is the largest power of N that divides c, then e = s − r, a = c/N s, b = d/N r

satisfy the conclusion of the lemma.
By unique factorization of integers, there is a smallest multiple f of d such that

fd is exactly divisible by N . Now apply the above argument with c and d replaced
by cf and df .

Definition 5.6 (N-adic valuation). Let N be a positive integer. For any positive
α ∈ Q, the N -adic valuation of α is e, where e is as in Lemma 5.5. The N -adic
valuation of 0 is ∞.

We denote the N -adic valuation of α by ordN (α). (Note: Here we are using
“valuation” in a different way than in the rest of the text. This valuation is not an
absolute value, but the logarithm of one.)

Definition 5.7 (N-adic metric). For x, y ∈ Q the N -adic distance between x
and y is

dN (x, y) = N− ordN (x−y).

We let dN (x, x) = 0, since ordN (x − x) = ordN (0) = ∞.
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For example, x, y ∈ Z are close in the N -adic metric if their difference is divisible
by a large power of N . E.g., if N = 10 then 93427 and 13427 are close because their
difference is 80000, which is divisible by a large power of 10.

Proposition 5.8. The distance dN on Q defined above is a metric. Moreover, for
all x, y, z ∈ Q we have

d(x, z) ≤ max(d(x, y), d(y, z)).

(This is the “nonarchimedean” triangle inequality.)

Proof. The first two properties of Definition 5.1 are immediate. For the third, we
first prove that if α, β ∈ Q then

ordN (α + β) ≥ min(ordN (α), ordN (β)).

Assume, without loss, that ordN (α) ≤ ordN (β) and that both α and β are nonzero.
Using Lemma 5.5 write α = N e(a/b) and β = Nf (c/d) with a or c possibly negative.
Then

α + β = N e
(a

b
+ Nf−e c

d

)

= N e

(

ad + bcNf−e

bd

)

.

Since gcd(N, bd) = 1 it follows that ordN (α + β) ≥ e. Now suppose x, y, z ∈ Q.
Then

x − z = (x − y) + (y − z),

so
ordN (x − z) ≥ min(ordN (x − y), ordN (y − z)),

hence dN (x, z) ≤ max(dN (x, y), dN (y, z)).

We can finally define the N -adic numbers.

Definition 5.9 (The N-adic Numbers). The set of N -adic numbers, denoted
QN , is the completion of Q with respect to the metric dN .

The set QN is a ring, but it need not be a field as you will show in Exercises 4
and 5. It is a field if and only if N is prime. Also, QN has a “bizarre” topology, as
we will see in Section 5.3.

5.1.2 The 10-adic Numbers

It’s a familiar fact that every real number can be written in the form

dn . . . d1d0.d−1d−2 . . . = dn10n + · · · + d110 + d0 + d−110−1 + d−210−2 + · · ·

where each digit di is between 0 and 9, and the sequence can continue indefinitely
to the right.
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The 10-adic numbers also have decimal expansions, but everything is backward!
To get a feeling for why this might be the case, we consider Euler’s nonsensical
series

∞
∑

n=1

(−1)n+1n! = 1! − 2! + 3! − 4! + 5! − 6! + · · · .

You will prove in Exercise 2 that this series converges in Q10 to some element
α ∈ Q10.

What is α? How can we write it down? First note that for all M ≥ 5, the terms
of the sum are divisible by 10, so the difference between α and 1! − 2! + 3! − 4! is
divisible by 10. Thus we can compute α modulo 10 by computing 1! − 2! + 3! − 4!
modulo 10. Likewise, we can compute α modulo 100 by compute 1!−2!+· · ·+9!−10!,
etc. We obtain the following table:

α mod 10r

1 mod 10
81 mod 102

981 mod 103

2981 mod 104

22981 mod 105

422981 mod 106

Continuing we see that

1! − 2! + 3! − 4! + · · · = . . . 637838364422981 in Q10 !

Here’s another example. Reducing 1/7 modulo larger and larger powers of 10
we see that

1

7
= . . . 857142857143 in Q10.

Here’s another example, but with a decimal point.

1

70
=

1

10
·
1

7
= . . . 85714285714.3

We have
1

3
+

1

7
= . . . 66667 + . . . 57143 =

10

21
= . . . 23810,

which illustrates that addition with carrying works as usual.

5.1.3 Fermat’s Last Theorem in Z10

An amusing observation, which people often argued about on USENET news back
in the 1990s, is that Fermat’s last theorem is false in Z10. For example, x3 +y3 = z3

has a nontrivial solution, namely x = 1, y = 2, and z = . . . 60569. Here z is a cube
root of 9 in Z10. Note that it takes some work to prove that there is a cube root of
9 in Z10 (see Exercise 3).
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5.2 The Field of p-adic Numbers

The ring Q10 of 10-adic numbers is isomorphic to Q2 ×Q5 (see Exercise 5), so it is
not a field. For example, the element . . . 8212890625 corresponding to (1, 0) under
this isomorphism has no inverse. (To compute n digits of (1, 0) use the Chinese
remainder theorem to find a number that is 1 modulo 2n and 0 modulo 5n.)

If p is prime then Qp is a field (see Exercise 4). Since p 6= 10 it is a little more
complicated to write p-adic numbers down. People typically write p-adic numbers
in the form

a−d

pd
+ · · · +

a−1

p
+ a0 + a1p + a2p

2 + a3p
3 + · · ·

where 0 ≤ ai < p for each i.

5.3 The Topology of QN (is Weird)

Definition 5.10 (Connected). Let X be a topological space. A subset S of X
is disconnected if there exist open subsets U1, U2 ⊂ X with U1 ∩ U2 ∩ S = ∅ and
S = (S ∩U1)∪ (S ∩U2) with S ∩U1 and S ∩U2 nonempty. If S is not disconnected
it is connected.

The topology on QN is induced by dN , so every open set is a union of open balls

B(x, r) = {y ∈ QN : dN (x, y) < r}.

Recall Proposition 5.8, which asserts that for all x, y, z,

d(x, z) ≤ max(d(x, y), d(y, z)).

This translates into the following shocking and bizarre lemma:

Lemma 5.11. Suppose x ∈ QN and r > 0. If y ∈ QN and dN (x, y) ≥ r, then
B(x, r) ∩ B(y, r) = ∅.

Proof. Suppose z ∈ B(x, r) and z ∈ B(y, r). Then

r ≤ dN (x, y) ≤ max(dN (x, z), dN (z, y)) < r,

a contradiction.

You should draw a picture to illustrates Lemma 5.11.

Lemma 5.12. The open ball B(x, r) is also closed.

Proof. Suppose y 6∈ B(x, r). Then r ≤ d(x, y) so

B(y, d(x, y)) ∩ B(x, r) ⊂ B(y, d(x, y)) ∩ B(x, d(x, y)) = ∅.

Thus the complement of B(x, r) is a union of open balls.
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The lemmas imply that QN is totally disconnected, in the following sense.

Proposition 5.13. The only connected subsets of QN are the singleton sets {x}
for x ∈ QN and the empty set.

Proof. Suppose S ⊂ QN is a nonempty connected set and x, y are distinct elements
of S. Let r = dN (x, y) > 0. Let U1 = B(x, r) and U2 be the complement of
U1, which is open by Lemma 5.12. Then U1 and U2 satisfies the conditions of
Definition 5.10, so S is not connected, a contradiction.

5.4 The Local-to-Global Principle of Hasse and Minkowski

Section 5.3 might have convinced you that QN is a bizarre pathology. In fact,
QN is omnipresent in number theory, as the following two fundamental examples
illustrate.

In the statement of the following theorem, a nontrivial solution to a homogeneous
polynomial equation is a solution where not all indeterminates are 0.

Theorem 5.14 (Hasse-Minkowski). The quadratic equation

a1x
2
1 + a2x

2
2 + · · · + anx2

n = 0, (5.1)

with ai ∈ Q×, has a nontrivial solution with x1, . . . , xn in Q if and only if (5.1) has
a solution in R and in Qp for all primes p.

This theorem is very useful in practice because the p-adic condition turns out to
be easy to check. For more details, including a complete proof, see [Serre, A Course
in Arithmetic, IV.3.2]].

The analogue of Theorem 5.14 for cubic equations is false. For example, Selmer
proved that the cubic

3x3 + 4y3 + 5z3 = 0

has a solution other than (0, 0, 0) in R and in Qp for all primes p but has no solution
other than (0, 0, 0) in Q (for a proof see [Cassels, Lectures on Elliptic Curves, §18]).

Open Problem. Give an algorithm that decides whether or not a cubic

ax3 + by3 + cz3 = 0

has a nontrivial solution in Q.

This open problem is closely related to the Birch and Swinnerton-Dyer Conjec-
ture for elliptic curves. The truth of the conjecture would follow if we knew that
“Shafarevich-Tate Groups” of elliptic curves were finite.
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5.5 Exercises

The following are optional exercises, which you may want to do if you would like to
familiarize yourself further with p-adic numbers. They are not part of the formal
homework sets and you do not need to hand them in.

1. Compute the first 5 digits of the 10-adic expansions of the following rational
numbers:

13

2
,

1

389
,

17

19
, the 4 square roots of 41.

2. Let N > 1 be an integer. Prove that the series

∞
∑

n=1

(−1)n+1n! = 1! − 2! + 3! − 4! + 5! − 6! + · · · .

converges in QN .

3. Prove that −9 has a cube root in Q10 using the following strategy (this is a
special case of “Hensel’s Lemma”).

(a) Show that there is α ∈ Z such that α3 ≡ 9 (mod 103).

(b) Suppose n ≥ 3. Use induction to show that if α1 ∈ Z and α3 ≡ 9
(mod 10n), then there exists α2 ∈ Z such that α3

2 ≡ 9 (mod 10n+1).
(Hint: Show that there is an integer b such that (α1 + b10n)3 ≡ 9
(mod 10n+1).)

(c) Conclude that 9 has a cube root in Q10.

4. Let N > 1 be an integer.

(a) Prove that QN is equipped with a natural ring structure.

(b) If N is prime, prove that QN is a field.

5. (a) Let p and q be distinct primes. Prove that Qpq
∼= Qp × Qq.

(b) Is Qp2 isomorphic to either of Qp × Qp or Qp?
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