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Much of today’s lecture is preparation for what we will do next time, when we
will prove that if K is complete with respect to a valuation (and locally compact)
and L is a finite extension of K, then there is a unique valuation on L that extends
the valuation on K. Also, if K is a number field, v = | · | is a valuation on K, Kv is
the completion of K with respect to v, and L is a finite extension of K, we’ll prove
that

Kv ⊗K L =
J

⊕

j=1

Lj ,

where the Lj are the completions of L with respect to the equivalence classes of
extensions of v to L. In particular, if L is a number field defined by a root of
f(x) ∈ Q[x], then

Qp ⊗Q L =
J

⊕

j=1

Lj ,

where the Lj correspond to the irreducible factors of the polynomial f(x) ∈ Qp[x]
(hence the extensions of | · |p correspond to irreducible factors of f(x) over Qp[x]).

In preparation for this clean view of the local nature of number fields, today we
will prove that the norms on a finite-dimensional vector space over a complete field
are all equivalent. We will also explicitly construct tensor products of fields and
deduce some of their properties.

8 Normed Spaces

Definition 8.1 (Norm). Let K be a field with valuation | · | and let V be a vector
space over K. A real-valued function ‖ · ‖ on V is called a norm if

1. ‖v‖ > 0 for all nonzero v ∈ V (positivity).

2. ‖v + w‖ ≤ ‖v‖ + ‖w‖ for all v, w ∈ V (triangle inequality).

3. ‖av‖ = |a| ‖v‖ for all a ∈ K and v ∈ V (homogeneity).
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Note that setting ‖v‖ = 1 for all v 6= 0 does not define a norm unless the absolute
value on K is trivial, as 1 = ‖av‖ = |a| ‖v‖ = |a|. We assume for the rest of this
section that | · | is not trivial.

Definition 8.2 (Equivalent). Two norms ‖ · ‖
1

and ‖ · ‖
2

on the same vector
space V are equivalent if there exists positive real numbers c1 and c2 such that for
all v ∈ V

‖v‖
1
≤ c1 ‖v‖2

and ‖v‖
2
≤ c2 ‖v‖1

.

Lemma 8.3. Suppose that K is a field that is complete with respect to a valuation
| · | and that V is a finite dimensional K vector space. Then any two norms on V
are equivalent.

Remark 8.4. As we shall see next time, the lemma is usually false if we do not
assume that K is complete. For example, when K = Q and | · |p is the p-adic
valuation, and V is a number field, then there may be several extensions of | · |p to
inequivalent norms on V .

If two norms are equivalent then the corresponding topologies on V are equal,
since very open ball for ‖ · ‖

1
is contained in an open ball for ‖ · ‖

2
, and conversely.

(The converse is also true, since, as we will show, all norms on V are equivalent.)

Proof. Let v1, . . . , vn be a basis for V . Define the max norm ‖ · ‖
0

by

∥

∥

∥

∥

∥

N
∑

n=1

anvn

∥

∥

∥

∥

∥

0

= max {|an| : n = 1, . . . , N} .

It is enough to show that any norm ‖ · ‖ is equivalent to ‖ · ‖
0
. We have

∥

∥

∥

∥

∥

N
∑

n=1

anvn

∥

∥

∥

∥

∥

≤
N

∑

n=1

|an| ‖vn‖

≤
N

∑

n=1

max |an| ‖vn‖

= c1 ·
∥

∥

∥

∥

∥

N
∑

n=1

anvn

∥

∥

∥

∥

∥

0

,

where c1 =
∑N

n=1
‖vn‖.

To finish the proof, we show that there is a c2 ∈ R such that for all v ∈ V ,

‖v‖
0
≤ c2 · ‖v‖ .

We will only prove this in the case when K is not just merely complete with respect
to | · | but also locally compact. This will be the case of primary interest to us. For
a proof in the general case, see the original article by Cassels (page 53).
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By what we have already shown, the function ‖v‖ is continuous in the ‖ · ‖
0
-

topology, so by local compactness it attains its lower bound δ on the unit circle
{v ∈ V : ‖v‖

0
= 1}. (Why is the unit circle compact? With respect to ‖ · ‖

0
, the

topology on V is the same as that of a product of copies of K. If the valuation is
archimedean then K ∼= R or C with the standard topology and the unit circle is
compact. If the valuation is non-archimedean, then we saw last time in a (at the
time dubious) remark that if K is locally compact, then the valuation is discrete,
in which case we showed that the unit disc is compact, hence the unit circle is also
since it is closed.) Note that δ > 0 by part 1 of Definition 8.1. Also, by definition
of ‖ · ‖

0
, for any v ∈ V there exists a ∈ K such that ‖v‖

0
= |a| (just take the max

coefficient in our basis). Thus we can write any v ∈ V as a · w where a ∈ K and
w ∈ V with ‖w‖

0
= 1. We then have

‖v‖
0

‖v‖ =
‖aw‖

0

‖aw‖ =
|a| ‖w‖

0

|a| ‖w‖ =
1

‖w‖ ≤ 1

δ
.

Thus for all v we have
‖v‖

0
≤ c2 · ‖v‖ ,

where c2 = 1/δ, which proves the theorem.

9 Tensor Products

We need only a special case of the tensor product construction. Let A and B be
commutative rings containing a field K and suppose that B is of finite dimension N
over K, say, with basis

1 = w1, w2, . . . , wN .

Then B is determined up to isomorphism as a ring over K by the multiplication
table (ci,j,n) defined by

wi · wj =
N

∑

n=1

ci,j,n · wn.

We define a new ring C containing K whose elements are the set of all expressions

N
∑

n=1

anwn

where the wn have the same multiplication rule

wi · wj =
N

∑

n=1

ci,j,n · wn

as the wn.
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There are injective ring homomorphisms

i : A ↪→ C, i(a) = aw1 (note that w1 = 1)

and

j : B ↪→ C, j

(

N
∑

n=1

cnwn

)

=
N

∑

n=1

cnwn.

Moreover C is defined, up to isomorphism, by A and B and is independent of the
particular choice of basis wn of B (i.e., a change of basis of B induces a canonical
isomorphism of the C defined by the first basis to the C defined by the second
basis). We write

C = A ⊗K B

since C is, in fact, a special case of the ring tensor product. (This will be one of
your homework problems.)

Let us now suppose, further, that A is a topological ring, i.e., has a topology
with respect to which addition and multiplication are continuous. Then the map

C → A ⊕ · · · ⊕ A,
N

∑

m=1

amwm 7→ (a1, . . . , aN )

defines a bijection between C and the product of N copies of A (considered as
sets). We give C the product topology. It is readily verified that this topology is
independent of the choice of basis w1, . . . , wN and that multiplication and addition
on C are continuous, so C is a topological ring. We call this topology on C the
tensor product topology.

Now drop our assumption that A and B have a topology, but suppose that A
and B are not merely rings but fields. Recall that a finite extension L/K of fields
is separable if the number of embeddings L ↪→ K that fix K equals the degree of L
over K, where K is an algebraic closure of K. The primitive element theorem from
Galois theory asserts that any such extension is generated by a single element, i.e.,
L = K(a) for some a ∈ L.

Lemma 9.1. Let A and B be fields containing the field K and suppose that B is a
separable extension of finite degree N = [B : K]. Then C = A ⊗K B is the direct
sum of a finite number of fields Kj, each containing an isomorphic image of A and
an isomorphic image of B.

Proof. By the primitive element theorem, we have B = K(b), where b is a root of
some separable irreducible polynomial f(x) ∈ K[x] of degree N . Then 1, b, . . . , bN−1

is a basis for B over K, so

A ⊗K B = A[b] ∼= A[x]/(f(x))

where 1, b, b2, . . . , bN−1 are linearly independent over A and b satisfies f(b) = 0.
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Although the polynomial f(x) is irreducible as an element of K[x], it need not
be irreducible in A[x]. Since A is a field, we have a factorization

f(x) =
J

∏

j=1

gj(x)

where gj(x) ∈ A[x] is irreducible. The gj(x) are distinct because f(x) is separable
(i.e., has distinct roots in any algebraic closure).

For each j, let bj ∈ A be a root of gj(x), where A is a fixed algebraic closure of
the field A. Let Kj = A(bj). Then the map

ϕj : A ⊗K B → Kj (9.1)

given by sending any polynomial h(b) in b (where h ∈ A[x]) to h(bj) is a ring
homomorphism, because the image of b satisfies the polynomial f(x), and A⊗K B ∼=
A[x]/(f(x)).

By the Chinese Remainder Theorem, the maps from (9.1) combine to define a
ring isomorphism

A ⊗K B ∼= A[x]/(f(x)) ∼=
J

⊕

j=1

A[x]/(gj(x)) ∼=
J

⊕

j=1

Kj .

Each Kj is of the form A[x]/(gj(x)), so contains an isomorphic image of A. It
thus remains to show that the ring homomorphisms

λj : B
b 7→1⊗b−−−−→ A ⊗K B

ϕj−→ Kj

are injections. Since B and Kj are both fields, λj is either the 0 map or injective.
However, λj is not the 0 map since λj(1) = 1 ∈ Kj .

Example 9.2. If A and B are finite extensions of Q, then A ⊗Q B is an algebra
of degree [A : Q] · [B : Q]. For example, suppose A is generated by a root of
x2 + 1 and B is generated by a root of x3 − 2. We can view A ⊗Q B as either
A[x]/(x3 − 2) or B[x]/(x2 + 1). The polynomial x2 + 1 is irreducible over Q, and if
it factored over the cubic field B, then there would be a root of x2 +1 in B, i.e., the
quadratic field A = Q(i) would be a subfield of the cubic field B = Q( 3

√
2), which

is impossible. Thus x2 + 1 is irreducible over B, so A ⊗Q B = A.B = Q(i, 3
√

2) is
a degree 6 extension of Q. Notice that A.B contains a copy A and a copy of B.
By the primitive element theorem the composite field A.B can be generated by the
root of a single polynomial. For example, the minimal polynomial of i + 3

√
2 is

x6 + 3x4 − 4x3 + 3x2 + 12x + 5, hence Q(i + 3
√

2) = A.B.

Example 9.3. The case A ∼= B is even more exciting. For example, suppose A =
B = Q(i). Using the Chinese Remainder Theorem we have that

Q(i) ⊗Q Q(i) ∼= Q(i)[x]/(x2 + 1) ∼= Q(i)[x]/((x − i)(x + i)) ∼= Q(i) ⊕ Q(i),
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since (x − i) and (x + i) are coprime. The last isomorphism sends a + bx, with
a, b ∈ Q(i), to (a + bi, a − bi). Since Q(i) ⊕ Q(i) has zero divisors, the tensor
product Q(i) ⊗Q Q(i) must also have zero divisors. For example, (1, 0) and (0, 1)
is a zero divisor pair on the right hand side, and we can trace back to the elements
of the tensor product that they define. First, by solving the system

a + bi = 1 and a − bi = 0

we see that (1, 0) corresponds to a = 1/2 and b = −i/2, i.e., to the element

1

2
− i

2
x ∈ Q(i)[x]/(x2 + 1).

This element in turn corresponds to

1

2
⊗ 1 − i

2
⊗ i ∈ Q(i) ⊗Q Q(i).

Similarly the other element (0, 1) corresponds to

1

2
⊗ 1 +

i

2
⊗ i ∈ Q(i) ⊗Q Q(i).

As a double check, observe that

(

1

2
⊗ 1 − i

2
⊗ i

)

·
(

1

2
⊗ 1 +

i

2
⊗ i

)

=
1

4
⊗ 1 +

i

4
⊗ i − i

4
⊗ i − i2

4
⊗ i2

=
1

4
⊗ 1 − 1

4
⊗ 1 = 0 ∈ Q(i) ⊗Q Q(i).

Clearing the denominator of 2 and writing 1⊗1 = 1, we have (1−i⊗i)(1+i⊗i) = 0,
so i⊗ i is a root of the polynomimal x2 − 1, and i⊗ i is not ±1, so x2 − 1 has more
than 2 roots.

In general, to understand A ⊗K B explicitly is the same as factoring either the
defining polynomial of B over the field A, or factoring the defining polynomial of A
over B.

Corollary 9.4. Let a ∈ B be any element and let f(x) ∈ K[x] be the characteristic
polynomials of a over K and let gj(x) ∈ A[x] (for 1 ≤ j ≤ J) be the characteristic
polynomials of the images of a under B → A⊗K B → Kj over A, respectively. Then

f(x) =

J
∏

j=1

gj(X). (9.2)

Proof. We show that both sides of (9.2) are the characteristic polynomial T (x) of
the image of a in A ⊗K B over A. That f(x) = T (x) follows at once by computing
the characteristic polynomial in terms of a basis w1, . . . , wN of A ⊗K B, where
w1, . . . , wN is a basis for B over K (this is because the matrix of left multiplication
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by b on A⊗K B is exactly the same as the matrix of left multiplication on B, so the
characteristic polynomial doesn’t change). To see that T (X) =

∏

gj(X), compute
the action of the image of a in A ⊗K B with respect to a basis of

A ⊗K B ∼=
J

⊕

j=1

Kj (9.3)

composed of basis of the individual extensions Kj of A. The resulting matrix will
be a block direct sum of submatrices, each of whose characteristic polynomials is
one of the gj(X). Taking the product gives the claimed identity (9.2).

Corollary 9.5. For a ∈ B we have

NormB/K(a) =

J
∏

j=1

NormKj/A(a),

and

TrB/K(a) =
J

∑

j=1

TrKj/A(a),

Proof. This follows from Corollary 9.4. First, the norm is ± the constant term of the
characteristic polynomial, and the constant term of the product of polynomials is
the product of the constant terms (and one sees that the sign matches up correctly).
Second, the trace is minus the second coefficient of the characteristic polynomial,
and second coefficients add when one multiplies polynomials:

(xn+an−1x
n−1+· · · )·(xm+am−1x

m−1+· · · ) = xn+m+xn+m−1(am−1+an−1)+· · · .

One could also see both the statements by considering a matrix of left multiplication
by a first with respect to the basis of wn and second with respect to the basis coming
from the left side of (9.3).
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