
Math 129: Algebraic Number Theory

Lecture 2

William Stein

Tuesday, February 10, 2004

Announcements: (1) Barry Mazur will talk about his popular math book “Imag-
ining Numbers” at the Harvard COOP tonight at 7pm. (2) I have office hours
Tuesdays and Thursdays 2–3pm in SC 515.

---------------------------------------------------------------------

We will do some serious commutative algebra today, which will provide a powerful
algebraic foundation for understanding the more refined number-theoretic structures
associated to number fields.

In the first section we establish the standard properties of Noetherian rings and
modules, including the Hilbert basis theorem. We also observe that finitely generated
abelian groups are Noetherian Z-modules, which fills the gap in our proof of the
structure theorem for finitely generated abelian groups. After establishing properties
of Noetherian rings, we consider the rings of algebraic integers and discuss some of
their properties.

1 Noetherian Rings and Modules

Let R be a commutative ring with unit element. We will frequently work with R-
modules, which are like vector spaces but over a ring. More precisely, recall that an
R-module is an additive abelian group M equipped with a map R×M → M such that
for all r, r′ ∈ R and all m,m′ ∈ M we have (rr′)m = r(r′m), (r + r′)m = rm + r′m,
r(m + m′) = rm + rm′, and 1m = m. A submodule is a subgroup of M that is
preserved by the action of R.

Example 1.1. The set of abelian groups are in natural bijection with Z-modules.

A homomorphism of R-modules ϕ : M → N is a abelian group homomorphism
such that for any r ∈ R and m ∈ M we have ϕ(rm) = rϕ(m). A short exact sequence

of R-modules
0 → L

f−→ M
g−→ N → 0

is a specific choice of injective homomorphism f : L → M and a surjective homo-
morphism g : M → N such that im(f) = ker(g).
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Definition 1.2 (Noetherian). An R-module M is Noetherian if every submodule
of M is finitely generated. A ring R is Noetherian if R is Noetherian as a module
over itself, i.e., if every ideal of R is finitely generated.

Notice that any submodule M ′ of M is Noetherian, because if every submodule
of M is finitely generated then so is every submodule of M ′, since submodules of M ′

are also submodules of M .

Definition 1.3 (Ascending chain condition). An R-module M satisfies the as-

cending chain condition if every sequences M1 ⊂ M2 ⊂ M3 ⊂ · · · of submodules
of M eventually stabilizes, i.e., there is some n such that Mn = Mn+1 = Mn+2 = · · · .

Proposition 1.4. If M is an R-module, then the following are equivalent:

1. M is Noetherian,

2. M satisfies the ascending chain condition, and

3. Every nonempty set of submodules of M contains at least one maximal element.

Proof. 1 =⇒ 2: Suppose M1 ⊂ M2 ⊂ · · · is a sequence of submodules of M . Then
M∞ = ∪∞

n=1Mn is a submodule of M . Since M is Noetherian, there is a finite set
a1, . . . , am of generators for M . Each ai must be contained in some Mj, so there is
an n such that a1, . . . , am ∈ Mn. But then Mk = Mn for all k ≥ n, which proves
that the ascending chain condition holds for M .
2 =⇒ 3: Suppose 3 were false, so there exists a nonempty set S of submodules
of M that does not contain a maximal element. We will use S to construct an
infinite ascending chain of submodules of M that does not stabilize. Note that S is
infinite, otherwise it would contain a maximal element. Let M1 be any element of S.
Then there is an M2 in S that contains M1, otherwise S would contain the maximal
element M1. Continuing inductively in this way we find an M3 in S that properly
contains M2, etc., and we produce an infinite ascending chain of submodules of M ,
which contradicts the ascending chain condition.

3 =⇒ 1: Suppose 1 is false, so there is a submodule M ′ of M that is not finitely
generated. We will show that the set S of all finitely generated submodules of M ′ does
not have a maximal element, which will be a contradiction. Suppose S does have a
maximal element L. Since L is finitely generated and L ⊂ M ′, and M ′ is not finitely
generated, there is an a ∈ M ′ such that a 6∈ L. Then L′ = L+Ra is an element of S
that strictly contains the presumed maximal element L, a contradiction.

Lemma 1.5. If

0 → L
f−→ M

g−→ N → 0

is a short exact sequence of R-modules, then M is Noetherian if and only if both L
and N are Noetherian.
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Proof. First suppose that M is Noetherian. Then L is a submodule of M , so L is
Noetherian. If N ′ is a submodule of N , then the inverse image of N ′ in M is a
submodule of M , so it is finitely generated, hence its image N ′ is finitely generated.
Thus N is Noetherian as well.

Next assume nothing about M , but suppose that both L and N are Noetherian.
If M ′ is a submodule of M , then M0 = ϕ(L)∩M ′ is isomorphic to a submodule of the
Noetherian module L, so M0 is generated by finitely many elements a1, . . . , an. The
quotient M ′/M0 is isomorphic (via g) to a submodule of the Noetherian module N ,
so M ′/M0 is generated by finitely many elements b1, . . . , bm. For each i ≤ m, let ci

be a lift of bi to M ′, modulo M0. Then the elements a1, . . . , an, c1, . . . , cm generate
M ′, for if x ∈ M ′, then there is some element y ∈ M0 such that x− y is an R-linear
combination of the ci, and y is an R-linear combination of the ai.

Proposition 1.6. Suppose R is a Noetherian ring. Then an R-module M is Noethe-

rian if and only if it is finitely generated.

Proof. If M is Noetherian then every submodule of M is finitely generated so M
is finitely generated. Conversely, suppose M is finitely generated, say by elements
a1, . . . , an. Then there is a surjective homomorphism from Rn = R ⊕ · · · ⊕ R to M
that sends (0, . . . , 0, 1, 0, . . . , 0) (1 in ith factor) to ai. Using Lemma 1.5 and exact
sequences of R-modules such as 0 → R → R ⊕ R → R → 0, we see inductively
that Rn is Noetherian. Again by Lemma 1.5, homomorphic images of Noetherian
modules are Noetherian, so M is Noetherian.

Lemma 1.7. Suppose ϕ : R → S is a surjective homomorphism of rings and R is

Noetherian. Then S is Noetherian.

Proof. The kernel of ϕ is an ideal I in R, and we have an exact sequence

0 → I → R → S → 0

with R Noetherian. By Lemma 1.5, it follows that S is a Noetherian R-modules.
Suppose J is an ideal of S. Since J is an R-submodule of S, if we view J as an R-
module, then J is finitely generated. Since R acts on J through S, the R-generators
of J are also S-generators of J , so J is finitely generated as an ideal. Thus S is
Noetherian.

Theorem 1.8 (Hilbert Basis Theorem). If R is a Noetherian ring and S is

finitely generated as a ring over R, then S is Noetherian. In particular, for any n
the polynomial ring R[x1, . . . , xn] and any of its quotients are Noetherian.

Proof. Assume first that we have already shown that for any n the polynomial ring
R[x1, . . . , xn] is Noetherian. Suppose S is finitely generated as a ring over R, so
there are generators s1, . . . , sn for S. Then the map xi 7→ si extends uniquely to a
surjective homomorphism π : R[x1, . . . , xn] → S, and Lemma 1.7 implies that S is
Noetherian.
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The rings R[x1, . . . , xn] and (R[x1, . . . , xn−1])[xn] are isomorphic, so it suffices to
prove that if R is Noetherian then R[x] is also Noetherian. (Our proof follows §12.5
of Artin’s Algebra.) Thus suppose I is an ideal of R[x] and that R is Noetherian.
We will show that I is finitely generated.

Let A be the set of leading coefficients of polynomials in I along with 0. If
a, b ∈ A are nonzero with a + b 6= 0, then there are polynomials f and g in I with
leading coefficients a and b. If deg(f) ≤ deg(g), then a + b is the leading coefficient
of xdeg(g)−deg(f)f + g, so a + b ∈ A. If r ∈ R and a ∈ A with ra 6= 0, then ra is
the leading coefficient of rf , so ra ∈ A. Thus A is an ideal in R, so since R is
Noetherian there exists a1, . . . , an that generate A as an ideal. Since A is the set
of leading coefficients of elements of I, and the aj are in I, we can choose for each
j ≤ n an element fj ∈ I with leading coefficient aj. By multipying the fj by some
power of x, we may assume that the fj all have the same degree d.

Let S<d be the set of elements of I that have degree strictly less than d. This
set is closed under addition and under multiplication by elements of R, so S<d is
a module over R. The module S<d is submodule of the R-module of polynomials
of degree less than n, which is Noetherian because it is generated by 1, x, . . . , xn−1.
Thus S<d is finitely generated, and we may choose generators h1, . . . , hm for S<d.

Suppose g ∈ I is an arbitrary element. We will show by induction on the degree
of g that g is an R[x]-linear combination of f1, . . . , fn, h1, . . . hm. Thus suppose this
statement is true for all elements of I of degree less than the degree of g. If the degree
of g is less than d, then g ∈ S<d, so g is in the R[x]-ideal generated by h1, . . . , hm.
Next suppose that g has degree e ≥ d. Then the leading coefficient b of g lies in the
ideal A of leading coefficients of g, so there exist ri ∈ R such that b = r1a1 + · · · +
rnan. Since fi has leading coefficient ai, the difference g − xe−drifi has degree less
than the degree e of g. By induction g − xe−drifi is an R[x] linear combination of
f1, . . . , fn, h1, . . . hm, so g is also an R[x] linear combination of f1, . . . , fn, h1, . . . hm.
Since each fi and hj lies in I, it follows that I is generated by f1, . . . , fn, h1, . . . hm,
so I is finitely generated, as required.

Properties of Noetherian rings and modules will be crucial in the rest of this
course. We have proved above that Noetherian rings have many desirable properties.

1.1 Z is Noetherian

The ring Z of integers is Noetherian because every ideal of Z is generated by one
element.

Proposition 1.9. Every ideal of the ring Z of integers is principal.

Proof. Suppose I is a nonzero ideal in Z. Let d the least positive element of I.
Suppose that a ∈ I is any nonzero element of I. Using the division algorithm, write
a = dq + r, where q is an integer and 0 ≤ r < d. We have r = a− dq ∈ I and r < d,
so our assumption that d is minimal implies that r = 0, so a = dq is in the ideal
generated by d. Thus I is the principal ideal generated by d.
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Proposition 1.6 and 1.9 together imply that any finitely generated abelian group
is Noetherian. This means that subgroups of finitely generated abelian groups are
finitely generated, which provides the missing step in our proof of the structure
theorem for finitely generated abelian groups.

2 Rings of Algebraic Integers

Fix an algebraic closure Q of Q. For example, Q could be the subfield of the complex
numbers C generated by all roots in C of all polynomials with coefficients in Q.

Much of this course is about algebraic integers.

Definition 2.1 (Algebraic Integer). An element α ∈ Q is an algebraic integer if
it is a root of some monic polynomial with coefficients in Z.

Definition 2.2 (Minimal Polynomial). The minimal polynomial of α ∈ Q is the
monic polynomial f ∈ Q[x] of least positive degree such that f(α) = 0.

The minimal polynomial of α divides any polynomial h such that h(α) = 0, for
the following reason. If h(α) = 0, use the division algorithm to write h = qf + r,
where 0 ≤ deg(r) < deg(f). We have r(α) = h(α) − q(α)f(α) = 0, so α is a root
of r. However, f is the polynomial of least positive degree with root α, so r = 0.

Lemma 2.3. If α is an algebraic integer, then the minimal polynomial of α has

coefficients in Z.

Proof. (From S-D, page 2.) Suppose f ∈ Q[x] is the minimal polynomial of α and
g ∈ Z[x] is a monic integral polynomial such that g(α) = 0. As mentioned after the
definition of minimal polynomial, we have g = fh, for some h ∈ Q[x]. If f 6∈ Z[x],
then some prime p divides the denominator of some coefficient of f . Let pi be the
largest power of p that divides any denominator of f , and likewise let pj be the
largest power of p that divides any denominator of g. Then pi+jg = (pif)(pjg), and
if we reduce both sides modulo p, then the left hand side is 0 but the right hand side
is a product of two nonzero polynomials in Fp[x], hence nonzero, a contradiction.

Proposition 2.4. An element α ∈ Q is integral if and only if Z[α] is finitely gen-

erated as a Z-module.

Proof. Suppose α is integral and let f ∈ Z[x] be the monic minimal polynomial of α
(that f ∈ Z[x] is Lemma 2.3). Then Z[α] is generated by 1, α, α2, . . . , αd−1, where d
is the degree of f . Conversely, suppose α ∈ Q is such that Z[α] is finitely generated,
say by elements f1(α), . . . , fn(α). Let d be any integer bigger than the degree of
any fi. Then there exist integers ai such that αd =

∑
aifi(α), hence α satisfies the

monic polynomial xd − ∑
aifi(x) ∈ Z[x], so α is integral.

The rational number α = 1/2 is not integral. Note that G = Z[1/2] is not a
finitely generated Z-module, since G is infinite and G/2G = 0.
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Proposition 2.5. The set Z of all algebraic integers is a ring, i.e., the sum and

product of two algebraic integers is again an algebraic integer.

Proof. Suppose α, β ∈ Z, and let m,n be the degrees of the minimal polynomials
of α, β, respectively. Then 1, α, . . . , αm−1 span Z[α] and 1, β, . . . , βn−1 span Z[β] as
Z-module. Thus the elements αiβj for i ≤ m, j ≤ n span Z[α, β]. Since Z[α+β] is a
submodule of the finitely-generated module Z[α, β], it is finitely generated, so α + β
is integral. Likewise, Z[αβ] is a submodule of Z[α, β], so it is also finitely generated
and αβ is integral.

Recall that a number field is a subfield K of Q such that the degree [K : Q] :=
dimQ(K) is finite.

Definition 2.6 (Ring of Integers). The ring of integers of a number field K is
the ring

OK = K ∩ Z = {x ∈ K : x is integral}.

Example 2.7. The field Q of rational numbers is a number field of degree 1, and the
ring of integers of Q is Z. The field K = Q(i) of Gaussian integers has degree 2 and
OK = Z[i]. The field K = Q(

√
5) has ring of integers OK = Z[(1+

√
5)/2]. According

to MAGMA, the ring of integers of K = Q( 3
√

9) is Z[ 3
√

3], where 3
√

3 = 1
3
( 3
√

9)2.

Lemma 2.8. Let OK be the ring of integers of a number field. Then OK ∩ Q = Z
and QOK = K.

Proof. If α ∈ OK ∩ Q, write α = a/b in lowest terms. Since a/b is integral, by
Proposition 2.4, the ring Z[a/b] is finitely generated as a Z-module. If b 6= 0, then
G = Z[a/b] is not even finitely generated as an abelian group, since G is torsion free
and G/bG = 0. Thus OK ∩ Q = Z.

To prove that QOK = K, suppose α ∈ K, and let f(x) ∈ Q[x] be the minimal
monic polynomial of α. For any positive integer d, the minimal monic polynomial
of dα is ddeg(f)f(x/d), i.e., the polynomial obtained from f(x) by multiplying the
coefficient of xdeg(f) by 1, multiplying the coefficient of xdeg(f)−1 by d, multiplying
the coefficient of xdeg(f)−2 by d2, etc. If d is the least common multiple of the
denominators of the coefficients of f , then the minimal monic polynomial of dα has
integer coefficients, so dα is integral and dα ∈ OK . This proves that QOK = K.

Next time we will prove the following proposition:

Proposition 2.9. The ring of integers OK of a number field is Noetherian.

We will also develop some basic properties of norms, traces, and discriminants,
and give more properties of rings of integers in the general context of Dedekind
domains.
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