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Abstract. Since the introduction of public-key cryptography by Diffie and Hellman in 1976, the potential for
the use of the discrete logarithm problem in public-key cryptosystems has been recognized. Although the discrete
logarithm problem as first employed by Diffie and Hellman was defined explicitly as the problem of finding
logarithms with respect to a generator in the multiplicative group of the integers modulo a prime, this idea can be
extended to arbitrary groups and, in particular, to elliptic curve groups. The resulting public-key systems provide
relatively small block size, high speed, and high security. This paper surveys the development of elliptic curve
cryptosystems from their inception in 1985 by Koblitz and Miller to present day implementations.
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1. Introduction

Since the introduction of public-key cryptography by Diffie and Hellman [14] in 1976, the
cryptographic importance of the apparent intractability of the discrete logarithm problem
has been recognized. ElGamal [16] first described how this problem may be utilized in
public-key encryption and digital signature schemes. ElGamal’s methods have been refined
and incorporated into various protocols to meet a variety of applications, and one of its
extensions forms the basis for the U.S. government digital signature algorithm (DSA) [56].

Although the discrete logarithm problem as first employed by Diffie and Hellman in their
key agreement protocol was defined explicitly as the problem of finding logarithms with
respect to a generator in the multiplicative group of the integers modulo a prime, this idea
can be extended to arbitrary groups. LetG be a finite group of ordern, and letα be an
element ofG. Thediscrete logarithm problemfor G is the following: given an element
β ∈ G, find an integerx, 0 ≤ x ≤ n − 1, such thatαx = β, if such an integer exists
(i.e., if β is in the subgroup ofG generated byα). Groups that have been proposed for
cryptographic use include the multiplicative group of characteristic two finite fields (see,
for example, Agnewet al [2]), subgroups of the multiplicative group of the integers modulo
a prime (Schnorr [68]), the group of units of Zn wheren is a composite integer (McCurley
[46]), the group of points on an elliptic curve defined over a finite field (Koblitz [29] and
Miller [52]), the jacobian of a hyperelliptic curve defined over a finite field (Koblitz [31]),
and the class group of an imaginary quadratic number field (Buchmann and Williams [9]).
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Elliptic curves have been extensively studied for over a hundred years, and there is a
vast literature on the topic. Originally pursued mainly for aesthetic reasons, elliptic curves
have recently become a tool in several important applied areas, including coding theory
(Driencourt and Michon [15] and van der Geer [19]); pseudorandom bit generation (Kaliski
[26, 27]); and number theory algorithms (Goldwasser and Kilian [20] for primality proving
and Lenstra [41] for integer factorization).

In 1985, Koblitz [29] and Miller [52] independently proposed using the group of points
on an elliptic curve defined over a finite field in discrete log cryptosystems. The primary
advantage that elliptic curve systems have over systems based on the multiplicative group of
a finite field (and also over systems based on the intractability of integer factorization) is the
absence of a subexponential-time algorithm (such as those of “index-calculus” type) that
could find discrete logs in these groups. Consequently, one can use an elliptic curve group
that is smaller in size while maintaining the same level of security. The result is smaller
key sizes, bandwidth savings, and faster implementations, features which are especially
attractive for security applications where computational power and integrated circuit space
is limited, such as smart cards, PC (personal computer) cards, and wireless devices.

Elliptic curves also appear in the so-called elliptic curve analogues of the RSA cryptosys-
tem, as first proposed by Koyamaet al [38]. In these systems, one works in an elliptic
curve defined over the ring Zn (n a composite integer), and the order of the elliptic curve
group serves as the trapdoor. The security of these schemes is based on the difficulty of
factoringn. The work of several people, including Kurosawa, Okada, and Tsujii [39], Pinch
[61], Kaliski [28], and Bleichenbacher [7] subsequently showed that these elliptic curve
analogues do not have any significant advantages over their RSA counterparts. For this
reason, they are not considered in this paper.

The remainder of the paper is organized as follows. §2 begins with a brief review of
elliptic curves. For an elementary introduction to elliptic curves, the reader is referred to
Chapter 6 of Koblitz’s books [36, 37]. Charlap and Robbins [10, 11] present elementary
self-contained proofs for some of the basic theory. For more sophisticated treatments, see
Silverman [73, 74]. The elliptic curve analogues of discrete log cryptosystems are discussed
in §3. §4 studies the elliptic curve discrete logarithm problem, whose apparent intractability
is the basis for the security of elliptic curve systems. §5 considers various issues that arise
in implementation.

We will use the following notation. Fq denotes the finite field ofq elements andFq denotes
the algebraic closure of Fq. By Zn we denote the integers modulon. The cardinality of a
setS is denoted by #S.

2. Background on Elliptic Curves

Assume first that Fq has characteristic greater than 3. Anelliptic curve Eover Fq is the set
of all solutions(x, y) ∈ Fq × Fq to an equation

y2 = x3+ ax+ b, (1)

wherea,b ∈ Fq and 4a3 + 27b2 6= 0, together with a special point∞ called thepoint at
infinity.
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It is well known thatE is an (additively written) abelian group with the point∞ serving
as its identity element. The rules for group addition are summarized below.

Addition Formulas for the Curve (1).Let P = (x1, y1) ∈ E; then−P = (x1,−y1). If
Q = (x2, y2) ∈ E, Q 6= −P, thenP + Q = (x3, y3), where

x3 = λ2− x1− x2

y3 = λ(x1− x3)− y1,

and

λ =


y2− y1

x2− x1
if P 6= Q

3x2
1 + a

2y1
if P = Q.

If Fq is a field of characteristic 2, then there are two types of elliptic curves over Fq. An
elliptic curve E of zero j-invariantover Fq is the set of all solutions(x, y) ∈ Fq ×Fq to an
equation

y2+ cy= x3+ ax+ b, (2)

wherea, b, c ∈ Fq, c 6= 0, together with the point at infinity∞. An elliptic curve E of
non-zero j-invariantover a field Fq of characteristic 2 is the set of solutions(x, y) ∈ Fq×Fq

to an equation

y2+ xy= x3+ ax2+ b, (3)

wherea, b ∈ Fq, b 6= 0, together with the point at infinity∞. In both cases,E is an
(additively written) abelian group with the point∞ serving as the identity. The addition
formulas for the two types of curves over F2m are given below.

Addition Formulas for the Curve (2).Let P = (x1, y1) ∈ E; then−P = (x1, y1 + c). If
Q = (x2, y2) ∈ E andQ 6= −P, thenP + Q = (x3, y3), where

x3 =


(

y1+ y2

x1+ x2

)2

+ x1+ x2 P 6= Q

x4
1 + a2

c2
P = Q

and

y3 =


(

y1+ y2

x1+ x2

)
(x1+ x3)+ y1+ c P 6= Q(

x2
1 + a

c

)
(x1+ x3)+ y1+ c P = Q.

105



176 KOBLITZ ET AL.

Addition Formulas for the Curve (3).Let P = (x1, y1) ∈ E; then−P = (x1, y1+ x1). If
Q = (x2, y2) ∈ E andQ 6= −P, thenP + Q = (x3, y3), where

x3 =


(

y1+ y2

x1+ x2

)2

+ y1+ y2

x1+ x2
+ x1+ x2+ a P 6= Q

x2
1 +

b

x2
1

P = Q

and

y3 =


(

y1+ y2

x1+ x2

)
(x1+ x3)+ x3+ y1 P 6= Q

x2
1 +

(
x1+ y1

x1

)
x3+ x3 P = Q.

If E is an elliptic curve over a finite field Fq, then letE(Fq) denote the points inE having
both coordinates in Fq, including the point∞; the points inE(Fq) are also known asFq-
rational points. E(Fq) is an abelian group of rank 1 or 2. We haveE(Fq) ∼= Cn1 ⊕ Cn2,
whereCn denotes the cyclic group of ordern, n2 dividesn1, and furthermoren2|q − 1.
A well-known theorem of Hasse states that #E(Fq) = q + 1− t , where|t | ≤ 2

√
q. The

curve E is said to besupersingularif t2 = 0,q,2q,3q, or 4q; otherwise the curve is
non-supersingular.

If q is a power of 2 andE is supersingular, then #E(Fq) is odd; if q is a power of 2 and
E is non-supersingular, then #E(Fq) is even. A result of Waterhouse [81] states that ifq
is a prime, then for eacht satisfying|t | ≤ 2

√
q there exists at least one elliptic curveE

defined over Fq with #E(Fq) = q+1− t ; if q is a power of 2, then for each oddt satisfying
|t | ≤ 2

√
q there exists at least one (non-supersingular) elliptic curveE defined over Fq

with #E(Fq) = q+1− t . More generally, Schoof [70] derived a formula for the number of
isomorphism classes of elliptic curves defined over Fq with #E(Fq) = q + 1− t , for each
t satisfying|t | ≤ 2

√
q.

Example(elliptic curve over Z23). Consider the elliptic curveE: y2 = x3+ x+1 defined
over Z23. Then #E(Z23) = 28, E(Z23) is cyclic, and a generator ofE(Z23) is P = (0,1).
The points inE(Z23), expressed as multiples ofP, are shown below:

P = (0,1) 2P = (6,−4) 3P = (3,−10) 4P = (−10,−7)
5P = (−5,3) 6P = (7,11) 7P = (11,3) 8P = (5,−4)
9P = (−4,−5) 10P = (12,4) 11P = (1,−7) 12P = (−6,−3)
13P = (9,−7) 14P = (4,0) 15P = (9,7) 16P = (−6,3)
17P = (1,7) 18P = (12,−4) 19P = (−4,5) 20P = (5,4)
21P = (11,−3) 22P = (7− 11) 23P = (−5,−3) 24P = (−10,7)
25P = (3,10) 26P = (6,4) 27P = (0,−1) 28P = ∞.

Example(elliptic curve over F23). Consider the elliptic curveE: y2+ xy= x3+ x2+ 1
defined over F23. F23 is constructed using the primitive irreducible polynomialf (x) =
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x3+ x + 1 and a rootα. Then #E(F23) = 14, andE(F23) is cyclic. A generator ofE(F23)

is P = (α, α5). The points inE(F23), expressed as multiples ofP, are shown below:

P = (α, α5) 2P = (α3,0) 3P = (α2, α5) 4P = (α5,0)
5P = (α4, α3) 6P = (α6, α6) 7P = (0,1) 8P = (α6,0)
9P = (α4, α6) 10P = (α5, α5) 11P = (α2, α3) 12P = (α3, α3)

13P = (α, α6) 14P = ∞.

3. Elliptic Curve Cryptosystems

Discrete log cryptosystems are typically described in the setting of the multiplicative group
of the integers modulo a primep. Such systems can be modified to work in the group of
points on an elliptic curve. For instance, the Diffie–Hellman key agreement protocol can be
adapted for elliptic curves as follows. First note that a “random” point on an elliptic curve
E can serve as a key, since Alice and Bob can agree in advance on a method to convert it
to an integer (for example, they can take the image of itsx-coordinate under some agreed
upon simple map from Fq to the natural numbers).

So suppose thatE is an elliptic curve over Fq, andQ is an agreed upon (and publicly
known) point on the curve. Alice secretly chooses a random integerkA and computes
the pointkAQ, which she sends to Bob. Likewise, Bob secretly chooses a randomkB,
computeskB Q, and sends it to Alice. The common key isP = kAkB Q. Alice computes
P by multiplying the point she received from Bob by her secretkA; Bob computesP by
multiplying the point he received from Alice by his secretkB. An eavesdropper who wanted
to spy on Alice and Bob would have to determineP = kAkB Q knowingQ, kAQ, andkB Q,
but notkA or kB. The eavesdropper’s task is called the “Diffie–Hellman problem for elliptic
curves.”

It is not hard to modify the Diffie–Hellman protocol for the purpose of message transmis-
sion, using an idea of ElGamal [16]. Suppose that the set of message units has been embed-
ded inE in some agreed upon way, and Bob wants to send Alice a messageM ∈ E. Alice
and Bob have already exchangedkAQ andkB Q as in Diffie–Hellman. Bob now chooses
another secret random integerl , and sends Alice the pair of points(l Q,M + l (kAQ)). To
decipher the message, Alice multiplies the first point in the pair by her secretkA and then
subtracts the result from the second point in the pair.

We next describe the elliptic curve analogue (ECDSA) of the U.S. government digital
signature algorithm (DSA). The ECDSA is an ANSI standard and is also being considered
by the ANSI X9F1 and IEEE P1363 standards committees as a digital signature standard
(see §5.3).

ECDSA Key Generation. Eis an elliptic curve defined over Fq, andP is a point of prime
ordern in E(Fq); these are system-wide parameters. For simplicity, we shall suppose that
q is a prime, although the construction can easily be adapted to a prime powerq as well.
Each entityA does the following:

1. Select a random integerd in the interval [1,n− 1].
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2. ComputeQ = d P.

3. A’s public key isQ; A’s private key isd.

ECDSA Signature Generation.To sign a messagem, A does the following:

1. Select a random integerk in the interval [1,n− 1].

2. Computek P = (x1, y1) andr = x1 modn (wherex1 is regarded as an integer between
0 andq − 1). If r = 0 then go back to step 1.1

3. Computek−1 modn.

4. Computes= k−1{h(m)+ dr} modn, whereh is the Secure Hash Algorithm (SHA-1
[57]). If s= 0, then go back to step 1.2

5. The signature for the messagem is the pair of integers(r, s).

ECDSA Signature Verification. To verify A’s signature(r, s) on m, B should do the
following:

1. Obtain an authenticated copy ofA’s public keyQ.

2. Verify thatr ands are integers in the interval [1,n− 1].

3. Computew = s−1 modn andh(m).

4. Computeu1 = h(m)w modn andu2 = rw modn.

5. Computeu1P + u2Q = (x0, y0) andv = x0 modn.

6. Accept the signature if and only ifv = r .

Discussion. The only significant difference between ECDSA and DSA is in the generation
of r . The DSA does this by taking the random element(αk mod p) and reducing it modulo
q, thus obtaining an integer in the interval [1,q − 1]. (In the DSA,q is a 160-bit prime
divisor of p− 1, andα is an element of orderq in F∗p.) The ECDSA generates the integer
r in the interval [1,n− 1] by taking thex-coordinate of the random pointk P and reducing
it modulon.

To obtain a security level similar to that of the DSA, the parametern should have about
160 bits. If this is the case, then DSA and ECDSA signatures have the same bitlength
(320 bits).

Instead of using system-wide parameters, we could fix the underlying finite field Fq for
all entities, and let each entity select its own elliptic curveE and pointP ∈ E(Fq). In this
case, the defining equation forE, the pointP, and the ordern of P must also be included
in the entity’s public key. If the underlying field Fq is fixed, then hardware or software can
be built to optimize computations in that field. At the same time, there are an enormous
number of choices of elliptic curvesE over the fixed Fq.
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4. Security

The basis for the security of elliptic curve cryptosystems such as the ECDSA is the apparent
intractability of the followingelliptic curve discrete logarithm problem(ECDLP): given an
elliptic curve E defined over Fq, a pointP ∈ E(Fq) of ordern, and a pointQ ∈ E(Fq),
determine the integerl , 0 ≤ l ≤ n − 1, such thatQ = l P, provided that such an integer
exists.

The Pohlig–Hellman algorithm [62] reduces the determination ofl to the determination of
l modulo each of the prime factors ofn. Hence, in order to achieve the maximum possible
security level,n should be prime. The best algorithm known to date for ECDLP is the
Pollardρ-method [63], as modified by Gallant, Lambert and Vanstone [18], and Wiener
and Zuccherato [82], which takes about(

√
πn)/2 steps, where astephere is an elliptic

curve addition. Van Oorschot and Wiener [59, 60] showed how the Pollardρ-method can
be parallelized so that ifr processors are used, then the expected number of steps by each
processor before a single discrete logarithm is obtained is(

√
πn)/(2r ). For elliptic curves

E defined over a subfield F2l of F2m, the parallelized Pollardρ-method for the ECDLP in
E(F2m) can be sped up to an expected running time of(

√
πnl/m)/(2r ) (see [18, 82]).

An elliptic curveE over Fp is said to beprime-field-anomalousif #E(Fp) = p. Semaev
[72], Smart [77] and Satoh and Araki [64] independently showed how to efficiently compute
an isomorphism betweenE(Fp), whereE is a prime-field-anomalous curve, and theadditive
group of Fp. This gives a polynomial-time algorithm for the ECDLP inE(Fp). The attack
does not appear to extend to any other class of elliptic curves. Consequently, by verifying
that the number of points on an elliptic curve does not equal the cardinality of the underlying
field, one can easily ensure that the Semaev–Smart–Satoh–Araki attack does not apply.

Menezes, Okamoto and Vanstone (MOV) ([49]; see also Menezes [48]) used the Weil
pairing on an elliptic curveE to embed the groupE(Fq) in the multiplicative group of the
field Fqk for some integerk. This reduces the ECDLP inE(Fq) to the discrete logarithm
problem (DLP) in F∗qk . A necessary condition forE(Fq) to be embedded in F∗qk is that
n divide qk − 1; and in [5] it is proved that this condition is also sufficient under a mild
assumption.3 Now in F∗qk we can hope to use a version of the index-calculus algorithm with
subexponential running time

exp((c+ o(1))(logqk)1/3(log logqk)2/3). (4)

See Coppersmith [12] for the case whenq a power of 2, and Gordon [21] and Schirokauer
[67] for the case whenq is a prime andk = 1. No algorithm with running time (4) is known
whenq is odd andk > 1, but we adopt the “optimistic” supposition that the time estimate
(4) is the complexity of the discrete logarithm problem in F∗qk for all q andk ≥ 1.

Note thatk must be less than log2 q, since otherwise the index-calculus algorithm for F∗
qk

will take fully exponential time (in logq). For the very special class of supersingular curves,
it is known thatk ≤ 6. For these curves, the MOV reduction gives a subexponential-time
algorithm for the ECDLP. However, a randomly generated elliptic curve has an exponen-
tially small probability of being supersingular; and, as shown by Koblitz [33] (see also
Balasubramanian and Koblitz [5]), for most randomly generated elliptic curves we have
k > log2 q.
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No subexponential-time algorithm is known for the ECDLP for any class of elliptic curves
other than the ones discussed above. Miller [52] discusses the index-calculus method as
it might apply to elliptic curve groups. He comments that unlike in the case of F∗

q, where
there are natural candidates for the factor base0 (prime numbers of small size or small
degree irreducible polynomials), there appear to be no likely candidates inE(Fq). The
most natural ones for elliptic curves over Fp seem to be points of small height inE(Q), Q
the field of rational numbers (the height of a point is related to the number of bits needed
to represent the point). However, Miller points out that there are very few points of small
height in E(Q). Furthermore, even if such a set0 exists, finding an efficient method for
lifting a point in E(Fp) to a point inE(Q) looks hopeless. Miller’s argument against the
possibility of index-calculus attacks has been elaborated on and explored in more detail by
J. Silverman and Suzuki [76], who support his conclusions.

A very interesting line of attack on the ECDLP was recently proposed by J. Silverman
[75]. His “xedni calculus” turns the index calculus method “on its head” (hence the name).
Given a discrete log problem on an elliptic curve over Fp, he first lifts the points in question
(actually,r different integer linear combinations of them, wherer ≤ 9) to points in the
plane over Q, and then he considers elliptic curvesE(Q) that pass through theser points.
If E(Q) can be chosen to have rank< r — i.e., so that there is an integer linear dependence
relation among ther points — then the ECDLP is solved. In general, the probability of rank
< r is negligible. However, Silverman’s idea is to impose a number of “Mestre conditions”
modulo` for small primes̀ in order to increase this probability. (Each Mestre condition
[51] forces #E(F`) to be as small as possible.) Although the xedni calculus attack is clever
and elegant, a careful analysis [25] showed that it is extremely impractical. One intriguing
aspect of Silverman’s algorithm is that it can be adapted (with no important changes) to solve
both the discrete log problem in the multiplicative group of Fp and the integer factorization
problem. Thus, if it had turned out to be efficient, it would have attacked all major public-key
cryptosystems that are in practical use.

Other work has treated problems that are related to the ECDLP. Frey and R¨uck [17] used a
variant of the Tate pairing for abelian varieties over local fields to extend the MOV reduction
algorithm to jacobian groups of curves of genusg over finite fields. Adleman, DeMarrais
and Huang [1] (see also Stein, M¨uller and Thiel [80]) presented a subexponential-time
algorithm for the discrete logarithm problem in the jacobian of a large genus hyperelliptic
curve over a finite field. More precisely, there exists a numberc, 0 < c ≤ 2.181, such
that for all sufficiently largeg ≥ 1 and all odd primesp with log p ≤ (2g + 1)0.98, the
expected running time of the algorithm for computing logarithms in the jacobian of a genus
g hyperelliptic curve over Fp is conjectured to be

exp((c+ o(1))(log p2g+1)1/2(log log p2g+1)1/2).

However, in the case of elliptic curves (which are hyperelliptic curves of genusg = 1) the
algorithm is worse than naive exhaustive search.

In 1994, Scheidler, Buchmann and Williams [65] used a non-group structure, the so-
called infrastructure of the principal ideals of a real quadratic number field, to implement
the Diffie–Hellman key agreement protocol. To overcome some difficulties with imple-
menting such a scheme, Scheidler, Stein and Williams [66] extended the ideas to (odd
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Table 1. Computing power needed to compute el-
liptic curve logarithms with the Pollardρ-method.

Field size Size ofn (
√
πn)/2 MIPS years

(in bits) (in bits)

163 160 280 8.5× 1011

191 186 293 7.0× 1015

239 234 2117 1.2× 1023

359 354 2177 1.3× 1041

431 426 2213 9.2× 1051

characteristic) real quadratic congruence function fields; see also M¨uller, Vanstone and
Zuccherato [54] for the case of even characteristic quadratic congruence function fields.
Stein [79] (and Zuccherato [85] in the case of even characteristic) showed that the discrete
logarithm problem in real quadratic congruence function fields of genus 1 is equivalent to
the ECDLP. No subexponential-time algorithm is known for the former problem.

The security of the elliptic curve Diffie–Hellman key agreement protocol relies on the
intractability of the elliptic curve Diffie–Hellman problem (ECDHP): given an elliptic curve
E defined over Fq and pointsP, k1P, k2P ∈ E(Fq), compute the pointk1k2P. Clearly
ECDHP polynomial-time reduces to ECDLP. Boneh and Lipton [8] proved that if the
ECDLP cannot be solved in subexponential time, then neither can ECDHP.

Software Attacks.We assume that a million-instructions-per-second (MIPS) machine can
perform 4× 104 elliptic curve additions per second, i.e., about 240 elliptic curve additions
per year. (This estimate is indeed conservative – an application-specific integrated circuit
(ASIC) for performing elliptic curve additions over the field F2155 (see [3]) has a 40 MHz
clock-rate and can perform roughly 40,000 elliptic curve operations per second. Also, the
software implementation by Schroeppelet al [71] on a SPARC IPC (rated at 25 MIPS)
performs 2,000 elliptic curve additions per second.) The termMIPS yeardenotes the com-
putational power of a MIPS computer utilized for one year. Table 1 shows the computing
power required for various values ofn to compute a single discrete logarithm using the
Pollardρ-method.

For instance, if 10,000 computers each rated at 1,000 MIPS are available, andn ≈ 2160,
then a single elliptic curve discrete logarithm can be computed in 85,000 years. Odlyzko
[58] has estimated that if 0.1% of the world’s computing power were available for one year
to work on a collaborative effort to break some challenge cipher, then the computing power
available would be 108 MIPS years in 2004 and between 1010 and 1011 MIPS years in 2014.

To put the numbers in Table 1 in some perspective, Table 2 (due to Odlyzko [58]) shows
the estimated computing power required to factor integers with current versions of the
general number field sieve.

Hardware Attacks.For well-funded attackers, a more promising approach might be to build
special-purpose hardware for a parallel search using the Pollardρ-method. Van Oorschot
and Wiener [59] provide a detailed study of such a possibility. In their 1994 study, they
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Table 2. Computing power
needed to factor integers using
the general number field sieve.

Bitsize of integer MIPS years
to be factored

512 3× 104

768 2× 108

1024 3× 1011

1280 1× 1014

1536 3× 1016

2048 3× 1020

estimated that ifn ≈ 1036 ≈ 2120, then a machine withm= 325,000 processors that could
be built for about US$10 million would compute a single discrete logarithm in about 35
days.

Discussion. It should be pointed out that in the software and hardware attacks described
above, computation of a single elliptic curve discrete logarithm has the effect of revealing
asingleuser’s private key. Roughly the same effort must be repeated in order to determine
another user’s private key.

In [6], Blazeet al report on the minimum key lengths required for secure symmetric-key
encryption schemes. They come to the following conclusions:

To provide adequate protection against the most serious threats – well-funded com-
mercial enterprises or government intelligence agencies – keys used to protect data
today should be at least 75 bits long. To protect information adequately for the
next 20 years in the face of expected advances in computing power, keys in newly-
deployed systems should be at least 90 bits long.

Extrapolating these conclusions to the case of elliptic curves, we see thatn should be at
least 150 bits for short-term security and at least 180 bits for medium-term security. This
extrapolation is justified by the following considerations:

1. Exhaustive search through ak-bit symmetric-key cipher takes about the same time as
the Pollardρ-algorithm applied to an elliptic curve having a 2k-bit parametern.

2. Exhaustive searches with a symmetric-key cipher and the Pollardρ-algorithm can both
be parallelized with a linear speedup.

3. A basic operation with elliptic curves (addition of two points) is computationally more
expensive than a basic operation in a symmetric-key cipher (encryption of one block).

4. In both symmetric-key ciphers and elliptic curve systems, a “break” has the same effect:
it recovers a single private key.
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5. Implementation Issues

Since the elliptic curve discrete logarithm problem appears to be harder that the discrete
logarithm problem in F∗p (or the problem of factoring a composite integern), one can use
an elliptic curve group that is significantly smaller that F∗p (respectively,n). For example,
an elliptic curveE(Fq) with a point P ∈ E(Fq) whose order is a 160-bit prime offers
approximately the same level of security as DSA with a 1024-bit modulusp and RSA with
a 1024-bit modulusn.

In order to get a rough idea of the computational efficiency of elliptic curve systems, let
us compare the times to compute

(i) k P whereP ∈ E(F2m), E is a non-supersingular curve,m ≈ 160, andk is a random
160-bit integer (this is an operation in ECDSA); and

(ii) αk mod p, wherep is a 1024-bit prime andk is a random 160-bit integer (this is an
operation in DSA).

Let us assume that a field multiplication in Fq, where log2 q = l , takesl 2 bit operations;
then a modular multiplication in (ii) takes(1024/160)2 ≈ 41 times longer than a field
multiplication in (i). Computation ofk P by repeated doubling and adding on the average
requires 160 elliptic curve doublings and 80 elliptic curve additions. From the addition
formula for non-supersingular curves (see §2), we see that an elliptic curve addition or
doubling requires 1 field inversion and 2 field multiplications. (The cost of field addition
is negligible, as is the cost of a field squaring especially if a normal basis representation
is used.) Assume also that the time to perform a field inversion is equivalent to that of
3 field multiplications (this is what has been reported in practice; see Schroeppelet al
[71] and De Winet al [83]). Hence, computingk P requires the equivalent of 1200 field
multiplications, or 1200/41 ≈ 29 1024-bit modular multiplications. On the other hand,
computingαk mod p by repeated squaring and multiplying requires an average of 240
1024-bit modular multiplications. Thus, the operation in (i) can be expected to be about
8 times faster than the operation in (ii).4 Since multiplication in F2m is in fact substan-
tially faster than modular multiplication, even more impressive speedups can be realized in
practice.

Another important consequence of using a smaller group in elliptic curve systems is that
low-cost and low-power implementations are feasible in restricted computing environments,
such as smart cards, pagers, hand-held computers, and cellular telephones. For example, an
ASIC built for performing elliptic curve operations over the field F2155 (see Agnew, Mullin
and Vanstone [3]) has only 12,000 gates and would occupy less that 5% of the area typically
designated for a smart card processor. By comparison, a chip designed to do modular
multiplication of 512-bit numbers (see Iveyet al [24]) has about 50,000 gates, while the
chip designed to do field multiplications in F2593 (see Agnewet al [2]) has about 90,000
gates.

Another advantage of elliptic curve systems is that the underlying field Fq and a represen-
tation for its elements can be selected so that the field arithmetic (addition, multiplication,
and inversion) can be optimized. This is not the case for systems based on discrete log (re-
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spectively, integer factorization), where the prime modulusp (respectively, the composite
modulusn) should not be chosen to have a special form that would be likely to make the
cryptanalyst’s task easier (using the number field sieve).

With our current knowledge, elliptic curve systems over prime order fields Fp appear to
provide the same level of security as elliptic curve systems over characteristic two fields
F2m when p ≈ 2m. Because it appears that arithmetic in F2m can be implemented more
efficiently in hardware and software than arithmetic in Fp (on platforms where specialized
arithmetic co-processors for performing the finite field arithmetic are not available), elliptic
curves over F2m have seen wider use in commercial implementations.

Construction of an elliptic curve cryptosystem requires some basic steps:

1. Selecting an underlying field Fq.

2. Selecting a representation for the elements of Fq.

3. Implementing the arithmetic in Fq.

4. Selecting an appropriate elliptic curveE over Fq.

5. Implementing the elliptic curve operations inE.

§5.1 surveys some of the field representations used in elliptic curve implementations that
have been reported in the literature. Techniques for selecting suitable elliptic curves are
discussed in §5.2. Finally, §5.3 summarizes the current efforts underway to standardize
elliptic curve cryptosystems.

5.1. Representation of the Underlying Field

The representation used for the elements of the underlying field Fq can have a significant
impact on the feasibility, cost, and speed of an elliptic curve system. It must be emphasized,
however, that the representation used for a particular field Fq does not appear to affect its
security.

Elliptic Curves over Fp. To minimize the time to perform modular multiplication, the
prime p may be chosen to be of the formp = 2k − 1 (called aMersenne prime); see the
patent of Crandall [13]. See De Winet al [84] for a report of a software implementation
of ECDSA over Fp, and Bailey and Paar [4] for an implementation report of elliptic curve
arithmetic over finite fields Fpm wherep is of the form 2k ± c for some smallc.

Elliptic Curves over F2m. The field F2m can be viewed as a vector space of dimensionm
over F2. That is, there exists a set ofm elements{α0, α1, . . . , αm−1} in F2m such that each
α ∈ F2m can be written uniquely in the form

α =
m−1∑
i=0

aiαi , whereai ∈ {0,1}.
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We can then representα as the binary vector(a0,a1, . . . ,am−1). Addition of field elements
is performed by bitwise XOR-ing the vector representations. There are many different
bases of F2m over F2.

1. Trinomial bases

If f (x) is an irreducible polynomial of degreem over F2, then the field F2m can be
represented as the set of polynomials of degree less thanmover F2, where multiplication
of polynomials is performed modulof (x). That is, in the above notationαi = xi ,
0 ≤ i ≤ m− 1. Such a representation is called apolynomial basis representation.
A trinomial basis representationis a polynomial basis representation in which the
polynomial f (x) has the formf (x) = xm + xk + 1. Such representations have the
advantage that reduction modulof (x) can be performed efficiently, both in software
and in hardware. For a detailed description of the field arithmetic in F2155 using a
trinomial basis representation, see Schroeppelet al [71].

2. Optimal normal bases

A normal basisof F2m over F2 is a basis of the form

{β, β2, β22
, . . . , β2m−1},

whereβ ∈ F2m; such a basis always exists. Since squaring is a linear operator in F2m,
we have

α2 =
m−1∑
i=0

aiβ
2i+1 =

m−1∑
i=0

ai−1β
2i = (am−1,a0, . . . ,am−2).

Thus, a normal basis representation of F2m has the advantage that squaring a field
element is accomplished by a simple rotation of the vector representation, an operation
that is easily implemented in hardware.

Multiplication in a normal basis representation is more complicated. The so-called
optimal normal bases5 (see Mullinet al [55]) appear to give the most efficient imple-
mentation of field arithmetic (with respect to both speed and complexity of hardware
architecture). For a report on a hardware implementation of an elliptic curve cryptosys-
tem over F2155 using an optimal normal basis, see Agnew, Mullin and Vanstone [3].

Another advantage of normal bases is that square roots of elements in F2m can be
efficiently computed. This is useful for recovering points when using the following
compression technique. LetP = (x1, y1) be a point on the elliptic curvey2 + xy =
x3 + ax2 + b defined over F2m. Define ỹ1 to be 0 if x1 = 0; if x1 6= 0, then ỹ1 is
defined to be the rightmost bit of the field elementy1x−1

1 . P can now be represented
as(x1, ỹ1). Givenx1 and ỹ1, y1 can be recovered using the following technique from
Menezes and Vanstone [50]. First, ifx1 = 0, theny1 =

√
b. If x1 6= 0, then the change

of variables(x, y)→ (x, xz) transforms the curve equation toz2+ z= x+ a+ bx−2.
Computeα = x1 + a + bx−2

1 . To solve the quadratic equationz2 + z = α, let
z = (z0, z1, . . . , zm−1) andα = (a0,a1, . . . ,am−1) be the vector representations ofz
andα, respectively. Thenz2+z= (zm−1+z0, z0+z1, . . . , zm−2+zm−1). Each choice
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z0 = 0 or z0 = 1 uniquely determines a solutionz to z2 + z = α, by comparing the
components ofz2+ z andα. The correct solutionz is selected by comparison with the
bit ỹ1. Finally, y1 is recovered asy1 = x1z.

3. Using subfields

Suppose thatm = lr , wherel is small (e.g.,l = 8 or l = 16). Then the field F2m can
be viewed as an extension field of degreer over F2l . If {α0, α1, . . . , αr−1} is a basis for
F2m over F2l , then each elementα ∈ F2m can be uniquely written in the form

α =
r−1∑
i=0

aiαi , whereai ∈ F2l .

Field multiplication in F2m now involves performing several operations in the field
F2l . Sincel is small, arithmetic in F2l can be sped up significantly, for example, by
precomputing “log” and “antilog” tables. The drawback of this method is the space
required for the tables. See Harper, Menezes and Vanstone [23] for an implementation
report whenl = 8, and De Winet al [83] and Guajardo and Paar [22] for a report when
l = 16.

5.2. Selecting an Appropriate Elliptic Curve

By an “appropriate” elliptic curve, we mean an elliptic curveE defined over a finite field
Fq satisfying the following conditions:

(i) To resist the Pollardρ-attack mentioned in §4, #E(Fq) should be divisible by a suffi-
ciently large primen (for example,n > 2160).

(ii) To resist the Semaev–Smart–Satoh–Araki attack mentioned in §4, #E(Fq) should not
be equal toq.

(iii) To resist the MOV reduction attack mentioned in §4,n should not divideqk − 1 for
all 1 ≤ k ≤ C, whereC is large enough so that it is computationally infeasible to find
discrete logarithms in F∗qC . (C = 20 suffices in practice.)

We shall say that a positive integeru is B-almost primeif u is divisible by a prime factor
≥ u/B.

Below we give an overview of four techniques for selecting an appropriate elliptic curve.

Using Hasse’s Theorem.This technique can be used for picking curves over F2m wherem
is divisible by a small integerl ≥ 1.

If E is an elliptic curve defined over Fq, thenE can be viewed as an elliptic curve over
any extension Fqk of Fq; E(Fq) is a subgroup ofE(Fqk). Hasse’s theorem enables one to
compute #E(Fqk) from #E(Fq) as follows. Lett = q + 1− #E(Fq). Then #E(Fqk) =
qk + 1− αk − βk, whereα andβ are complex numbers determined from the factorization
of 1− tT + qT2 = (1− αT)(1− βT).
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To select an appropriate curve over F2m, we first pick an elliptic curve over a small field
F2l , wherel dividesm, compute #E(F2l ) exhaustively, and then use Hasse’s theorem to
determine #E(F2m). If conditions (i), (ii) and (iii) above (withq = 2m) are not satisfied,
then another curve is selected and the process is repeated. Since the number of elliptic
curves over F2l is relatively small, for a fixedm it may not be possible to construct an
appropriate curve using this method.

Koblitz [34] observed that if one uses exponentsk of small Hamming weight when
computingk P in E(F2m), then one gets doubling of points “almost 3/4 for free” for some
anomalous curvesE defined over F2l (wherem is a multiple of l ). He provides a list
of anomalous curves defined over F2 (respectively F4, F8 and F16) and extension degrees
m such that #E(F2m) (respectively, #E(F4m), #E(F8m) and #E(F16m)) has a prime factor
of at least 30 decimal digits, and there exists an optimal normal basis in Fqm. For these
curves, if one uses exponentsk of low Hamming weight, then any string of≤ 4 zeros ink
(respectively, exactly 2, 3, 4 zeros) can be handled with a single addition of points. In [78]
Solinas, building on earlier work of Meier and Staffelbach [47], shows how to compute
k P very efficiently inE(F2m) for arbitraryk, whereE is an anomalous curve defined over
F2. (Note: the Semaev–Smart–Satoh–Araki algorithm mentioned before does not apply
to these anomalous curves, which are used not over a prime field, but rather over a large
degree extension of their field of definition.)

The Global Method. Another possibility is to choose an elliptic curve defined over a
number field and then reduce it modulo a prime ideal such that the resulting curve over
a finite field satisfies conditions (i), (ii) and (iii). For instance, we could start with the
equation (1) witha,b ∈ Q and then consider the same equation modulop for large primes
p, where we want the numberNp of points on the curve over Fp to be a prime or a prime
times a small factor. HereNp is always divisible by #Etors, the number of points of finite
order on the original elliptic curve over Q. But the ratioNp/#Etors will often be prime. It
should be noted that #Etors ≤ 16 by a deep theorem of B. Mazur [45], and #Etors = 1 for
most “random” curves. For more discussion of primality ofNp, see [30].

Example: Consider the curvey2 = x3−m2x, wherem is an integer parameter. (This is the
family of curves that arises from the famous Congruent Number Problem, first studied by
the ancient Greeks; see [35].) Now consider this curve modulo a primep not dividingm,
wherep ≡ 1 (mod 4). (Note: if p ≡ 3 (mod 4), then the curve is supersingular.) It was
Gauss who found a simple formula forNp. First one has to writep as a sum of two squares:
p = a2 + b2 (this is a very easy computational task), where without loss of generality we
suppose thata is odd. We choose the sign ofa by requiring thata+ b ≡ (mp) (mod 4).
ThenNp = p+ 1− a. Since our original elliptic curve over Q has exactly four points of
finite order (namely(0,0), (±m,0),∞), it follows that 4 dividesNp. But oftenNp/4 is
prime.

The Complex Multiplication Method.The method of complex multiplication (CM) allows
the choice of an elliptic curve orderbeforethe curve is explicitly constructed. Thus, orders
can be generated and tested to satisfy conditions (i), (ii) and (iii); a curve is constructed only
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when these conditions are met. The CM method is efficient provided that the finite field size
q and the order #E(Fq) = q+1− t are chosen so that the CM-field Q(

√
t2− 4q) has small

class number. For elliptic curves over Fp, the CM method is also called theAtkin-Morain
method(see [53]); over F2m, it is called theLay-Zimmer method(see [40]). The CM method
is fast in practice. Lay and Zimmer [40] report timings of about 3 minutes on a SPARC 2
(excluding the time for precomputation) for the construction of an elliptic curve over F2191

whose order is twice a prime.

Choosing a Curve at Random. Another approach to selecting an appropriate elliptic
curve E over Fq is to select random parametersa,b ∈ Fq (subject to the constraint that
4a3+27b2 6= 0 if q is odd, andb 6= 0 if q is a power of 2). One then computesu = #E(Fq)

and factorsu. This process is repeated until conditions (i), (ii) and (iii) are satisfied.
In the case of elliptic curves over Fp, the following theorem shows that, if the coefficients

a andb are selected uniformly at random, then the orders of the resulting elliptic curves are
roughly uniformly distributed. Similar results for the case of elliptic curves over F2m can
be deduced from the work of Waterhouse [81] and Schoof [70].

THEOREM(LENSTRA [41]) There exist effectively computable positive constants c1 and c2
such that for each prime p≥ 5 and for any subset S of integers in the interval[ p+ 1−√

p, p+ 1+√p], the probability rS that a random pair(a,b) ∈ Fp × Fp determines an
elliptic curve E: y2 = x3+ ax+ b with#E(Fp) ∈ S is bounded as follows:

#S− 2

2b√pc + 1
· c1(log p)−1 ≤ rS ≤ #S

2b√pc + 1
· c2(log p)(log log p)2.

For fixed B and sufficiently largeq, it is thus reasonable to assume that the probability
of B-almost primality of the order of a randomly chosen elliptic curve over Fq is roughly
equal to the probability ofB-almost primality of a random integer of the same order of
magnitude asq. If q is a power of 2, then one considers randomevenintegers of the same
order of magnitude asq. For fixedB andq = 2m, the latter probability is asymptotic to∑B/2

j=1
1

j log(q/2 j ) ≈ 1
m log2(B/2). For example, ifq = 2175 and we want an elliptic curve

whose order is divisible byn > 2160 (so B = 215), we expect to try about 13 curves before
finding one whose order isB-almost prime.

In 1985 Schoof [69] presented a polynomial-time algorithm for computing the number of
Fq-points on an elliptic curve defined over Fq in the case whenq is odd; the algorithm was
later extended to the case ofq a power of 2 by Koblitz [32]. Schoof’s algorithm has a worst-
case running time ofO((logq)8) bit operations, and is rather inefficient in practice for the
values ofq of practical interest (i.e.,q > 2160). In the last few years a lot of work has been
done on improving and refining Schoof’s algorithm. Lercier and Morain [44] implemented
Schoof’s algorithm incorporating ideas of Atkin, Elkies and Couveignes. They reported
timings of 4 and 3 minutes on a DecAlpha 3000/500 for computing the orders of elliptic
curves over F2155 and over a 155-bit prime field, respectively. A new record for elliptic
curve point counting over prime fields was established in 1995 by Lercier and Morain [44],
who computed the order of a curve over a 499-decimal digit (1658-bit) prime field; the
computation took the equivalent of roughly 4200 hours on a DEC 3000-M300X. In the
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case of characteristic two finite fields, the current record was established in June 1998 by
A. Joux and R. Lercier, who computed the order of a curve over F21663; the computation
took the equivalent of roughly 330 days on a DEC Alpha. They used the Schoof–Elkies–
Atkin algorithm and incorporated newer ideas of Lercier [42]. Cryptographically suitable
elliptic curves over fields as large as F2196 can be randomly generated in a few hours on a
workstation [43].

5.3. Standards Activities

The two primary objectives of industry standards are to promote interoperability and to
facilitate widespread use of well-accepted techniques. Standards for elliptic curve systems
are currently being drafted by various accredited standards bodies around the world; some
of this work is summarized below.

1. The Elliptic Curve Digital Signature Algorithm (ECDSA) was adopted in January 1999
as an official American National Standards Institute (ANSI) standard. The ANSI X9
(Financial Services) working group is also drafting a standard for elliptic curve key
agreement and transport protocols.

2. Elliptic curves are in the draft IEEE P1363 standard (Standard Specifications for Public-
Key Cryptography), which includes encryption, signature, and key agreement mecha-
nisms. Elliptic curves over Fp and over F2m are both supported. For the characteristic
two finite fields, polynomial bases and normal bases of F2m over an arbitrary subfield F2l

are supported. P1363 also includes discrete log systems in subgroups of the multiplica-
tive group of the integers modulo a prime, as well as RSA encryption and signatures.
The latest drafts are available from the web sitehttp://stdsbbs.ieee.org/ .

3. The OAKLEY Key Determination Protocol of the Internet Engineering Task Force
(IETF) describes a key agreement protocol that is a variant of Diffie–Hellman. It
allows for a variety of groups to be used, including elliptic curves over Fp and F2m. The
document makes specific mention of elliptic curve groups over the fields F2155 and F2210.
A draft is available from the web sitehttp://www.ietf.cnri.reston.va.us/ .

4. ECDSA is specified in the draft document ISO/IEC 14888: Digital signature with
appendix – Part 3: Certificate-based mechanisms.

5. The ISO/IEC 15946 draft standard specifies various cryptographic techinques based on
elliptic curves including signature schemes, public-key encyrption schemes, and key
establishment protocols.

6. The ATM Forum Technical Committee’s Phase I ATM Security Specification draft doc-
ument aims to provide security mechanisms for Asynchronous Transfer Mode (ATM)
networks. Security services provided include confidentiality, authentication, data in-
tegrity, and access control. A variety of systems are supported, including RSA, DSA,
and elliptic curve systems.
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As these drafts become officially adopted by the appropriate standards bodies, one can
expect elliptic curve systems to be widely used by providers of information security.

Notes

1. This is a security condition: ifr = 0, then the signing equations= k−1{h(m)+ dr} modn does not involve
the private keyd.

2. If s = 0 thens−1 modn does not exist; this is required in step 3 of signature verification. Note that ifk is
chosen at random, then the probability that eitherr = 0 ors= 0 is negligibly small.

3. More precisely, letm be a prime factor ofn that does not divideq− 1. Then the MOV algorithm for discrete
logs in the subgroup ofE(Fq) of orderm can be carried out in F∗

qk if and only if m|qk − 1.

4. It must be emphasized that such a comparison is very rough, as it does not take into account the various
enhancements that are possible for each system.

5. Hereoptimality refers to the minimum possible number of interconnections between the components of the
multiplicands.
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pp. 159–168.

20. S. Goldwasser and J. Kilian, Almost all primes can be quickly certified,Proceedings of the Eighteenth Annual
ACM Symposium on Theory of Computing, (1986) pp. 316–329

21. D. Gordon, Discrete logarithms inGF(p) using the number field sieve,SIAM Journal on Discrete Mathe-
matics, Vol. 6 (1993) pp. 124–138.

22. J. Guajardo and C. Paar, Efficient algorithms for elliptic curve cryptosystems, Advances in Cryptology—
CRYPTO ’97, Lecture Notes in Computer Science, Springer-Verlag, 1294 (1997) pp. 342–356.

23. G. Harper, A. Menezes and S. Vanstone, Public-key cryptosystems with very small key lengths, Advances in
Cryptology—EUROCRYPT ’92, Lecture Notes in Computer Science, Springer-Verlag, 658 (1993) pp. 163–
173.

24. P. Ivey, S. Walker, J. Stern and S. Davidson, An ultra-high speed public key encryption processor,Proceedings
of IEEE Custom Integrated Circuits Conference, Boston (1992) 19.6.1–19.6.4.

25. M. Jacobson, N. Koblitz, J. Silverman, A. Stein and E. Teske, Analysis of the xedni calculus attack, to appear
in Designs, Codes and Cryptography.

26. B. Kaliski, A pseudorandom bit generator based on elliptic logarithms, Advances in Cryptology—CRYPTO
’86, Lecture Notes in Computer Science, Springer-Verlag, 293 (1987) pp. 84–103.

27. B. Kaliski, One-way permutations on elliptic curves,Journal of Cryptology, Vol. 3 (1991) pp. 187–199.
28. B. Kaliski, A chosen message attack on Demytko’s elliptic curve cryptosystem,Journal of Cryptology, Vol. 10

(1997) pp. 71–72.
29. N. Koblitz, Elliptic curve cryptosystems,Mathematics of Computation, Vol. 48 (1987) pp. 203–209.
30. N. Koblitz, Primality of the number of points on an elliptic curve over a finite field,Pacific Journal of

Mathematics, Vol. 131 (1988) pp. 157–165.
31. N. Koblitz, Hyperelliptic cryptosystems,Journal of Cryptology, Vol. 1 (1989) pp. 139–150.
32. N. Koblitz, Constructing elliptic curve cryptosystems in characteristic 2, Advances in Cryptology—CRYPTO

’90, Lecture Notes in Computer Science, Springer-Verlag, 537 (1991) pp. 156–167.
33. N. Koblitz, Elliptic curve implementation of zero-knowledge blobs,Journal of Cryptology, Vol. 4 (1991)

pp. 207–213.
34. N. Koblitz, CM-curves with good cryptographic properties, Advances in Cryptology—CRYPTO ’91, Lecture

Notes in Computer Science, Springer-Verlag, 576 (1992) pp. 279–287.
35. N. Koblitz,Introduction to Elliptic Curves and Modular Forms, 2nd edition, Springer-Verlag (1993).
36. N. Koblitz,A Course in Number Theory and Cryptography, 2nd edition, Springer-Verlag (1994).
37. N. Koblitz,Algebraic Aspects of Cryptography, Springer-Verlag (1998).
38. K. Koyama, U. Maurer, T. Okamoto and S. Vanstone, New public-key schemes based on elliptic curves over

the ringZn, Advances in Cryptology—CRYPTO ’91, Lecture Notes in Computer Science, Springer-Verlag,
576 (1993) pp. 252–266.

39. K. Kurosawa, K. Okada and S. Tsujii, Low exponent attack against elliptic curve RSA, Advances in
Cryptology—ASIACRYPT ’94, Lecture Notes in Computer Science, Springer-Verlag, 917 (1995) pp. 376–
383.

40. G. Lay and H. Zimmer, Constructing elliptic curves with given group order over large finite fields, Algorithmic
Number Theory, Lecture Notes in Computer Science, Springer-Verlag, 877 (1994) pp. 250–263.

41. H. W. Lenstra, Factoring integers with elliptic curves,Annals of Mathematics, Vol. 126 (1987) pp. 649–673.
42. R. Lercier, Computing isogenies in F2n , Algorithmic Number Theory, Proceedings Second Intern. Symp.,

ANTS-II, (Henri Cohen, ed.), Lecture Notes in Computer Science, Springer-Verlag, 1122 (1996) pp. 197–212.
43. R. Lercier, Finding good random elliptic curves for cryptosystems defined F2n , Advances in Cryptology—

EUROCRYPT ’97, Lecture Notes in Computer Science, Springer-Verlag, 1233 (1997) pp. 379–392.

121



192 KOBLITZ ET AL.

44. R. Lercier and F. Morain, Counting the number of points on elliptic curves over finite fields: strategies and
performances, Advances in Cryptology—EUROCRYPT ’95, Lecture Notes in Computer Science, Springer-
Verlag, 921 (1995) pp. 79–94.

45. B. Mazur, Modular curves and the Eisenstein ideal,Inst. HautesÉtudes Sci. Publ. Math., Vol. 47 (1977)
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