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Introduction.  Continued fractions provide a unique method of expressing numbers or functions, different from the more commonly used forms introduced throughout grade school math classes and beyond. At first glance, continued fractions may seem like they are just a more complex way to say something simple, but they can be very useful in understanding how certain numbers, functions, sets of numbers, etc. work when brought into a more in-depth study. For example, they can be used to compute rational approximations to irrational numbers. They can also be utilized in solving Diophantine and Pell’s equations.


This paper will introduce the concept of continued fractions, providing a definition and some key terms to consider. We will also take a look at the history of continued fractions, noting some mathematicians who contributed in its development and what they did in a timeline of noteworthy events. Then we will explore the properties and behavior of continued fractions with some introduction to theory followed by some examples. The examples are intended to give the reader a visual understanding of continued fractions and their properties.

Definition. A continued fraction is an expression of the form
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        a2 + ________






     a3 + ...

where each ai is either a real number or a complex number. The numbers ai are called partial quotients. If ai is an integer for all i, then we call the expression a simple continued fraction. If the expression contains finitely many terms, it is called a finite continued fraction. If there are an infinite amount of terms, it is an infinite continued fraction.


A more convenient notation for the above expression is






[a0, a1, a2, a3,...].


Another notation would be






a0 + (1/a1+)(1/a2+)(1/a3+)

For example, we could take






[3, 5] = 3 + (1/5) = 16/5.

The nth convergent for a continued fraction [a0, a1,...,am] is [a0, a1,...,an] for some n that satisfies 0 ≤ n ≤ m. These convergents for n < m are called partial convergents.

History. There is no set date on the birth of continued fractions. However, it is generally agreed upon that the creation of Euclid's algorithm around 300BC is when continued fractions first began to emerge. Although the Euclidean algorithm is used to find the greatest common divisor of two numbers p and q, a simple continued fraction of the rational number p/q can be derived by algebraically manipulating the algorithm. Around 550AD, the Indian mathematician Aryabhata used a continued fraction to solve a linear equation. However, he only used continued fractions in specific examples and never generalized his method. For over a thousand years, the use of continued fractions was limited to only specific examples. In the 1500s, two Italian Mathematicians, Rafael Bombelli and Pietro Cataldi made their contributions. Bombelli expressed the square root of 13 as a repeating continued fraction while Cataldi did the same for the square root of 18. Again, neither of them examined the properties of continued fractions, so no theory was developed yet.


One man who investigated further was John Wallis. In his book, Arithemetica Infinitorium, Wallis worked out the formula





4 = 3 x 3 x 5 x 5 x 7 x 7 x 9 x ...





π    2 x 4 x 4 x 6 x 6 x 8 x 9 x ...  .

Although this is not a continued fraction, Lord Brouncker rewrote this identity as
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Brouncker never went further with continued fractions after this. However, Wallis took the first steps in forming a general theory. In his book Opera Mathematica, Wallis explained how to compute the nth convergent and discovered some of the now familiar properties of convergents. He also introduced the term "continued fraction."


The Dutch mathematician and astronomer Christiaan Huygens wrote a paper explaining how to use the convergents of a continued fraction to find the best rational approximations for gear ratios. He was able to pick the gears with the right number of teeth thanks to these approximations. This marked the first demonstration of a practical application of continued fractions.


While Wallis and Huygens wrote the first general works on continued fractions, the theory of continued fractions really began to grow in the 1700s with the contributions of Leonard Euler, Johan Heinrich Lambert, and Joseph Louis Lagrange. Euler developed much of the modern theory with his work De Fractionlous Continious. He showed that every rational can be expressed as a simple continued fraction. He also provided an expression for e as a continued fraction, which he used to show that e and e² are irrational. Lambert generalized this work to show that ex and tanx are irrational if x is rational. He also proved the convergence of the continued fraction expansion for tanx. Lagrange found the value of irrational roots with continued fractions. He also proved that a real root of a quadratic irrational is given by a periodic continued fraction.


With the 1700s providing a foundation for continued fraction theory, the 1800s is when continued fractions really flourished in mathematics. Claude Brezinski notes the popularity of continued fractions during this time, stating that "the subject was known to every mathematician." Continued fraction theory grew significantly, especially in the part concerning convergents. Many well-known names contributed during this era including Karl Jacobi, Oskar Perron, Charles Hermite, Karl Friedrich Gauss, Augustin Cauchy, and Thomas Stieljes.

[[The above is almost word-for-word just copied from http://archives.math.utk.edu/articles/atuyl/confrac/history.html, with trivial changes to the sentence phrasing.]]

Continued Fractions as Partitions. To help visualize a continued fraction, we present the following picture analogy developed by Clark Kimberling. We will transform the fraction 45/16 into a continued fraction. The steps we take to do so will be illustrated by partitioning a 45x16 rectangle into as many squares as possible and 1 remainder rectangle such that the squares are of maximum size.


We begin with a rectangle of length 45 and width 16.                   [image: image1.png]45





We want to convert 45/16 into a whole number quotient plus a proper fraction. Dividing 45 by 16, we get 2 lots of 16 with 13 left over, ie. 45/16 = 2 + 13/16. In terms of the picture, we partition the rectangle into 2 squares of size 16x16 and 1 rectangle of size 13x16. 











        [image: image2.png]


 

Now we do the same thing with the 13x16 rectangle, viewing it as a 16x13 rectangle because we need the numerator to be larger than the denominator and 16 > 13. Dividing 16 by 13, we get 1 lot of 13 and 1 lot of 3. So now we partition the 16x13 rectangle into a 13x13 square and a 13x3 rectangle. 







        [image: image3.png]


 

Mathematically, this can be written as 45/16 = 2 + 13/16 = 2 + 1/(16/13) = 2 + 1/(1 + (3/13)). Now we repeat the same procedure for the remaining 3x13 rectangle, looking at it as a 13x3 rectangle. There will be 4 squares of size 3x3 and 1 square of size 1x3 left over. 











        [image: image4.png]



So we have 45/16 = 2 + 13/16 = 2 + 1/(16/13) = 2 + 1/(1 + (3/13)) = 2 + 1/(1 + 1/(4 + (1/3))). Finally, we can take the 1x3 rectangle and partition it into 3 squares of size 1x1. Since there is no rectangle left over, we cannot make any further partitions. Thus, the procedure terminates, leaving us with 45/16 = 2 + 1/(1 + 1/(4 + (1/3))), or in the simplified notation, [2, 1, 4, 3]. 
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Note that the procedure terminated because this was an example of a finite continued fraction. Also, the example number 45/16 conveniently does not possess a lot of partial quotients, so the work here was not too tedious as we were able to see all the partitions relatively quickly. One can see that given an infinite continued fraction, the initial rectangle would be partitioned an infinite amount of times, and so the procedure would never terminate. This illustrates the convergent behavior of an infinite continued fraction; the partitioned squares and rectangles would get closer to side length 0 as the procedure continues.

Example of the Behavior of Continued Fractions. To observe the behavior of continued fractions, we start with the continued fraction for 43/19 = [2, 3, 1, 4]. Now we replace the last entry “4” with a new entry that is larger than 4 and find its fraction form. We will start with “5” and then repeat this process, changing “5” to “6”, “6” to “7”, and so on, taking note of the fraction form each time.

[2, 3, 1, 4] = 43/19

[2, 3, 1, 5] = 52/23

[2, 3, 1, 6] = 61/27

[2, 3, 1, 7] = 70/31

[2, 3, 1, 8] = 79/35

[2, 3, 1, n] = (43 + 9k)/(19 + 4k)   k = 0, 1, 2, …

We see that there is a pattern to the resulting fractions. By increasing the last entry of [2, 3, 1, 4] by 1, the next fraction has a numerator that is 9 more than the previous numerator as well as a denominator that is 4 more than the previous denominator.




43 + 9 = 52, 52 + 9 = 61, 61 + 9 = 70, …




19 + 4 = 23, 23 + 4 = 27, 27 + 4 = 31, …

Now we eliminate the 4th entry to consider the continued fraction [2, 3, 1].





[2, 3, 1] = 9/4

This value holds much significance because the continued fraction  [2, 3, 1, n] decreases as n increases, getting closer to [2, 3, 1] as n approaches infinity.

43/19 > 52/23 > 61/27 > … > 9/4

Also, we can fill in the missing entries “1”, “2”, and “3” to see that the pattern stays consistent if we start with [2, 3, 1, 1] as opposed to [2, 3, 1, 4].

[2, 3, 1, 1] = 16/7

[2, 3, 1, 2] = 25/11

[2, 3, 1, 3] = 34/15




16 + 9 = 25, 25 + 9 = 34, 34 + 9 = 43




7 + 4 = 11, 11 + 4 = 15, 15 + 4 = 19



16/7 > 25/11 > 34/15 > 43/19 > 52/23 > 61/27 > … > 9/4

By placing a number n as the 4th entry of [2, 3, 1, n], we are essentially adding [2, 3, 1] = 9/4 by some value. By increasing n, we are adding a value smaller than what we put before, which causes the new value to be closer to [2, 3, 1].

The Continued Fraction Procedure. The continued fraction procedure takes a number and relates that number to a sequence of integers a0,a1,a2,…, essentially transforming the number into a continued fraction. For this explanation, we will consider only real numbers.

Let x be a real number such that

a = a0 + t0 

where a0 is the floor of x (more commonly noted as ⌊x⌋) and t0 is a real number satisfying 

0 ≤ t0 < 1. If t0 = 0, we are done since we would have the continued fraction [a0].

If t0 is not equal to 0, take

1/t0 = a1 + t1 

where a1 is a positive integer and 0 ≤ t1 < 1. Thus t0 = 1/(a1 + t1) = [0, a1 + t1], which is a continued fraction expansion of t0. Similar to the previous step, if t1 = 0, we are done. If not, the procedure continues.

In general, if tn is not equal to 0, the procedure continues with

1/tn = an+1 + tn+1 

where an+1 is a positive integer and 0 ≤ tn+1 < 1.

Example. Let x = 29/13. Then x = 2 + 3/13, so a0 = 2 and t0 = 3/13. Next, 

1/t0 = 13/3 = 4 + 1/3, so a1 = 4 and t1 = 1/3. Then 1/t1 = 3, so a2 = 3 and t2 = 0. We have reached a tn that is equal to 0, so the procedure terminates and we are left with






29/13 = [2, 4, 3].

Convergents and Convergence. As stated before, the nth convergent for a continued fraction [a0, a1,...,am] is [a0, a1,...,an] for some n that satisfies 0 ≤ n ≤ m. Given an infinite continued fraction, if its sequence of convergents approaches a limit, then the continued fraction converges. We will illustrate how this works with    2.

Example. Let x =    2 = 1.41421. The convergents of x are



x0 = 1/1 = [1] = 1



x1 = 3/2 = 1 + 1/2 = [1, 2] = 1.5



x2 = 7/5 = 1 + 1/(2 + (1/2)) = [1, 2, 2] = 1.4



x3 = 17/12 = 1 + 1/(2 + 1/(2 + (1/2))) = [1, 2, 2, 2] = 1.41667



x4 = 41/29 = 1 + 1/(2 + 1/(2 + 1/(2 + (1/2)))) = [1, 2, 2, 2, 2] = 1.41379

The values of xn oscillate about   2 as n increases. Also, the difference between x and xn decreases as n increases, ie. |x – xn| > |x – xn+1|. Here is a graph that shows this behavior.
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The red line is   2 and the blue curve represents the behavior of the convergents of    2. As we can see, taking the convergents as a sequence, the sequence converges since it approaches a limit as n goes to infinity, namely   2.

Conclusion. This paper was intended to give the reader an introduction into the theory of continued fractions. There was a look on the history of continued fractions, including how and when the concept derived as well as how the theory progressed over time. Then we presented some examples, showing how to think of continued fractions and how some basic properties of continued fractions work. There is still much that one can learn about continued fractions, and hopefully this introduction provides a first step for more in depth study.
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